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Abstract

Considering that stock price indices oscillate in their evolution, this series of papers pro-
poses to analyze the fluctuation of stock price indices in light of a theory of oscillation. The time
evolution of the Nikkei 225, for example, is analyzed and some statistical properties such as the
frequency distribution of shifts of phases are discussed in terms of oscillation theory. The results
are also compared with those from a standard random walk theory.

Introduction

A new research field called “Econophysics” has been born very recently'’, which stands
for “Economics” + “Physics”. In econophysics one studies various phenomena in finances
and securities in terms of physics tools as well as mathematics. It seems that phenomena in
securities, for example, are too complex to handle in a similar way as done in natural sciences.
The idea of econophysics is to find a simple law or dynamics behind its complicated phe-
nomenon by reducing the system to be as simple as possible with introducing several assump-
tions.

In the present paper we study the time evolution of stock prices in terms of physics tools.
The number of stock issues is extremely large. For example, 1,600 companies are the member
of Tokyo Stock Market. Therefore we restrict ourselves to study a specific index such as
Nikkei 225 instead of dealing with each issue. It appears that stock prices vary randomly
without any causal laws. It seems that a stock price in this month varies independently of the
price in last month. Nevertheless, we introduce a theory for oscillations in order to analyze
the time evolution of the stock prices”™. The theory of oscillations is a very common ap-
proach in physics, which has an advantage to be solved analytically and to predict future
development.

The present paper is organized as follows. In section 1 we present an analytic formula-
tion for the time evolution of the stock price indices in terms of the theory for oscillations.
In section 2 we also give an analytic expression derived from a standard random walk theory.
In section 3 we apply these formalisms to Nikkei 225 data of Tokyo Stock Market. We
compare results derived by the present theory with those by the random walk theory.
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1. Analysis in Terms of Theory for Oscillations

In this section, we present the analysis of stock price fluctuation in terms of oscillation
theory and the classification of the fluctuation modes.

1.1 Oscillatory Fluctuations

Let us assume that stock prices fluctuate according to the theory for oscillations. Namely

a stock price index x(#) (for example, Nikkei 225) at a time ¢ oscillates around a mean value
b. Then x(t) is determined by the following differential equation,

dZ

WI(I) = —w{x(t)—b}, (1.1)

where w is the angular frequency, which represents the speed of oscillations. It is quite
standard to solve equation (1.1). The solution is given as follows,

x(t) = acos(wt+8)+b, (1.2)

where @ (amplitude) and 6 (phase) are parameters in this formalism. In the present case, we
treat w and O as parameters as well. If four initial values are given for x at various time ¢, the
parameters are determined uniquely. Therefore the stock price indices () at later time is
determined by equation (1.2).

Let 4t be a constant time interval. Then the indices at ¢ = 0, 4¢, 24, 34t are presented
as follows,

2(0) = acos(0)+b, (1.3)
x(4t) = acos(wdt+6)+b, (1.4)
x(24t) = a cos(2wdt+6)+b, (1.5)
x(34t) = a cos(3wdt+6) +b. (1.6)

The variation of x between two successive time points is defined as follows,

y<lzlt> — 2(U)—2(0) = a cos(wdt+0) —a cos(0)

2
. 1 . 1
= —2a s1n<2wdt>sm<2wdt+0>, (1.7)
y<2dt> = x2(24t) —x(4t) = a cosQuwdt+0) —a cos(wdt+0)
. 1 . (3
= —2a sm<2wdz‘>sm<2wdt+0>, (1.8)
y<gdt> = x2(84t) —x(24t) = acos(Bwdt+0)—a cos(2wdit+6)
. 1 . 5
= —2a s1n<2wdt>sm<2wdz‘+8>. (1.9)

We also define the variation of ¥ between two successive time points as follows,
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z(4t) = y(édt)—y(édt) = —4q sin2<;wdt>cos(wdt+9), (1.10)
5 3 . of 1
z(24t) =y ?z/l —y ?dt = —4a sin ?a)dt cosRwdt+0). (1.11)

Similarly, the variation of z between two successive time points is defined by

w<gdt> =z(24t)—z(4t) = 8a sin3<;a)dt>sin<ga)dt+ 9>. (1.12)

3
Using equations (1.8) and (1.12), we find the ratio w/y at a time ?A t as follows,

3

w<24l‘> 1
4 sin2<

R, = 37 = — 2wdt>. (1.13)
Y ?AZ‘

Equation (1.13) gives an important condition for oscillatory fluctuations. That is

—4 <R, <0 (1.14)

w/y

for any oscillatory fluctuations.
Finally, one can predict a stock price index at ¢ = 44¢ in terms of the previous values at
t =0, dt, 24t, 34t as follows,

(x(34t) —x(241)) (x(34t) —x(0))

x(44t) = z(4t) + x(24t) —x(4t)

(1.15)

1.2 Zigzag Fluctuations

In some cases, the stock price indices do not satisfy the condition of equation (1.14), but
the following condition,

Ry, < —4. (1.16)

In this case, no analytical solutions of the differential equation (1.1) are available. Therefore
fluctuation is not oscillatory. Instead the fluctuation of the indices is classified into following
two cases.

3
(i) The case w<24t> > 0, when we can show that

x(24t) < x(4t), x(34t) > x(0). (1.17)

In this case the stock price index shows a tendency to rise in zigzag motions. We call this
fluctuation mode as rising tendency.

3
(ii) The case w<24t> < 0, when we can show that

x(24t) > x(4t), x(34t) < z(0). (1.18)
In this case the stock price index shows a tendency to decrease in zigzag motions. We call
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this fluctuation mode as decreasing tendency.
In the case of the zigzag fluctuations, one can no longer express x(¢) in analytic form.

If the following condition
w<5z/t> w<3dt>
2 2
= (1.19)

o) o)

is satisfied, however, one can derive the relation of () in the same form as equation (1.15).
Namely,

(x(34t) —x(241)) (x(34t) —x(0))
x(24t) —x(4t)

x(44t) = x(4t) + (1.20)

which shows that the index at ¢ = 441 is predicted again.

1.3 Divergent Fluctuations and Unstable Fluctuations

In the case of oscillatory fluctuations the force acting on the stock price indices was
attractive as in equation (1.1), which stabilizes the system. If the force is repulsive, on the
other hand, the system becomes unstable. In this case, the differential equation for the index
fluctuation is

2

d
) = w’{z(1) —b}. (1.21)
The solution is given as
x(t) = a cosh(wt+6)+b, (1.22)

where cosh is the hyperbolic cosine function. The parameters @, 0, w and b appear similarly
to those defined in section 1.1. One can repeat the same argument as in section 1.1. Stock
price indices at time ¢ = 0, 4¢t, 24t, 34t are expressed as follows.

2(0) = a cosh(0) +b, (1.23)
x(4t) = a cosh(wdt+6)+b, (1.24)
x(24t) = a coshQQuwdt+6)+0, (1.25)
x(34t) = a cosh(Bwdt+6)+b. (1.26)

The variation of x between two successive time points is defined as follows,

y<;zlt> =x(4t)—x(0) = 2a sinh<;w4t>sinh<;wdt+6>, (1.27)

y<gdt> = x2(24t) —x(4t) = 2a sinh<;wdt>sinh<gwdt+9>, (1.28)

y<gdt> = x(34t) —x(24t) = 2a sinh<;wdt>sinh<gwdt+6>. (1.29)

We also define the variation of ¥ between two successive time points as follows,

z(4t) = y<gdt>—y<édt> = 4a sinh2<;wdt>cosh(wdt+9), (1.30)
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z2(241) = y<gdt>—y<§dt> = 4a sinh2<;wdt>cosh(2wdt+0). (1.31)

Similarly, the variation of z between two successive time points is defined by

w<2z/t> =z2(24t)—z(4t) = 8a sinh3<;a)dt>sinh<gwdt+ 9>. (1.32)

. ) . ) 3
Using equations (1.28) and (1.32), we find the ratio w/y at a time ?A t as follows,
w<3zl Z>
_ 2 .ol 1
R,, = 73 N 4 sinh ?a)dt : (1.33)
o(34)
Equation (1.33) gives an important condition for the present fluctuation mode. Namely,

R,, > 0. (1.34)

w/y

If the stock price index satisfies equation (1.34), the fluctuation becomes either divergent
or unstable. One can classify the fluctuation into the following four cases.

3
(i) The case z2(24¢) > 0 and w<24t> > 0, when we can show that

y<gdt> >0, y<gdt> > y<gdt> > y<;dt>, z(24t) > z(4t) > 0. (1.35)

In this case the stock price index increases divergently. We call this fluctuation mode diver-
gent rise.

3
(ii) The case z(24¢t) < 0 and w<2dt> < 0, when we can show that

y<gdt> <0, y<gdt> < y<2dt> < y<;dt>, z2(24t) < z(4t) < 0. (1.36)

In this case the stock price index decreases divergently. We call this fluctuation mode diver-
gent decrease.

(iii) The case z(24¢) > 0 and w<§dt> < 0, when we can show that

y<;dt> < y<§dt> <0, y<2z/t> < y<gdt>, z(24t) < z(4t), z(4t) > 0. (1.37)

In this case the stock price index decreases step by step. For each step the amplitude of
fluctuations approaches to zero, therefore it is unpredictable whether the index increases or
decreases in further steps. We call it unstable dumping fluctuation.

(iv) The case z2(24¢) < 0 and w<§dt> > 0, when we can show that

y<;dt> > y<2dt> >0, y<gdt> > y<gdt>, z2(24t) > z(4t), z(4t) < 0. (1.38)
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In this case the stock price index increases step by step. For each step the amplitude of
fluctuations approaches to zero, therefore it is also unpredictable whether the index increases
or decreases in further steps. We again call it unstable dumping fluctuation.

In these four cases, one can again predict a value at ¢ = 44¢ in terms of the previous four
values at ¢t = 0, 4t, 241, 341t as follows,

(x(34t) —x(24t)) (x(34t) —x(0))
x(24t) —x(4t) '

x(44t) = x(4t) + (1.39)

2. Analysis in Theory for Random Walks

Let us define z(¢) as a stock price index at a given time ¢ and assume that the index
follows the theory of random walks™'. We use the same definitions for x, ¥, z and w as given
in section 1. (Readers should refer to equations (1.7)—(1.13) for their explicit definitions.)
The definition of the theory of random walks is as follows. We assume that the probability
distribution function for y is given by the normal distribution N(0, 0°) | where the average of
the distribution is zero and o is the standard deviation. The explicit form of the probability
distribution function is given by

1 v
p(y)%exp< 202). 2.1

Similarly, the probability distribution function for finding the three values of (¥, ¥,, ¥3) for

1 3 5 .
Yy, = y<dt>, Yy = y<Z/l‘>, and y; = y<dt> is given as follows,

2 2 2
oYy, Yy yy) = <1>3exp{—1(y2+y2+y2)} (2.2)
1» I2» I3 % 202 1 2 3 . .
The total probability is normalized to unity as shown by the following expression,
400 +o00 +o0
fm dy, fm dy, ﬁw dys0 (Y1, Yy, y3) = 1. (2.3)

In the analysis of the stock price indices in terms of the theory for oscillations, the ratio
R,;, = w/y played an essential role in classifying the fluctuations as shown in last section.
Therefore we formulate the expression for R,,/, in the theory of random walks. The definition

of R, is given by
w<gdt>
(341)

Let us define P,(s) as a probability for finding R,,, in the following interval,
s<R,, <s+d4s, (2.5)

w/y

where 0 < 4s <1. One can express P,,(s) as follows,
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+oo too —y+(s+4ds+2)y,
P, (s)ds :ﬁoo dylj; dyzﬁ dyse(yy, Ys Ys)

Y1+ (s+2)yy

+ o0 0 —y;+(s+2)y,
+Jiw dy1£m dyzﬁ dy30<y1, Yos y3>~

yp+(s+ds+2)y,

(2.6)

Inserting equation (2.2) into equation (2.6) one can perform three dimensional integration in
equation (2.6). After lengthy but straightforward calculations, one obtains the following
expression for P,,(s).

P,(s) = 11{sinl< stdstz > sin1<8+2>} (2.7
- ds @ J(s+ ds+2)7+2 Js+2)'+2 /)0 T
By taking a limit of 4s — 0, equation (2.7) is further simplified as

V2 |

(s+2)*+2°

P(s) = Alsil;no P,(s) = (2.8)

where P(s) ds denotes the probability for finding R,,, in the interval between s and s+ds.
We note that P(s) is normalized to unity as

fj dsP(s) = 1. (2.9)

Equation (2.8) is an extremely important result of the random walk theory. We summa-
rize the predictions derived from equation (2.8) as follows,

(i) For oscillatory fluctuations: —4 < R,,,, < 0, we obtain the probability

0
P = [ dsP(s) = isinl< §> = 0.608. (2.10)

(ii) For zigzag fluctuations: R,,, < —4, we obtain the probability

_ [ S S S N A A
The probability of zigzag fluctuations is furthermore divided into two parts as
Py > 0) = Py (w < 0) = %ngmg = 0.098. (2.12)

(iii) For divergent and unstable fluctuations: R,,;, > 0, we obtain the probability

-+ co
Py = [ dsP(s) = ;}Tsin1< ?,) = 0.196, (213)

The probability for divergent and unstable fluctuations is furthermore divided into four parts
as

_ _ T a2
P.(z>0, w>0) =P, (2<0,w<0) = 18 g Sin < 3 > 0.070, (2.14)

_ _b6 1 )2
P..(z>0, w<0) =P, (z2<0,w>0) = 18 g Sin < 3 > 0.028. (2.15)
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In the next section we will compare these predictions of the random walk theory with a prac-
tical stock price index Nikkei 225 of Tokyo Stock Market"™.

3. Application to Nikkei 225 data of Tokyo Stock Market

In this section we analyze stock price data in terms of the theory for oscillations derived
in section 1. In the present paper, in particular, we study general trends of stock prices.
Therefore, we use Nikkei 225 data instead of individual issues. In order to reduce statistical
uncertainties as much as possible, we try to include large number of data available for us.

3.1 Frequency Distributions for Fluctuation Modes

In Figure 1 we have plotted a histogram of Nikkei 225 data as a function of R,,,,. The
data are Nikkei 225 stock price indices at the end of months. The total number of data is 400
(months) for the last 33 years in the period of 1970-2003. Each bar in Figure 1 denotes the
number of frequency for the interval 4R, = 0.1. The solid curve is the prediction of the
random walk theory given by equation (2.8), which is normalized to the total number of
frequencies. As far as the gross structure of the frequency distribution is concerned, both of
the shape and the peak position of the frequency distribution of the practical data seem to be
consistent with the random walk theory prediction. However, the number of data points (400)
is not sufficient enough to exclude statistical errors.

In Table 1 we have calculated the frequencies (in percent) of the same Nikkei 225 data
for the period of 1970-2003 for each fluctuation mode. The first, second and third lines stand
for oscillation fluctuations, zigzag fluctuations and divergent fluctuations, respectively. The
second column shows the prediction by the random walk theory given by equations (2.10)—
(2.15). Again, the gross structure of the frequency distribution of Nikkei 225 seems to be

20
Nikkei 225 (1970-2003)
15 F i
2
=
g I ]
10 | [ -
5 -
0 _I i ’-[ i | N L

R

w/y

Figure 1 Frequency distribution of Nikkei 225 data for the last 33 years as a function of R, ,.

The total number of data is 400 (months) for the period of 1970-2003. The curve is a result of
the random walk theory (equation (2.8)), which is normalized to the total number of data.
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Table 1 Frequency distribution of Nikkei 225 data for the last 33 years in various fluctuation modes.
The total number of data is 400 (months) for the period of 1970-2003.

Fluctuations Nikkei 225 Data Random Walk Theory
Oscillations 0.595 0.608
(i) w>0 0.1225 0.098
Zigzag 0.215 0.196
(ii) w<0 0.0925 0.098
(i) z>0, w>0 0.0800 0.070
(ii) 2<0, w<0 0.0525 0.070
Divergent 0.190 0.196
(iii) 2 >0, w< 0 0.0225 0.028
(iv) 2<0, w >0 0.0350 0.028
Total 1.000 1.000

described by the random walk theory reasonably well. However, there exists a significant
deviation in specific fluctuation modes. Again higher statistics is necessary to draw a definite
conclusion.

3.2 Phases in Time Evolutions

In order to analyze the time evolutions of practical data of stock price indices we intro-
duce an idea of “phase”. It is commonly understood in physics that phase and amplitude
describe oscillations completely. In Figure 2 we show a diagram of a typical periodic oscil-
lation, and we have assigned the phases I-IV. In the case of perfect periodic oscillations, the
four phases will be repeated in a successive order from I to IV. We define the phases as
follows, phase I: y > 0, 2 < 0, phase II: ¥ < 0, z < 0, phase III: ¥ < 0, z > 0, and phase 1V:
y>0,z>0.

Figure 2 Definition of phases in a periodic oscillation.

In Table 2 we have shown the frequency for shifts of the phase among the four phases
for Nikkei 225 data for the period of 1970-2003 and have compared with the results from
random walk theory calculation. The agreement is surprisingly well, although the number of
data points (400) is not large enough to draw a definite conclusion. It is noticeable, however,
that Nikkei 225 changes the phase from I to II and from III to IV in order more frequently than
the random walk theory prediction. These shifts of the phase take place, when the indices
change the direction of fluctuation. The present notice may indicate that practical indices
fluctuate remembering its history.
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Table 2 Frequency of shifts among the four phases for Nikkei 225 data
and for random walk theory calculations.

The total number of data for Nikkei 225 is 400 (months) for the period of 1970-2003.

(1) Nikkei 225 data (1970-2003)

. next month I 11 11 v
previous month
I 19% 50% 20% 11%
I 7% 19% 55% 19%
11 17% 2% 10% 71%
v 58% 13% 10% 19%
(2) Random Walk Theory
. next month I 1 I v
previous month
I 19% 42% 32% 6%
11 4% 20% 64% 12%
11 23% 6% 20% 51%
v 59% 14% 17% 10%

In summary we have introduced a formulation for the evolution of the stock prices indi-
ces in terms of a theory for oscillations. We have shown that the ratio of w/y is an essential
quantity in analyzing the stock price indices. We have compared the data with a standard
random walk theory result. Several general features of the Nikkei 225 data for the last 33
years such as frequency distributions for fluctuation modes and for shifts of phases are well
described by the random walk theory. The frequency distributions for shifts of the phase may,
however, indicate that practical indices fluctuate remembering its history.

[2]
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