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Abstract

In this paper, a fuzzy multi-criteria minimum spanning tree problem is formulated as
expected minimum spanning tree model, a-minimum spanning tree model and the most min-
imum spanning tree model according to different decision criteria. Then the crisp equivalents
are derived when the fuzzy costs are characterized by triangular fuzzy numbers. Further-
more, a simulation-based genetic algorithm using Priifer number representation is designed.
Finally, a numerical example is given to illustrate the effectiveness of the algorithm.
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1 Introduction

The Minimum Spanning Tree (MST) problem is to find a spanning tree with the minimal weight
in an edge weighted graph. It is a classical network optimization problem, and has important
applications in transportation, communications, distribution systems, etc.

On the background of Boruvka’s pioneer work, the MST problem has been well studied.
Kruskal [9], Prim [18] and Gabow [5] made great contribution to the efficient algorithm. These
works made the MST problem popular and have further development.

Generalized from a single objective problem, the multi-criteria MST problem was introduced
when there are multiple attributes defined on each edge. The problem may arise, for instance,
when designing a layout for telecommunication system, besides the cost for connection between
cities or terminals, other factors such as the time for communication or construction, the com-
plexity for construction and even the reliability are all important and have to be taken into
consideration. In all these cases, the MST with multi-criteria is a very realistic representation of
the practical problem.

In real-life conditions, we know some information with uncertainty. For example, the param-
eters of problem are vague or in a subjective nature. Then the parameters may be specialized
as fuzzy variables by an experts system. In [8], Itoh and Ishii formulated an MST problem with
fuzzy cost as chance-constrained programming based on the necessity measure. In [2], Chang and
Lee defined three means based on the Overall Existence Ranking Index [1] for ranking fuzzy costs
of spanning trees. Recently, Liu [17] developed a credibility theory including credibility measure,
critical value and expected value to rank fuzzy variables. In this paper, based on the credibil-
ity theory, we propose the concepts of expected minimum spanning tree (EMST), a-minimum
spanning tree (a-MST) and the most minimum spanning tree (MMST) in a fuzzy multi-criteria
minimum spanning tree (FMCMST) problem. Then in order to find the EMST, a-MST and
MMST, we formulate the FMCMST problem as expected minimum spanning tree model, a-
minimum spanning tree model and the most minimum spanning tree model, respectively. Then
crisp equivalents are discussed when fuzzy weights are characterized by triangular fuzzy numbers.

This paper is arranged as follows. After recalling some preliminaries in credibility theory,
Section 3 introduces the concepts of EMST, a-MST and MMST. Section 4 proposes three types
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of fuzzy programming models for an FMCMST problem. Then the crisp equivalents of the three
models are discussed in Section 5. Section 6 discusses in detail genetic algorithm for the FMCMST
problem. In Section 7, a numerical example is given to show the effectiveness of the algorithm
and the conclusion follows in Section 8.

2 Preliminaries

Possibility Theory was proposed by Zadeh [19], and developed by many researchers such as
Dubois and Prade [4]. Let © be a nonempty set, P(O) the power set of © , and Pos a possibility
measure. The triplet (0, P(0),Pos) is called a possibility space. Let £ be a fuzzy variable with
membership function y, then for any set B of real numbers, we have Pos{{ € B} = sup,¢p pu(z)
and Nec{{ € B} = 1 —sup,cpg- u(z). It is obvious that a fuzzy event may fail even though its
possibility achieves 1, and hold even though its necessity is 0.

In order to rank fuzzy variables, we introduce the credibility theory developed by Liu [17],
which includes credibility measure, expected value and critical value to rank fuzzy variables.

The credibility measure Cr is defined by Liu and Liu [15] as the average of possibility measure
and necessity measure, i.e.,

Cr{€ < r} = 5(Pos{€ < 7} + Neefe < 7)), )

Based on the credibility measure, we have the expected value operator as follows.

Definition 1 (Liu and Liu [15]) Let £ be a fuzzy variable. The expected value of £ is defined as

Em=Awm&zﬁw—[ Cri¢ < ridr, @)

provided that both integrals are finite.

Let ¢ and 75 be independent fuzzy variables. Then for any real numbers a and b, we have
E[a& + by] = aE[¢] + bE[7)].

Definition 2 Let £ be a fuzzy variable, and o € (0,1]. Then

Sup(@) = sup{r | Cr{{ =21} > a} 3)
is called the a-optimistic value to &; and

§int(@) = inf{r | Cr{{ < r} > o} (4)

is called the a-pessimistic value to &.

3 Fuzzy Multi-Criteria Minimum Spanning Tree

Let G = (V, E) be an undirected graph with vertex set V' = {v;,vs,---,v,} and edge set E =
{e1,e2, -+, en}. A spanning tree T' = (V,S) is a subgraph of G such that S C E, [S|=n—1
(where |S| denotes the cardinality of set S) and 7' is connected. Each edge has p associated fuzzy
variables, representing p attributes defined on it and denoted with &; = (&1,82, -, &) (i =
1,2,---,m). In practice &;(l = 1,2,---,p) may represent the distance, cost, and so on. Let & be
a binary decision variable defined as:

~_J 1, ifedge e; is selected
ri= 0, otherwise.

()
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Then a spanning tree of graph G can be expressed by the vector . Let X be the set of all
such vectors corresponding to spanning trees in graph G, the FMMST problem can be formulated
as:

min {zl(m,i) = f) Gizi, za(x,§) = i &izi, o zp(x,€) = f) fpi-z'i}
subject to: = = = (6)
z; =0o0r1
e X.
If the decision maker has a real-valued preference function aggregating the p objective func-
tions, then we may minimize the aggregating preference function subject to the same set of con-

straints. This model is referred to as a compromise model whose solution is called a compromise
solution. The following model is one of such compromise models.

P
min z(x, &) = > Nz, €)
=1
subject to: (7)
T e X,
where the weights A1, A2, - - -, A, are nonnegative numbers with A; + Ay +---+ A, = 1. Note that
the solution of (7) must be a Pareto solution of the original one.

In real-life conditions, the decision maker often faces with some insufficient information about
the weights. For these cases, the distance, cost and other attributes &; = (14,82, -+, &) (1 =
1,2,---,m) may be specified as fuzzy variables according to the expert system. Then the objective
functions z;(x), (I = 1,2,---,p) become fuzzy variables, too. In order to rank spanning trees with
fuzzy weights, different decision makers may have different ideas. Suppose that the decision maker
hopes to minimize the expected value of the fuzzy weights, we present the concept of expected
minimum spanning tree (EMST).

Definition 3 A spanning tree x* is called the expected minimum spanning tree if
E[z(z", §)] < E[z(x,£)]
for all spanning tree x € X, where E[z(x*, £)] is called the expected minimum cost.

In many cases, the decision maker sets a confidence level a as an appropriate safety margin,
and hopes to minimize a critical value zZ with Cr{z(x,&) < Z} > a. For this case, we propose the
concept of a-minimum spanning tree (a-MST) as follows:

Definition 4 A spanning tree x* is called the a-minimum spanning tree if
min{z | Cr{z(z*,€) <z} > a} < min{z ‘ Cr{z(z,&) <z} > a} (8)

for all spanning tree € € X, where av is predetermined confidence level and min{z | Cr{z(z*, &) <
zZ} > a} is called the a-minimum cost.

Sometimes, the decision maker may provide a cost supremum Z and hope the credibility of
the cost not exceeding z is as maximized as possible. For this case, we propose the concept of
the most minimum spanning tree (MMST) as follows:

Definition 5 A spanning tree x* is called the most minimum spanning tree if
Cr{z(z",€) < 2} > Cr{z(z.§) <z} (9)

for all spanning tree x € X, where zZ is a predetermined cost supremum.
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4 Fuzzy Multi-Criteria Minimum Spanning Tree Model

In this section, we use the concepts of EMST, a-MST and MMST as decision criteria, and for-
mulate the FMCMST problem as expected minimum spanning tree model, @-minimum spanning
tree model and the most minimum spanning tree model, respectively.

Fuzzy expected value model, which was presented by Liu and Liu [15], is to optimize the
expected objective subject to some constraints. In order to find the EMST with fuzzy costs,
distances, and so on, we have the following expected value model:

min {E {f) Elﬂz} B {i fzﬂz} ;B [i 'fpi-%}}
i=1 i=1 i=1
subject to: (10)
z;=0or1
x € X.

Chance-constrained programming offers us a powerful means for modelling stochastic decision
systems [3] and fuzzy decision systems [10][11][12]. The essential idea of chance-constrained
programming is to optimize the critical value of the fuzzy objective with certain confidence level
subject to some chance constraints. In order to find the a-MST, where a is a confidence level
provided by the decision maker, we propose the following chance-constrained programming model:

min {%,%, -, %}
subject to:
Cr{ZflﬂiSZQ}204,121,2,“-,13 (11)
i=1
z;=0o0r1
x € X.

Sometimes the decision maker hopes to maximize the chance functions of some events (i.e.
the credibility satisfying these fuzzy events). In order to model this type of fuzzy decision system,
Liu [13][14] provided one type of fuzzy programming model: dependent-chance programming, in
which the underlying philosophy is based on selecting the decision with maximal chance to meet
the fuzzy event. Now let us model the FMCMST problem by dependent-chance programming.
Suppose that the decision maker sets a cost supremum Zz;, and hopes to find the MMST, we have
the dependent-chance programming model as follows:

max {Cr{i€117.7 S 'Z’Tl}cr{’,zn:g?vT? SZ_Z} 7cr{§:€P7T1 SZ_P}}
i=1 i=1 i=1

subject to: (12)
z;=0o0r1
x € X.

5 Crisp Equivalents

In this section, based on the credibility theory, we propose the crisp equivalents of the proposed
FMCMST models under some assumptions.

Theorem 1 Let &;(i =1,2,---,m,l =1,2,---,p) be independent fuzzy variables. Then the crisp
equivalent of the FMCMST model (10) is

min { Z IDISHES g [Sai] iy - o é E [&] ﬁvz}
subject to (13)

z;=0o0r1
xr e X.
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Now, we suppose that the weights such as distances, costs are independent triangular fuzzy
numbers, and give the crisp equivalents of FMCMST models (11) and (12), respectively.

By triangular fuzzy variables we mean the fuzzy variables fully determined by triplet (ry,r2,73)
of crisp numbers with r; < ro < r3, whose membership functions can be denoted by

T—r
Lo <a<n
ra —T1
- T—r
n(z) = 2ifry <z <rg (14)
T2 —7T3
0, otherwise.

Let & = (r1,r9,73) and ) = (q1, ¢2,¢q3) be two triangular fuzzy variables, and a, b two nonneg-
ative numbers. Then we have that

al + bn = (ary + bqy, ary + bga, ars + bgs). (15)

Let £ = (ry,72,73) be a triangular fuzzy variable. Then the credibility distribution of £ is
continuous and defined by

1, if r3 < Z2
_ o
St <o,
Cr{e <z} = A (16)
s i<zl
2(7“2 — 7"1)
0, otherwise.

Let & = (r1,72,73) be a triangular fuzzy variable, and « a given confidence level. Then we
have

(a) when a <1/2,Cr{¢ <z} >a

if and only if (1 — 2a)r; + 2ary < Z; (17)

(b) when a>1/2,Cr{{ <z} >a

if and only if (2 —2a)rs + (2a — 1)ry < Z. (18)

Theorem 2 Let &; = (Su1, S1i2, S1i3), ¢ = 1,2,---,m, 1 = 1,2,---,p be independent triangular
fuzzy variables. If a > 0.5, then the crisp equivalent of the FMCMST model (11) is given by

Mn{@—2m<§¥mm)+@a—D<§¥mm>leﬂy“m}

subject to : (19)
z;=0or1
e X

Proof. Since z; > 0 for i =1,2,---,m, it follows from (15) that the cost function

m
Zflﬂi
i=1

is also a triangular fuzzy variable, and determined by the triplet



(i1 (), gio (), gu3(x Z S1i1%4, Z 8125, Z 51i3T5). (20)

Then it follows from (18) that the chance constraint

CY{Z&H&' < Zz} >«

=1

is equivalent to
(2 —2a) (Z Slﬁl‘,) (2a—1) (Z smxl> Z. (21)
That is, the FMCMST model (11) is equivalent to model (19).

Theorem 3 Let &; = (sii1, S1i2, S1i3), ¢ = 1,2,---,m, l = 1,2,---,p be independent triangular
fuzzy variables. Then the crisp equivalent of the fuzzy dependent-chance programming (12) is
given by

max {fi(z),l=1,2,---,p}
subject to:

z; =0 o0rl

xz e X,

(22)

where fi(x) is a real function defined by

1, if giz(x) <z

Z1 + gis(x) — 2g12(x) r

(@) = Q(gl?:(”f)g; fg)‘””” (23)
2(g02(®) — gn (@)

0, otherwise

and gi;(x), i =1,2,3 are defined by (20).

Proof. Since z; > 0 for i =1,2,---,m, it follows from (15) that the cost function

m
Zfliiﬂi
i=1

is also a triangular fuzzy number, and determined by the triplet (gi1 (), gi2(x), gi3(x)) defined
in equation (20). Then it follows from (5) that the chance function

Cr {Zﬁmﬂi < Zz}
i=1

is equivalent to the real function fij(x) defined by equation (23). That is, the FMCMST model
(12) is equivalent to model (22).
All the conclusions above can be extended for trapezoidal fuzzy variables similarly.

6 Hybrid Intelligent Algorithm

Due to the complexity of the problems, we design a hybrid intelligent algorithm integrating fuzzy
simulation and genetic algorithm to solve them.
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Genetic algorithm was developed by Holland [7] in 1975. It is considered as one of the most
efficient intelligent algorithms.

Zhou and Gen [20] showed that genetic algorithm can deal with the MCMST problem effec-
tively. As an extension of MCMST problem, the FMCMST problem is more difficult to solve. In
the following, we will design a fuzzy simulation-based genetic algorithm for solving the proposed
FMCMST models as well as their crisp equivalents.

6.1 Chromosome Representation

In the FMCMST problem, a chromosome should represent a spanning tree. One of the classical
theorems in graphical enumeration is Cayley’s theorem. It shows that there are n™~2 distinct
labelled trees on a complete graph with n vertices. Priifer proved it by establishing one-to-one
correspondence between such trees and the set of all permutation of n — 2 digits. And this
permutation is known as the Priifer number. Then we use the Priifer number as chromosome,
which uniquely represents a spanning tree. The reader can read the book [6] by Gen and Cheng
for details.

For any tree in a complete graph, there are at least two leaf vertices. Leaf vertex means
that there is only one edge connected with it. Based on this observation, Zhou and Gen [20]
constructed the following encoding and decoding procedure.

Encoding Procedure

Step 1. Let vertex j be the smallest labelled leaf vertex in a labelled tree.

Step 2. Set k to the first digit in the permutation if vertex k is incident to vertex j.

Step 3. Remove vertex j and the edge from j to k, we have a tree with n — 1 vertices.

Step 4. Repeat above steps until one edge is left and produce the Priifer number or permutation
with n — 2 digits in order.

Decoding Procedure

Step 1. Let P be the original Priifer number, and let P be the set of all vertices not included in
P.

Step 2. Let j be the vertex with the smallest label in P, and let k be the leftmost digit of P.
Add the edge from j to k into the tree. Remove j from P and k from P. If k& does not occur
anywhere in the remainder of P, put it into P. Repeat the process until no digits are left
in P.

Step 3. If no digits remain in P, there are exactly two vertices, r and s, in P. Add edge from r
to s into the tree and form a tree with n — 1 edges.

6.2 Fuzzy Simulation

If the fuzzy chance-constrained programming can be converted to its deterministic equivalent, then
it is easy for us to compute the objective function. Otherwise, we may employ the fuzzy simulation
technique. It has been discussed in detail by Liu [16] that how to compute the credibility, critical
value and expected value defined by

inf{zl | Cr{Zfli:ci Szl} Za} (25)

i=1



and

E |:Z §1,$7:| 5 (26)

i=1
respectively. The procedures for computing them are given as follows:

Fuzzy Simulation for Credibility:

Step 1. Randomly generate u;;, from the e-level set of &; and write vy, = p(ur), 1 = 1,2, ,p;i =
1,2,---,m, respectively, where k = 1,2,---, N and ¢ is a sufficiently small positive number.

Step 2. Return L;(C) via the following estimation formula (27)

1
L[(T) = 5 <1I§I}ca§XN {Vlk ‘ C’lk(m) < T} + 15?}\7 {1 — Uk ‘ Clk(.’ll) > T}) (27)

where

Cu(x) = Zuzzsz (28)
i=1

Fuzzy Simulation for a-Critical Value:

Step 1. Randomly generate u;;, from the e-level set of &;, 1 =1,2,---,p;i =1,2,---,m, respec-
tively, where k = 1,2,---, N and ¢ is a sufficiently small positive number.

Step 2. Find the minimal value r such that L;(r) > « holds, where L;(r) is defined by (27).
Step 3. Return r.

Fuzzy Simulation for Expected Value:

Step 1. Set e = 0.

Step 2. Randomly generate u;;, from the e-level set of &;, 1 =1,2,---,p;i =1,2,---,m, respec-
tively, where £k = 1,2,---, N and ¢ is a sufficiently small positive number.

Step 3. Set by =Cn(z) A---ACin(x) and bjp = Cy(x) V- -- V Cin ().
Step 4. Randomly generate b, from [b;1, bi2].

Step 5. If b; > 0, then e < e + Cr {Ci.(z) < b }.

Step 6. If b; < 0, then e « e — Cr{Ci(x) > b;}.

Step 7. Repeat the third to fifth steps for N times.

Step 8. Return E[Ci ()] = b VO+ b2 AO+e- (b2 —bi)/N.

6.3 Crossover and Mutation Operation

Since a Priifer number can always represent a labelled tree, we select a simple way for crossover
and mutation operation. For two chromosomes to crossover, we just exchange their digits at
randomly selected positions. And for a chromosome to mutate, randomly select a position and
randomly generate an integer between 1 and n including 1 and n to replace the original one.

6.4 Evaluation and Selection Process

In our genetic algorithm approach for FMCMST problem, the evaluation performs the following
operations: (i) decoding all the chromosomes and calculating their expected cost, a-critical cost
and chance function; (i) assigning each chromosome a fitness by a rank-based method according
to its objective value. Then in the selection process, by spinning the roulette wheel pop_size
times, we get a new population to go further.
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6.5 Hybrid Intelligent Algorithm

We embed fuzzy simulation into genetic algorithm to produce a hybrid intelligent algorithm. The
procedure is as follows:

Genetic algorithm procedure

Step 1. Initialize pop_size chromosomes randomly.

Step 2. Update the chromosomes by crossover and mutation operations.

Step 3. Calculate the objective values for all chromosomes.

Step 4. Compute the fitness of each chromosome according to the objective values.
Step 5. Select the chromosomes by spinning the roulette wheel.

Step 6. Repeat the second to fifth steps for a given number of cycles.

Step 7. Report the best chromosome as the optimal solution.

7 Numerical Example

In this section, we give a numerical example that is performed on a personal computer to illustrate
the effectiveness of the simulation-based genetic algorithm.

Example. Consider an FMCMST problem with 6 vertices. For a complete graph, we label its 6
vertices with integers 1,2, -, 6, respectively. Then it has C2 = 15 edges. Two weight attributes
defined on each edge are independent triangular fuzzy numbers or trapezoidal fuzzy numbers.
And the preference values are (0.3,0.7).

In order to find the EMST and 0.90-MST and MMST (cost supremum is set as 28 by the
decision maker), we formulate the FMCMST problem as expected minimum spanning tree model
(10), e-minimum spanning tree model (11) and the most minimum spanning tree model (12),
respectively. Then, based on Theorem 1, 2 and 3, we convert them to their crisp equivalents
(13), (19) and (22), respectively. After a run of the genetic algorithm with pop_size = 30, we get
that the EMST, 0.90-MST and MMST are the spanning trees with Priifer numbers (2,5,1,2),
(2,2,1,2) and (2,2, 1, 2), respectively. The corresponding expected minimum cost, 0.90-minimum
cost and most credibility are 17.8250, 28.2 and 0.9192, respectively. Now, we convert the Priifer
number (2,2,1,2) to a spanning tree by the decoding procedure as a demo.

1. Let P =(2,2,1,2) and P = {3,4,5,6}.

2. Remove the smallest integer 3 from P, and the leftmost integer 2 from P. Add the edge
from 3 to 2 to the tree. Since 2 occurs at other places of P, we have P = (2,1,2) and
P = {4,5,6}.

3. Remove the smallest integer 4 from P, and the leftmost integer 2 from P. Add the edge from
4 to 2 to the tree. Since 2 occurs at other places of P, we have P = (1,2) and P = {5,6}.

4. Remove the smallest integer 5 from P, and the leftmost integer 1 from P. Add the edge
from 5 to 1 to the tree. Since 1 does not occur at other places of P, we have P = (2),
P ={1,6}.

5. Remove the smallest integer 1 from ﬁ_, and the leftmost integer 2 from P. Add the edge
from 1 to 2 to the tree. Now we have P = {2,6}, P = 0.

6. Add the edge from vertex 2 to 6 to the tree, and we get a tree with five edges, i.e., a
spanning tree in Figure 1.
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Figure 1: The spanning tree associated with Priifer number (2,2,1,2)

Conclusions

In this paper, the FMCMST problem was formulated as expected value model, chance-constrained
programming and dependence-chance programming. Their crisp equivalent models were also
proposed based on the credibility theory. Moreover, a hybrid intelligent algorithm approach
was proposed for solving the proposed FMCMST models as well as their crisp equivalents. A
numerical example was also provided for illustrating the effectiveness of the genetic algorithm.
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