家兎摘出角膜および結膜を用いた

イオン性および非イオン性薬物の 眼組織イオントフォレシス促進特性に 関する研究

目次

総論の部

第一編 眼組織イオントフォレシスによる薬物透過促進効果の特徴づけ・・・7

第一章 イオン	性薬物の角膜および結膜透過に対する	

- イオントフォレシスの影響 ・・・・・・・・・・・・・・・・10
- 第二節 低分子イオン性薬物を用いたイオントフォレシス 適用実験中の眼組織電気抵抗値の変化 ・・・・・・・・・・14
- 第二章 非イオン性薬物の角膜および結膜透過に対する

イオントフォレシスの	の影響	• •	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	21
------------	-----	-----	---	---	-----	---	---	---	---	---	---	---	---	---	---	---	----

- 第二節 非イオン性親水性高分子薬物を用いたイオントフォレシス 適用実験中の眼組織電気抵抗値の変化 ・・・・・・・・・・24

第三節 非イオン性親水性高分子薬物の眼組織透過 flux と

膜電位の関係	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
--------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	----

- 第四節 角膜および結膜における親水性高分子のイオントフォレシス 促進効果に対する組織滞留性の影響 ・・・・・・・・・・28
- 第三章 本編の考察および小括 ・・・・・・・・・・・・・・・・33
- 第二編 イオントフォレシスにより細胞間隙が受ける影響と 促進機構との関連性 ・・・・・・・・・・・・・・・・・・・・・・・39
 - 第一章 角膜および結膜上皮タイトジャンクション関連タンパク質の 局在性に対する電流適用の影響 ・・・・・・・・・・・・・・・・42
 - 第二章 角膜および結膜タイトジャンクション関連タンパク質の 存在量に対する電流適用の影響 ・・・・・・・・・・・・・48

第三章 角膜および結膜上皮の細胞骨格に対する電流適用の影響 ・・・・52

第四章 本編の考察および小括 ・・・・・・・・・・・・・・・・55

結論 ・・・・・・・・・・・・・・・・・・・・・・・58

謝辞 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・61

実験の部

第一編	実験方法	•	••	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	52
第二編	実験方法	•	••	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	68
引用文献		•		•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• '	72

総論の部

緒論

動物は、目、鼻、舌、耳や皮膚などの感覚器から得られる情報に基づいて生命活動 を営んでいる。一般的に、ヒトでは生命活動に必要な情報の約8割を目から得ている と言われ、目は quality of life (QOL)を維持するために重要な器官である。Fig.1に示す ように、光は、眼表面に入射し、角膜および水晶体を通過して、黄斑部および網膜で 強度や色彩情報に変換され、それら情報は視神経を介して脳内に伝達されて中枢神経 系で視覚化される。この過程の中で、角膜一水晶体間および水晶体一網膜間に存在す る房水および硝子体は入射した光の散乱を制限し、結膜、強膜および涙液は眼内環境 を維持するために重要な役割を果たしている。すなわち、光情報の視覚化にはこれら 眼組織や組織液の機能を保持することが必要である。

Figure 1 Anatomical structure and receptiveness of light signal in the human eye.

近年、科学技術の発展に伴うパーソナルコンピューターやスマートフォンの普及、 さらには高齢化などの社会的背景から、視力低下や眼疾患を伴う生活者の割合が増加 しており^{1,2)}、これらを原因とする目の不具合は著しい OOL の低下につながる。眼疾 患は、角膜、結膜や水晶体などの光路の前方の組織で不具合を生じる前眼部疾患、お よび網膜や黄斑部などの光路の後方の組織で不具合を生じる後眼部疾患に分類され る。現在、先進国は高齢社会となっており、加齢や生活習慣病に起因する黄斑変性症 や網膜症など後眼部に疾患をもつ患者数が増加している^{1,3)}。一方、発展途上国では 衛生管理が十分ではないことから、細菌やウイルス感染による角膜炎や結膜炎など前 眼部の炎症性疾患の患者数が多いと報告されている⁴⁾。これら眼疾患は、視力障害を 引き起こし、さらに失明のように重篤な不可逆的な症候をきたす場合もあるため、臨 床では疾患の原因除去もしくは進行抑制を目的とした外科的処置や薬物治療が行わ れる。外科的処置は、薬物治療を行えない、もしくはそれによる改善を期待できない 場合に実施される。一方、局所薬物治療では、点眼もしくは眼内注射により薬剤が投 与され、治療目的別によってそれら投与法は使い分けられている。眼内注射には、涙 液または房水が接する眼表面組織内での薬物の滞留性の向上を目的とした結膜下注 射や、抗体や核酸のような高分子医薬品による黄斑変性症や網膜症に対する薬物治療 を目的とした硝子体内注射があり、薬剤を確実に投与できることから治療効果が高い とされている。しかしながら、外科的処置や眼内注射は侵襲的であるため、眼圧上昇 や感染症などの有害事象も報告されており^{5,6}、患者の負担のみならず医療関係者の 負担も大きいという欠点がある。一方、点眼薬は非侵襲的であり、主に緑内障、ドラ イアイ、角膜炎や結膜炎などの眼疾患に対する薬物治療の第一選択として用いられる。 点眼された薬物は涙液層中に拡散し、角膜および結膜/強膜を介し、それぞれ房水中お

 $\mathbf{2}$

よび硝子体液中へ浸透するが⁷⁾、点眼された薬物量に対する眼内へ浸透する薬物量の 割合は極めて少ない。その理由として、涙液による薬物の希釈・排泄や眼表面の上皮 組織の高いバリア能などの複合的な要因が関係している^{8,9)}。そのため、十分な効果 を得るためには頻回投与や眼表面での滞留性の改善などの工夫が必要となる。

このような背景から、眼疾患に対する薬物療法を効率化するための研究が行われて きた。眼内への薬物送達の改善を目的とした Drug Delivery System 研究では、薬物の プロドラッグ化、リポソームへの内封、シクロデキストリンとの複合体形成、化学的 および物理的吸収促進法の利用に関する知見が報告されている¹⁰⁻¹²⁾。吸収促進法は、 眼内への吸収性の低い薬物の吸収改善を期待する方法であり、これまでに多くの研究 グループにより、実際に吸収性の低い薬物の眼内吸収を改善できることが立証され ¹⁰⁻¹³⁾、眼内注射に代わる薬物投与システムに応用することが検討されている。

イオントフォレシス(IP)は、電気を利用した物理学的吸収促進法として知られ、経 皮および眼粘膜を含めた経粘膜薬物吸収促進を目的に広く検討されている。Fig.2は、 最も研究が進んでいる経皮 IP の模式図を示している。皮膚表面に隣接するように電 極を設置して微弱な電流を適用することで、イオン性薬物では電気的な反発力 (electrorepulsion, ER) (Fig. 2a およびb)、非イオン性薬物では電気的な界面導電現象に 伴う電気浸透流(electroosmosis, EO) (Fig. 2c)により皮内への移行が促進される^{14,15)}。IP は、その電流を ON または OFF することにより促進効果を ON/OFF 制御できること に加え、電流値や適用時間などの適用条件を調節することによっても制御できる^{15,16)}。 生理学的 pH の下では、生体膜は負にチャージしており、電場の影響下では陽極から 陰極方向へ EO が生じ、その効果により非イオン性薬物の体内への吸収が促進される (Fig. 2c)。このような原理により IP は様々な薬物の吸収を促進することから、

3

Figure 2 Schematic diagram of transport of ionic and non-ionic drugs by IP application in *in vivo*. a), IP application for cationic drug (D^+) ; b), for anionic drug (D^-) and c), for non-ionic drug (D). I is an electric current flow.

その利用は眼組織局所へも効率的な薬物送達を可能にするものと期待されている。 眼組織 IP の研究は主に *in vivo* で行われており、そこでは薬物を含有するリザーバ ー電極槽を眼表面組織に、対極を額などの目に近接する皮膚表面にそれぞれ設置して 検討が行われている。ゲンタマイシン¹⁷⁻¹⁹⁾、バンコマイシン²⁰⁾、トブラマイシン^{21,22)}、 カルボプラチン²³⁾、メチルプレドニゾロン²⁴⁾およびデキサメタゾン²⁵⁾に関するサル やウサギを用いた *in vivo* IP 研究では、点眼や結膜下注射に比べ房水中または硝子体 中の薬物濃度が数倍から数十倍に増大し、角膜 IP では主に房水中、結膜 IP では主に 硝子体中へ薬物の送達が特異的に増大することが明らかにされてきた。これらの報告 に基づき、角膜 IP および結膜 IP は、それぞれ前眼部および後眼部疾患に対する薬物 吸収促進技術として期待されている。また、陽極槽に添加した高分子化合物であるア ンチセンスオリゴヌクレオチドが結膜 IP 適用後に網膜などの眼組織局所に送達され

4

ることも報告され²⁶、核酸や抗体のような高分子医薬品の眼内送達に対する IP の利 用も期待されている。最近、角膜/結膜辺縁部からの薬物送達を目的とした眼組織 IP システムである EyeGate[®] II Delivery System (EyeGate pharma, Boston, USA)を用いて、 ドライアイ患者を対象としたデキサメタゾン治療の臨床研究が実施され、IP 適用は症 状の軽減や改善効果があることが立証されている²⁷⁾。

IPの実用化には、薬物の吸収促進効果や臨床研究による治療効果に関する情報のみならず、電流適用条件を決定するための薬物の透過促進効果やその促進機構、また細胞・組織の生存性や細胞間隙に対する電流適用の影響のようなメカニズムに関わる臨床研究や *in vivo* 研究では情報収集が困難な基礎的情報も必要であると考えられる。

経皮 IP では薬物が透過促進される際、電流は抵抗の高い角層に比べて抵抗の低い 毛嚢や汗腺などの付属器官を介して皮膚を流れるため、主な IP 透過促進経路は毛嚢 や汗腺などの経路であることが報告されている²⁸⁾。一方、毛嚢や汗腺が無い角膜およ び結膜では、電流は抵抗の低い上皮細胞間隙を流れることでその機能に影響を及ぼし、 細胞間隙を介した薬物透過を促進すると考えられる。通常、上皮や内皮の細胞間隙に はタイトジャンクション(TJ)が存在し、細胞間隙を介した物質の自由な移動を制限し ていることから²⁹⁾、IP による薬物の透過促進機構には TJ バリアの変化が関与してい ると考えられるが、IP 適用が薬物の細胞間隙透過性に対してどのような影響を及ぼす のかについてはまだ十分に明らかになっていない。眼組織 IP を眼内への薬物吸収促 進法として実用化するためには、適用電流が角膜および結膜に与える影響を考慮した 上で、薬物の透過促進特性を特徴づけることが必要であり、これら情報は眼組織 IP の効率的かつ安全な電流適用条件の決定に不可欠であると考えられる。

そこで本研究では、電流影響下の角膜および結膜に対する安全性を考慮した眼組織

 $\mathbf{5}$

IP の促進特性を特徴づけることを目的とし、家兎摘出角膜および結膜を用いて IP の 薬物透過促進効果および細胞間隙を介した透過促進機構について検討した。すなわち、 第一編では、摘出角膜および結膜を用いて、イオン性および非イオン性モデル透過物 質の IP 透過促進効果と電気生理学的手法による膜の生存性およびintegrityの評価結果 を特徴づけた。第二編では、細胞間隙バリアに重要な TJ 関連タンパク質の局在性と 存在量、および細胞骨格系に対する電流適用の影響を評価し、IP によりこれらが受け る影響と透過促進機構との関連性を考察した。以下、得られた結果について論述する。

第一編

眼組織イオントフォレシスによる

薬物透過促進効果の特徴づけ

角膜および結膜生存性などの膜の状態と透過促進効果を併行して in vitro で評価するためには、in vitro 透過実験中に角膜および結膜の生存性を維持できる実験条件を確立するとともに、in vivo 実験でその効果が再現されることが必要である。IP の効果を in vitro で見積もる場合、Fig. 3 で示すようにセル間に膜を挟んだ 2-chamber を用いた in vitro 実験系が広く用いられている³⁰⁾。

Figure 3 Schematic diagram of IP transport system in *in vitro*. a), transport of cationic and anionic drug by electrorepulsion; b), transport of non-ionic drug by electroosmosis. The D^+ , D^- and D are cationic, anionic and non-ionic drug, respectively.

イオン性薬物の場合、カチオン性薬物は陽極槽から陰極槽、アニオン性薬物は陰極 槽から陽極槽への透過が促進され(Fig. 3a)、非イオン性薬物では、陽極槽から陰極槽 への透過が EO により促進されるなど(Fig. 3b)、2-chamber での実験系は、薬物の IP 透過挙動を明確かつ簡便に評価できる有用な実験系である。Ussing は、摘出カエル皮 膚を用いた研究から、皮膚生存性を維持した状態でイオン輸送活性を電気生理学的に 評価できる Ussing chamber を開発した³¹⁾。Ussing chamber を用いたシステムでは、基 本的に voltage/current clamp unit、リンゲル液、カロメル電極、Ag/AgCl 電極および塩 橋を用いて、Fig. 4 で示すように生体膜を介した電気回路として連結することで、薬 物透過の駆動力である電気化学ポテンシャル勾配に関係する膜電位差(PD)、能動輸送 の指標となる短絡電流(Isc)および膜バリアの指標となる経上皮電気抵抗(TEER)とい った電気生理学的パラメーターを測定できる。PD、Isc および TEER は、上皮組織³²⁻³⁴⁾ や細胞膜機能³⁵⁾のモニタリングに利用され、摘出角膜および結膜における吸収促進剤 による透過促進の実験において、組織生存性および integrity の指標として使用されて いる^{13,36)}。さらに、このシステムでは voltage/current clamp unit を通じて一定の電流お よび電圧を印加することが可能であり、IP 適用実験にもそのまま利用することが可能 である。そこで本研究では、Ussing chamber システムを用いて *in vitro* における IP 適 用の効果を評価することにした。

Figure 4 A Ussing-type chamber system.

以前に行われた Ussing-type chamber を用いた結膜 IP 透過促進効果に関する検討に おいて³⁸⁾、0.85 mA/cm²までの定電流適用の範囲で、電流適用時のみイオン性薬物お よび非イオン性薬物の結膜透過性が一過的に増大し、その効果は電流値依存的である ことが明らかとなっている。また、電流適用中に変動した PD、Isc および TEER が電 流適用後に適用前のレベルと近い値まで回復したことは、薬物の透過促進効果と結膜 感受性に対する電流適用の安全性を考慮すると実用化できる可能性の高い吸収促進 技術になることを示すものと考えられた。しかしながら、眼組織 IP の *in vivo* 研究に おいて吸収促進効果が得られている電流値は 0.8-28.2 mA/cm² ¹⁷⁻²⁵⁾、ヒトでの臨床研 究において安全性が高いとされる電流値は 3.65 mA/cm² ²⁷⁾であることを考慮すると、 *in vivo* 研究で用いられている電流値の範囲を網羅した IP 条件での促進効果を評価す る必要がある。加えて、*in vitro* での角膜 IP に関する検討はこれまで行われておらず、 摘出角膜を用いた特徴づけが有効な情報を提供するものと期待できる。

そこで本編では、Ussing-type chamber を用いて家兎摘出角膜および結膜を介した薬物透過性に対する IP の適用電流値の影響について評価した。低分子モデルイオン性薬物のうち、カチオン性物質としてリドカイン塩酸塩(LC, MW: 288.81, pKa 7.9)、およびアニオン性物質として安息香酸ナトリウム塩(BA, MW: 144.11, pKa 4.21)を用いた。また、抗体医薬品のような親水性高分子薬物を想定したモデル高分子として、fluorescein isothiocyanate-dextran (MW: 4400, FD-4)を用いた。組織の生存性およびintegrityも同時に評価するため、透過実験中にわたる PD、Isc および TEER をモニタリングし、角膜および結膜の状態と薬物透過性との関係について考察した。

9

第一章 イオン性薬物の角膜および結膜透過に対する イオントフォレシスの影響

第一節 低分子イオン性薬物の角膜および結膜透過に対する 適用電流値の影響

まず、低分子イオン性薬物に対する IP の促進効果を評価した。種々電流値適用下 の角膜および結膜を介した LC および BA 透過速度(flux)、電気生理学的パラメーター に対する IP 効果を測定した。透過実験開始から 120 分後に角膜では 5.0 mA/cm²まで、 結膜では 10 mA/cm²までの電流値を 30 分間適用した。また、電流適用直前の flux を baseline とした。Fig. 5 はドナー側を陽極とした場合の角膜(A)および結膜(B)を介した LC flux、Fig. 6 はドナー側を陰極とした場合の BA flux の経時的変化を示している。 角膜および結膜ともに、LC flux は IP 適用前に比べ、IP 適用中に増大し、IP 適用終 了後には IP 適用前の baseline flux のレベルまで回復した(Fig. 5)。BA flux に対しても LC と同様の挙動が認められた(Fig. 6)。この結果から、適用した電流値では低分子イ オン性薬物に対する IP の促進効果は可逆的であると考えられた。

Figure 5 Time-courses of permeated flux of LC through the cornea (A) and conjunctiva (B) in the anodal IP experiments. \blacksquare , 0.5 mA/cm²; \Box , 2.0 mA/cm²; \bullet , 5.0 mA/cm²; \circ , 10 mA/cm². Data represent mean \pm S. E. (n = 3-5).

Figure 6 Time-courses of permeated flux of BA through the cornea (A) and conjunctiva (B) in the cathodal IP experiments. \blacksquare , 0.5 mA/cm²; \Box , 1.5 mA/cm²; \bullet , 2.0 mA/cm²; \circ , 5.0 mA/cm²; \blacktriangle , 7.5 mA/cm². Data represent mean ± S. E. (n = 3).

皮膚では、IP 適用中のイオン性薬物の透過速度は、膜厚、ポアサイズやポア数のような膜の状態が一定であると仮定した際、適用電流値と適用時間の積である総電流量に比例することが知られている³⁹⁾。すなわち、適用時間一定の条件では、透過速度は適用電流値に依存することになる。そこで、低分子イオン性薬物の角膜 IP および結膜 IP が適用電流値に依存した透過促進効果であるかどうかを、LC および BA の IP 透過実験で得られた maximal flux を baseline flux で除した促進率(Eq. 1)に基づき評価した。Tables 1 および 2 はそのデータをまとめたものである。

Enhancement ratio =
$$\frac{\text{Maximal flux}}{\text{Baseline flux}}$$
 (Eq. 1)

角膜および結膜ともに、適用したほとんどの電流値でのLCおよびBAのmaximal flux は、baseline flux に対して電流値依存的に有意に増大した(Tables 1 および 2)。また、 角膜におけるLCおよびBA に対する促進率は、5.0 mA/cm²および 2.0 mA/cm²までの IP 適用により電流値依存的にそれぞれ 2.27 倍および 2.45 倍であり(Table 1)、結膜にお けるLCおよびBA に対する促進率は、10 mA/cm²または 5.0 mA/cm²までの IP 適用に より電流値依存的にそれぞれ 4.04 倍および 3.44 倍だった(Table 2)。これらのことから、 低分子イオン性薬物に対する眼組織 IP の透過促進効果は電流値依存的であったが、 LC および BA の促進率は電流値に対して比例関係ではなかった。

Compound	Current density	Baseline flux	Maximal flux	Enhancement
Compound	$(\mathbf{mA/cm}^2)$	(µg/cm²/min)	(µg/cm²/min)	ratio
LC	0.5	1.00 ± 0.07	1.65 ± 0.32	1.65
	1.0	1.27 ± 0.20	$1.96 \pm 0.30^{**}$	1.54
	2.0	1.26 ± 0.12	$2.41 \pm 0.32*$	1.92
	5.0	1.16 ± 0.19	$2.62 \pm 0.24*$	2.27
BA	0.5	1.19 ± 0.11	$1.81 \pm 0.21*$	1.52
	1.0	0.93 ± 0.07	$1.73\pm0.21*$	1.85
	1.5	0.94 ± 0.16	$1.95 \pm 0.29*$	2.08
	2.0	0.90 ± 0.07	$2.20 \pm 0.30^{*}$	2.45

Table 1Enhancement ratio and flux values of LC and BA in the cornea as measuredby IP experiments.

*p < 0.05, **p < 0.01 vs. significantly different from baseline flux (*t*-test).

Data represent mean \pm S. E. (n = 3-5).

C I	Current density	Baseline flux	Maximal flux	Enhancement
Compound	(mA/cm ²)	(µg/cm²/min)	(µg/cm²/min)	ratio
LC	0.5	1.18 ± 0.20	$1.57 \pm 0.17 **$	1.33
	1.0	0.95 ± 0.15	$1.40 \pm 0.22*$	1.47
	2.0	0.87 ± 0.02	1.49 ± 0.25	1.71
	5.0	1.21 ± 0.04	$2.41 \pm 0.18 **$	1.99
	10	1.15 ± 0.07	4.65 ± 0.29**	4.04
BA	0.5	1.86 ± 0.10	2.59 ± 0.21	1.39
	1.0	1.65 ± 0.26	$2.21 \pm 0.31*$	1.34
	2.0	2.19 ± 0.10	$3.70 \pm 0.19 **$	1.69
	5.0	1.64 ± 0.24	$3.54 \pm 0.42 **$	2.16
	7.5	2.01 ± 0.13	$6.92 \pm 0.89^{*}$	3.44

Table 2Enhancement ratio and flux values of LC and BA in the conjunctiva asmeasured by IP experiments.

*p < 0.05, **p < 0.01, ***p < 0.001 vs. significantly different from baseline flux (*t*-test). Data represent mean \pm S. E. (n = 3).

第二節 低分子イオン性薬物を用いた IP 適用実験中の

眼組織電気抵抗値の変化

Fig. 7 はドナー側を陽極とした場合の LC 透過実験中の角膜(A)および結膜(B)の TEER の経時的変化、Fig. 8 はドナー側を陰極とした場合の BA 透過実験中の TEER の 経時的変化をそれぞれ示している。ドナー側を陽極とした時の角膜および結膜 TEER は IP 適用前に比べ、IP 適用直後に急激に低下した(Fig. 7)。IP 適用終了後の TEER は、 角膜では 2.0 mA/cm²までの IP 適用終了後に適用前の 62%まで回復し、5.0 mA/cm²の 電流適用終了後に回復は認められなかった(Fig. 7A)。結膜では、5.0 mA/cm²までの IP 適用終了後約 60 分で適用前の約 70%まで回復した(Fig. 7B)。また、10 mA/cm²適用後、 低い電流値に比べて遅い回復速度で、150 分で 50%まで TEER が回復した。

ドナー側を陰極とした際の角膜および結膜 TEER は、ドナー側を陽極とした際の結 果と同様、IP 適用直後に急激に低下した(Fig. 8)。角膜では電流値依存的な TEER の回 復の程度の低下はあるが、2.0 mA/cm² までの IP 適用終了後 210 分で適用前の約 40%(Fig. 8A)、結膜では 5.0 mA/cm² の IP 適用終了後 150 分で適用前の約 60%まで回復 した(Fig. 8B)。結膜における 7.5 mA/cm² では、適用後 150 分までの間で TEER の回復 は認められなかった。また、Tables 3-6 で示すように電気生理学的パラメーターのサ ンプリング時点で得た PD は、IP 適用電流値と対応して大きな値を示し、適用終了後 に TEER の回復に一致して回復する傾向にあった。Isc の値もまた、IP 適用終了後に 同様に回復する傾向にあった。これらの結果から、適用電流値により TEER の回復の 程度および速度の違いが認められたものの、上皮側を陽極とした場合、角膜では 2.0 mA/cm²、結膜では上皮側を陽極として 10 mA/cm²まで、上皮側を陰極とした場合、 角膜では 2.0 mA/cm²、結膜では 5.0 mA/cm²の電流値の値において、電気生理学的パ ラメーターが概ね回復し、角膜および結膜生存性に対して明らかな影響を及ぼさず、 IP 処理終了後において integrity は保たれていると考えられた。

Figure 7 Time-courses of the corneal (A) and conjunctival (B) TEER in the LC permeation experiments. \blacksquare , 0.5 mA/cm²; \Box , 2.0 mA/cm²; \bullet , 5.0 mA/cm²; \circ , 10 mA/cm². Data represent mean \pm S. E. (n = 3-5).

Figure 8 Time-courses of the corneal (A) and conjunctival (B) TEER in the BA permeation experiments. \blacksquare , 0.5 mA/cm²; \Box , 1.5 mA/cm²; \bullet , 2.0 mA/cm²; \circ , 5.0 mA/cm²; \blacktriangle , 7.5 mA/cm². Data represent mean \pm S. E. (n = 3).

	Current density	Defere ID		After IP application				
	(mA/cm^2)	Before IP	During IP	0 min	210 min			
[PD] (mV)	0.5	12.6 ± 3.36	71.0 ± 3.28	0.60 ± 0.10	4.80 ± 2.16			
	1.0	7.14 ± 1.40	99.5 ± 5.67	0.40 ± 0.08	2.56 ± 0.51			
	2.0	7.42 ± 2.01	170 ± 11.8	0.74 ± 0.29	3.78 ± 1.46			
	5.0	7.87 ± 2.84	356 ± 97.8	0.67 ± 0.09	0.77 ± 0.23			
Isc (μ A/cm ²)	0.5	7.05 ± 1.44	-	5.15 ± 0.33	4.55 ± 0.82			
	1.0	5.32 ± 0.81	-	5.91 ± 0.88	4.14 ± 0.64			
	2.0	5.41 ± 0.85	-	6.55 ± 2.16	4.18 ± 0.69			
	5.0	6.29 ± 1.00	-	8.79 ± 1.53	4.92 ± 0.87			

Table 3PD and Isc values in the cornea in the LC permeation experiments.

Data represent mean \pm S. E. (n = 3-5).

	Current density	Dafa na ID	Daving ID	After IP application					
	(mA/cm^2)	Before IP	During IP	0 min	150 min				
[PD] (mV)	0.5	22.4 ± 1.77	86.1 ± 1.76	5.37 ± 0.90	16.3 ± 0.60				
	1.0	23.6 ± 0.99	82.3 ± 4.01	2.53 ± 0.34	14.2 ± 0.68				
	2.0	17.5 ± 1.23	101 ± 10.2	1.27 ± 0.03	9.93 ± 0.27				
	5.0	19.0 ± 2.03	179 ± 13.0	0.50 ± 0.09	9.08 ± 0.93				
	10	22.4 ± 2.33	270 ± 26.2	0.27 ± 0.09	6.57 ± 1.13				
Isc (μ A/cm ²)	0.5	56.1 ± 6.76	-	36.2 ± 3.75	50.3 ± 5.99				
	1.0	50.2 ± 3.93	-	31.0 ± 2.85	40.3 ± 3.20				
	2.0	47.2 ± 1.33	-	28.3 ± 2.33	42.2 ± 3.34				
	5.0	44.9 ± 3.96	-	16.0 ± 2.87	32.2 ± 3.88				
	10	50.1 ± 9.93	-	12.1 ± 3.92	28.4 ± 3.03				

Table 4 PD and Isc values in the conjunctiva in the LC permeation experiments.

Data represent mean \pm S. E. (n = 3-4).

	Current density	Defens ID	During ID	After IP application				
	(mA/cm^2)	Before IP	During IP	0 min	210 min			
[PD] (mV)	0.5	10.7 ± 1.45	149 ± 22.1	9.57 ± 0.52	6.00 ± 1.32			
	1.0	6.53 ± 1.29	207 ± 10.5	6.73 ± 0.47	2.46 ± 0.61			
	1.5	10.8 ± 0.76	217 ± 29.1	5.23 ± 0.67	2.60 ± 0.61			
	2.0	10.5 ± 2.72	229 ± 24.4	4.07 ± 0.19	3.00 ± 1.70			
Isc (μ A/cm ²)	0.5	5.61 ± 0.97	-	33.0 ± 5.28	4.47 ± 1.18			
	1.0	3.94 ± 0.20	-	28.3 ± 2.00	2.73 ± 0.23			
	1.5	4.70 ± 0.08	-	33.0 ± 2.88	3.41 ± 0.13			
	2.0	5.45 ± 1.51	-	30.2 ± 5.51	3.56 ± 1.54			

Table 5PD and Isc values in the cornea in the BA permeation experiments.

Data represent mean \pm S. E. (n = 3).

	Current density	Dafa na ID	During ID	After IP a	r IP application			
	(mA/cm^2)	Before IP	During IP	0 min	150 min			
[PD] (mV)	0.5	15.9 ± 1.65	118 ± 1.06	18.7 ± 0.98	12.2 ± 2.02			
	1.0	12.9 ± 1.88	141 ± 5.25	15.6 ± 3.32	8.97 ± 0.64			
	2.0	11.4 ± 1.46	157 ± 6.74	10.8 ± 0.46	9.00 ± 0.35			
	5.0	15.0 ± 4.44	158 ± 11.8	9.10 ± 1.29	6.93 ± 3.58			
	7.5	12.6 ± 1.07	249 ± 26.2	3.03 ± 0.32	0.90 ± 0.36			
Isc (μ A/cm ²)	0.5	41.4 ± 4.19	-	81.7 ± 11.7	42.2 ± 3.13			
	1.0	37.7 ± 5.31	-	99.4 ± 29.5	35.1 ± 2.75			
	2.0	35.9 ± 1.85	-	109 ± 12.5	33.9 ± 2.80			
	5.0	34.0 ± 6.17	-	90.5 ± 11.5	24.8 ± 4.90			
	7.5	42.5 ± 4.21	-	89.2 ± 14.0	16.1 ± 2.71			

Table 6PD and Isc values in the conjunctiva in the BA permeation experiments.

Data represent mean \pm S. E. (n = 3).

第三節 低分子イオン性薬物の眼組織透過 flux と膜電位の関係

薬物の生体膜透過は、Nernst-Planck 式に基づくと、膜を介した電気化学ポテンシャルの差に依存する。IP 適用中のイオン性薬物の透過速度(*J*)は、Nernst-Planck 式を変形した理論式(Eq. 2)と Pikal が誘導した理論式(Eq. 3)⁴⁰⁾で表される。

$$J = -D \left\{ \frac{dC}{dx} + \frac{Z \cdot F \cdot C}{RT} \left(\frac{dE}{dx} \right) \right\} \pm J_V \cdot C$$
 (Eq. 2)

$$J_{\rm V} = P_{\rm VE} \left(-\frac{\mathrm{d}\Phi}{\mathrm{d}x} \right) \tag{Eq. 3}$$

ここで、D は膜中での薬物の拡散係数、C は薬物イオン濃度、Z は薬物のイオン価数、 F はファラデー定数、 J_V は electroosmotic volume flow、 P_{VE} は electroosmotic flow 係数、 dE および dΦ は電位差である。R および T は、それぞれ気体定数および絶対温度であ る。 $\frac{dC}{dx}$ は濃度勾配による駆動力、 $\frac{Z:F\cdot C}{RT} \left(\frac{dE}{dx} \right)$ は ER による駆動力、 $J_V \cdot C$ は EO に よる溶媒流である駆動力を示している。Eqs. 2 および 3 に基づくと、ER および EO の いずれの駆動力も電位勾配に比例することから、電流適用下でのイオン性薬物の透過 速度(*J*)は、D およびP_{VE}一定の条件で PD の値に依存すると理解できる。そこで、IP 適用中の PD と IP 透過実験中に得られた maximal flux との関係をプロットした(Figs. 9 および 10)。ドナー側を陽極とした際の PD と maximal LC flux の関係は、角膜および 結膜の両者で良好な相関関係が認められ、r は角膜および結膜において、それぞれ 0.8922 (Fig. 9A)および 0.9583 (Fig. 9B)だった。ドナー側を陰極とした場合にも、角膜 および結膜の両者で良好な相関関係が認められ、r は角膜および結膜において、それ ぞれ 0.8808 (Fig. 10A)および 0.8930 (Fig. 10B)だった。

Figure 9 Relationship between the corneal (A) and conjunctival (B) PD and maximal permeated flux of LC. a, baseline; b, 0.5 mA/cm^2 ; c, 1.0 mA/cm^2 ; d, 2.0 mA/cm^2 ; e, 5.0 mA/cm^2 ; f, 10 mA/cm^2 . Data represent mean \pm S. E. (n = 3-5).

Figure 10 Relationship between the corneal (A) and conjunctival (B) PD and maximal permeated flux of BA. a, baseline; b, 0.5 mA/cm^2 ; c, 1.0 mA/cm^2 ; d, 1.5 mA/cm^2 ; e, 2.0 mA/cm^2 ; f, 5.0 mA/cm^2 ; g, 7.5 mA/cm^2 . Data represent mean \pm S. E. (n = 3).

これらの結果から、イオン性薬物の IP 透過促進効果は電位差依存的な IP 駆動力の増 大によるものと考えられた。Marro らは EO 流の指標となるマンニトールを用いた in vitro IP 研究で、電流適用下での皮膚を介した低分子カチオン性薬物の透過速度に対す るマンニトールの透過速度の割合から、IP 透過に対する ER および EO の寄与率を算 出した結果、低分子カチオン性薬物の IP 透過は、ER 駆動が 90%以上を担うことを報 告した⁴¹⁾。したがって、本試験で得られた低分子イオン性薬物の IP 透過促進に対す る駆動力も主に ER によるものと考えられるが、TEER が変化する条件では、D や Pve が一定とはならないことにも注意する必要があると考えられた。

第二章 非イオン性薬物の角膜および結膜透過に対する

イオントフォレシスの影響

第一節 親水性高分子非イオン性薬物の角膜および結膜透過に 対する適用電流値の影響

眼内注射で使用される抗体や核酸医薬品は親水性高分子イオン性薬物である。Guy らは、高分子イオン性薬物の IP 透過促進に対して ER よりも EO の寄与が大きく、そ の寄与率は分子量依存的であることを報告した¹⁴⁾。そこで、高分子薬物の IP 透過促 進効果を見積もるために、親水性高分子非イオン性薬物である FD-4 をモデル透過物 質として用い、前章と同様に角膜および結膜 IP に対する適用電流値の影響を検討し た。透過実験開始から 120 分後に、角膜では 5.0 mA/cm²、結膜では 20 mA/cm²までの 電流値を 30 分間適用した。

Figs. 11A および B は、ドナー側を陽極とした場合の角膜および結膜を介した FD-4 flux の経時的変化をそれぞれ示している。角膜では、120 分までの受動拡散による FD-4 透過量を検出できなかったが、IP 適用により明らかに透過が促進され、IP 適用終了後 から透過実験終了時まで FD-4 flux は高いレベルで持続した(Fig. 11A)。一方、結膜で は IP 適用前の受動拡散による FD-4 透過が認められ、IP 適用による FD-4 flux の増大 と電流適用終了後の回復が観察された。しかし、その回復は 10 mA/cm²までの適用電 流値においてであり、20 mA/cm²では、baseline まで回復しなかった(Fig. 11B)。

Figure 11 Time-courses of permeated flux of FD-4 through the cornea (A) and conjunctiva (B) in the anodal IP experiments. \blacksquare , 0.5 mA/cm²; \Box , 2.0 mA/cm²; \bullet , 5.0 mA/cm²; \circ , 10 mA/cm²; \blacktriangle , 20 mA/cm². Data represent mean \pm S. E. (n = 3-8).

	-			
Compound	Current density $(m\Lambda/cm^2)$	Baseline flux	Maximal flux	Enhancement
	(ma/cm)	(µg/cm/mm)	(µg/cm/mm)	1410
FD-4	0.5	N. D.	0.01 ± 0	Acalculia
	1.0	N. D.	0.03 ± 0	Acalculia
	2.0	N. D.	0.05 ± 0.01	Acalculia
	5.0	N. D.	0.06 ± 0	Acalculia

Table 7Enhancement ratio and flux values of FD-4 in the cornea as measured by IPexperiments.

N. D. not detected. Data represent mean \pm S. E. (n = 3).

Table 8	Enhancement ratio and flux values of FD-4 in the conjunctiva as measured by
IP experim	nents.

Compound	Current density	Baseline flux	Maximal flux	Enhancement
	(mA/cm^2)	(µg/cm²/min)	(µg/cm²/min)	ratio
FD-4	0.5	0.03 ± 0.01	$0.10 \pm 0.01^{***}$	3.42
	1.0	0.04 ± 0.01	0.16 ± 0.05	3.58
	2.0	0.05 ± 0.01	$0.45 \pm 0.04 **$	8.93
	5.0	0.03 ± 0.01	$0.32 \pm 0.03^{***}$	10.66
	10	0.04 ± 0.01	$1.15 \pm 0.13*$	28.46
	20	0.02 ± 0	$1.66 \pm 0.28*$	83.01

*p < 0.05, **p < 0.01, ***p < 0.001 vs. significantly different from baseline flux (*t*-test). Data represent mean \pm S. E. (n = 3-8). 角膜および結膜における FD-4 に対する IP 透過実験で得られた baseline flux、maximal flux および促進率を Tables 7 および 8 に示す。角膜では、baseline の FD-4 が定量限界 以下であったため、促進率の算出は不可能であったが、電流値依存的な maximal flux の増大が認められた(Table 7)。結膜では、適用した電流値の範囲において FD-4 の maximal flux は baseline flux に比べ、電流値依存的に有意に増大し、促進率は 20 mA/cm² の適用電流値で約 83 倍と、より強い電流依存性が示された(Table 8)。これらのことか ら、FD-4 の IP 効果は角膜 IP および結膜 IP ともに適用電流値に依存するが、角膜で は増大した FD-4 flux が持続するのに対し、結膜では一過的であり、角膜と結膜で IP 促進特性が異なることが示された。

第二節 親水性高分子非イオン性薬物を用いた IP 適用実験中の 眼組織電気抵抗値の変化

Figs. 12A および B は、ドナー側を陽極とした場合の FD-4 透過実験中の角膜および 結膜 TEER の経時的変化をそれぞれ示す。角膜および結膜 TEER は、低分子イオン性 薬物に対して上皮側を陽極とした実験結果(Fig. 7)と同様に、IP 適用直後に急激に低下 した(Fig. 12)。IP 適用終了後の角膜の TEER は、2.0 mA/cm² までの条件では TEER に 電流値依存的な回復時間の遅れはあるものの、IP 適用前の約 70%まで回復した(Fig. 12A)。5.0 mA/cm²の適用電流値では、IP 適用終了後に TEER は回復しなかった。結膜 においても TEER の回復に電流値依存的な時間の遅れが認められたが、10 mA/cm²ま での条件で IP 適用前の約 90%まで回復した(Fig. 12B)。Tables 9 および 10 に透過実験 中にわたりモニターした電気生理学的パラメーターを示す。IP 適用中の PD は電流値

 $\mathbf{24}$

依存的に増大した。また、電流適用後の Isc および PD は TEER の回復に対応して、 適用前のレベルまで回復する傾向が認められた。

Figure 12 Time-courses of the corneal (A) and conjunctival (B) TEER in the FD-4 permeation experiments. \blacksquare , 0.5 mA/cm²; \Box , 2.0 mA/cm²; \bullet , 5.0 mA/cm²; \circ , 10 mA/cm²; \blacktriangle , 20 mA/cm². Data represent mean \pm S. E. (n = 3-8).

	Current density (mA/cm ²)	Before IP	During IP -	After IP application	
				0 min	210 min
[PD] (mV)	0.5	11.1 ± 1.01	72.1 ± 1.92	0.33 ± 0.09	8.50 ± 0.21
	1.0	16.8 ± 1.94	116 ± 8.26	0.27 ± 0.03	17.0 ± 2.49
	2.0	11.1 ± 2.31	157 ± 26.0	0.17 ± 0.03	6.97 ± 1.65
	5.0	9.83 ± 0.64	457 ± 18.7	0.83 ± 0.13	1.77 ± 0.43
Isc (μ A/cm ²)	0.5	5.30 ± 0.85	-	2.88 ± 0.66	5.61 ± 0.67
	1.0	8.64 ± 1.74	-	3.41 ± 0.13	10.9 ± 1.51
	2.0	5.30 ± 1.21	-	3.18 ± 0.47	4.70 ± 1.29
	5.0	5.00 ± 0.39	-	9.50 ± 1.99	4.70 ± 0.15

Table 9PD and Isc values in the cornea in the FD-4 permeation experiments.

Data represent mean \pm S. E. (n = 3).

	Current density (mA/cm ²)	Before IP	During IP -	After IP application	
				0 min	150 min
[PD] (mV)	0.5	20.6 ± 1.96	80.6 ± 2.67	6.36 ± 0.62	13.4 ± 2.88
	1.0	18.3 ± 2.26	94.2 ± 4.18	4.50 ± 1.53	14.4 ± 1.59
	2.0	23.1 ± 4.30	115 ± 17.1	2.18 ± 0.60	13.8 ± 3.35
	5.0	18.1 ± 2.20	160 ± 21.3	1.50 ± 0.28	11.1 ± 1.66
	10	22.6 ± 3.33	444 ± 54.5	0.60 ± 0.00	10.9 ± 1.61
	20	20.4 ± 3.07	664 ± 113	1.08 ± 0.54	4.9 ± 1.61
Isc (μ A/cm ²)	0.5	50.0 ± 4.25	-	39.6 ± 3.35	42.8 ± 6.25
	1.0	57.0 ± 14.7	-	43.9 ± 11.8	45.5 ± 11.1
	2.0	62.0 ± 11.2	-	36.5 ± 8.08	46.6 ± 8.89
	5.0	44.5 ± 6.04	-	26.2 ± 4.00	35.3 ± 5.06
	10	60.8 ± 6.49	-	23.2 ± 8.32	35.3 ± 4.81
	20	56.6 ± 5.48	-	36.0 ± 9.58	31.0 ± 1.81

Table 10PD and Isc values in the conjunctiva in the FD-4 permeation experiments.

Data represent mean \pm S. E. (n = 3-8).

第三節 親水性高分子非イオン性薬物の眼組織透過 flux と 膜電位の関係

第一章第三節の Eq. 3 に示したように、EO の効果は電位勾配に依存し、これが非イ オン性薬物である FD-4 に対する透過促進に対する駆動力となっていると考えられる。 そこで、IP 適用中の PD と IP 透過実験中に得られた最大 flux との関係をプロットし た(Fig. 13)。角膜を介した最大 FD-4 flux は、PD に依存して増大したが、高い PD 値(400 mV)で頭打ちになる傾向にあった(Fig. 13A)。一方、結膜では PD と最大 FD-4 flux の 間に有意な相関関係(r = 0.9883, p < 0.0001)が認められた(Fig. 13B)。結膜では IP 適用中 にのみ FD-4 flux の増大が認められたことから(Fig. 11B)、IP の透過促進効果は電流値 依存的な EO 駆動によるものと考えられた。一方、角膜においても PD に依存した flux の増大が認められたが、IP 適用終了後にも増大した flux が維持されたことから(Fig. 11A)、通常、角膜を拡散しない FD-4 が IP 適用中に電流値依存的な EO 効果により角 膜へ移行し、その後角膜内に滞留していることが推測された。そこで、次節において、 IP 適用後の薬物の組織滞留性を評価することにした。

Figure 13 Relationship between the corneal (A) and conjunctival (B) PD and maximal permeated flux of FD-4. a, baseline; b, 0.5 mA/cm^2 ; c, 1.0 mA/cm^2 ; d, 2.0 mA/cm^2 ; e, 5.0 mA/cm^2 ; f, 10 mA/cm^2 ; g, 20 mA/cm^2 . Data represent mean \pm S. E. (n = 3-4).

第四節 角膜および結膜における親水性高分子の

イオントフォレシス促進効果に対する組織滞留性の影響

前節の検討から、角膜における FD-4 flux 増大の持続が、角膜中での FD-4 の滞留に よるものと考えられた。そこで、本節では IP 適用終了後の角膜および結膜内 FD-4 の 滞留性を評価し、比較した。適用電流値間での滞留性の違いも評価するため、前節の FD-4 透過促進に明らかな差が認められた電流値を選択した。ドナー側を陽極として、 角膜では 0.5 および 2.0 mA/cm²、結膜では 2.0 および 10 mA/cm²の電流を 30 分間適用 した。また、電流を適用していない条件(0 mA/cm²)を control とした。IP 適用終了直後 にドナー側およびレシーバー側の chamber 内溶液を新鮮な重炭酸リンゲル液(BRS)で 置換し、IP 適用終了直後および IP 適用終了から既定時間経過後(角膜: 210 分後、結膜: 150 分後)の組織内 FD-4 量を測定した。また、IP 適用終了後のレシーバー側への FD-4 放出性も評価した。Figs. 14A および B は、IP 適用終了直後および IP 適用終了後に得 た角膜および結膜内 FD-4 量をそれぞれ示している。IP 適用終了直後の角膜および結 膜内 FD-4 量は電流値依存的に有意に増大した。IP 適用終了 210 分後および 150 分後 の角膜および結膜内それぞれの FD-4 量は適用終了直後に比べて低下したが、210 分 後の角膜内 FD-4 量はいずれの適用電流値でも control に比べて有意に高く(Fig. 14A, hatched column) (0.5 mA/cm² で 5.74 倍、2.0 mA/cm² で 8.23 倍)、一方、結膜ではいずれ の電流値でも IP 適用後 150 分で control と有意な差はなかった(Fig. 14B, hatched column)。

Figure 14 Retained amount of FD-4 in the cornea (A) and conjunctiva (B) after anodal IP application. Closed bars are the FD-4 concentration immediately after IP application. Hatched bars are the FD-4 concentration at 210 min for the cornea and 150 min for the conjunctiva after IP application. *p < 0.05, **p < 0.01 vs. significantly different from 0 mA/cm² (*Tukey-Kramer* test). Data represent mean \pm S. E. (n = 3-4).

Figs. 15A および B は、それぞれ IP 適用終了後の角膜および結膜からフレッシュな レシーバー液に入れ換えたレシーバー側への FD-4 放出 flux の経時的変化を示してい る。IP 適用により増大した FD-4 放出 flux は、結膜では時間依存的に徐々に低下し、 IP 適用終了から 150 分後の放出 flux は control レベルまで低下した(Fig. 15B)。しかし、 結膜における放出 flux の値は前章第一節の透過 flux の値に比べて低いものであった。 このことは、放出実験開始時に両チャンバー溶液をフレッシュな BRS に置き換えた ため、レシーバー側のみならずドナー側へも FD-4 が放出されることに起因している と考えられる。実際に、2.0 mA/cm² 適用実験終了時までにドナー側へ放出された FD-4 量は、結膜ではレシーバー側へのものと比べて9倍であった(data not shown)。この両 側への放出性の高さが、IP 適用による FD-4 flux の上昇が一過性である要因として関 与していると推測される。角膜からの放出 flux の場合、角膜での通常の IP 透過実験 から得られた持続的な FD-4 flux (Fig. 11A)と比べて、時間依存的に低下する傾向が認 められたが(Fig. 15A)、210 分後で control に比べて明らかに高かった。本実験系では ドナー側薬物溶液も薬物非含有の溶液に入れ換えた状態で放出挙動を見積もってい るので、結膜の場合と同様に、ドナー側への薬物放出のため角膜中薬物量が低下して いる可能性がある。そこで、IP 適用終了後に角膜のドナー側溶液が存在する条件下で レシーバー側への放出挙動を評価し、非存在下での放出挙動と比較した。

Figure 15 Time-courses of released flux of FD-4 from the cornea (A) and conjunctiva (B) after anodal IP application. \blacksquare , 0 mA/cm²; \Box , 0.5 mA/cm²; \bullet , 2.0 mA/cm²; \circ , 10 mA/cm². Data represent mean \pm S. E. (n = 3-4).

Figs. 16A およびBは、ドナー側FD-4の存在下および非存在下での角膜中FD-4量お よびレシーバー側への放出fluxの経時変化をそれぞれ示している。ドナー側FD-4存 在下での2.0 mA/cm²、30分間の電流適用終了210分後の角膜中FD-4量は、FD-4非 存在下に比べて約3.5倍高かった(Fig. 16A)。ドナー側FD-4存在下でのレシーバー側 へのFD-4放出fluxは、FD-4非存在下に比べ、30分以降で高い値で推移した(Fig. 16B)。 これらの結果から、眼組織を介したFD-4透過に対するIPの促進効果の違いはFig. 17 のようにまとめることができる。角膜では、通常、組織中へ移行しないFD-4はIP適 用中のEO効果により組織中に入り込み、IP適用終了後に角膜内にFD-4が滞留する ことで、FD-4滞留量に依存した放出fluxの増大がIP適用終了後210分まで維持され る。一方、結膜では、IP適用中のFD-4透過はEO効果により増大し、IP適用終了後 の組織内に存在するFD-4が滞留しにくいため、放出fluxがIP適用終了後150分で control レベルまで低下するものと推測される。以上、FD-4のIP促進特性の違いは、 角膜および結膜における滞留性の違いが要因の一つであると考えられた。

Figure 16 Retained amount of FD-4 (A) at 210 min and time-courses of released flux of FD-4 (B) in the cornea after anodal IP application at 2.0 mA/cm² in the presence or absence of donor FD-4. \blacksquare ; absence of FD-4 in the donor side, \bullet ; presence of FD-4 in the donor side. Data represent mean \pm S. E. (n = 3-4).

Figure 17 Schematic diagram of different permeation enhancement of FD-4 (●) in the cornea and conjunctiva.
第三章 本編の考察および小括

本編では、家兎角膜および結膜におけるイオン性および非イオン性薬物の透過性に 対する電流値の影響、さらに電気生理学的パラメーターに基づいた組織生存性および integrityに対する影響を検討した。

眼組織 IP の *in vivo* 研究は、経皮 IP 薬物送達における電流値(~0.5 mA/cm²)¹⁴と比較 して高い電流値(0.8~28.2 mA/cm²)¹⁷⁻²⁶⁾で評価されてきた。従って、生きた組織におけ る IP の場合、生存性および integrity の観点からの組織機能に対する適用電流値の影響 を知ることは重要である。本編の結果から、角膜および結膜の TEER 値は、上皮側を 陽極または陰極を設置したいずれの条件でも IP 適用により急激に低下し、IP 適用終 了後に回復することが明らかとなった(Figs. 7, 8 および 12)。組織 TEER の回復は、上 皮側を陽極にした場合では(Figs. 7 および 12)、角膜で 2.0 mA/cm²、結膜で 10 mA/cm²、 また上皮側を陰極にした場合では(Fig. 8)、角膜で 2.0 mA/cm²、結膜で 5.0 mA/cm²の 適用電流適用値で観察された。電流適用後の PD および Isc の回復もまた TEER の挙 動と一致したことから(Tables 3-6, 9 および 10)、これら適用電流値までは角膜および 結膜の生存性および integrity を IP 適用後も維持していると考えられた。以上の結果か ら、眼組織 IPにおける組織生存性および integrityにおける適用電流に対する感受性は、 組織により異なることが明らかとなり、さらに電極の設置方向、すなわち電流向きに も依存することが明らかとなった。

角膜および結膜を介した LC の baseline flux から算出した見かけの透過係数(P_{app})は、 それぞれ 3.98 ± 0.25 および 3.58 ± 0.19 (×10⁻⁵ cm/s)であり、BA の P_{app} は、それぞれ 0.83 ± 0.05 および 1.56 ± 0.07 (×10⁻⁶ cm/s)であった。加えて、結膜を介した FD-4 の P_{app} は 1.14 ± 0.13 (×10⁻⁷ cm/s)であったが、角膜を介した FD-4 の透過量は検出限界以下のた め、 P_{app} を算出できなかった。本研究において、モデル透過物質に使用した LC、BA および FD-4 の P_{app} は、これまでに角膜および結膜で報告された値 ⁴²⁻⁴⁵⁾と近いことか ら、本研究で得られた P_{app} は妥当な値であると考えられた。角膜および結膜において、 LC では上皮側を陽極、BA では上皮側を陰極としたとき、IP 適用により flux が増大 した(Figs. 5 および 6、Tables 1 および 2)。このことは、イオン性薬物の透過が電流の 流れと一致することを示している。イオン性薬物の IP 駆動力は膜を介した電気化学 ポテンシャル差であるため ^{14, 16, 46)}、LC および BA の透過は、抵抗が一定の条件では 電流影響下の膜を介した PD に依存することが推測される。実際に、IP 適用により得 られた最大 flux は、IP 適用中の角膜および結膜 PD に比例した(Figs. 9 および 10)。し かしながら、IP により得られた LC および BA の促進率(約 2-4 倍)は、経皮 IP で得ら れる典型的な促進効果 ^{47, 48)}と比較して高いものではない。その原因として、角膜およ び結膜を介した IP flux において、LC および BA の輪率が低いことが考えられる。

電流適用下でのイオンの透過速度は膜を流れる総電流量(I)に依存し、Eq. 4 で表される。

$$I = F\left(\sum_{C} J_{+} + \sum_{A} J_{-}\right) \cdot Area$$
 (Eq. 4)

ここで、Fはファラデー定数(96485 C/mol)、Area は電流の有効面積である。Eq.4で示 すように、I は膜を介したカチオンの透過速度とアニオンの透過速度の総和であるこ とが理解できる。すなわち、電流適用時に移動する荷電には、薬物イオンだけでなく、 共存する同符号や異符号のイオンも含まれ、イオン性薬物の透過速度は同槽に共存す るイオン種易動度の影響を受ける。輸率を考慮した薬物イオンの透過速度(*J*_D)および 薬物イオンの輸率(t_D)は以下の式(Eqs. 5 および 6)で表される¹⁴⁾。

$$J_{\rm D} = \frac{1}{Z_{\rm D} \cdot \text{Area} \cdot \text{F}} \cdot t_{\rm D} \cdot \text{I}$$
(Eq. 5)

$$t_{\rm D} = \frac{z_{\rm D} \cdot u_{\rm D} \cdot c_{\rm D}}{\sum_{n=0}^{i} z_{\rm i} \cdot u_{\rm i} \cdot c_{\rm i}}$$
(Eq. 6)

ここで、zはイオン価数、uは易動度、およびcはイオン濃度である。添え字のDお よび i は薬物およびその他のイオンを示す。Eq. 5 は電流適用下でのイオン性薬物の flux が薬物イオンの輸率に依存し、Eq.6は薬物イオンの輸率が、溶液中に含まれるイ オン種の総量と易動度の積の比で決まることを意味している。本研究では、眼組織の 生存性を維持するために必要なイオン種が BRS 中に多量に含まれているため、定電 流影響下、LCやBAよりもイオン移動度の高いイオン種のIに対する寄与、すなわち 輸率が高くなっているものと考えられる。実際に、Mudry らの理論式 ⁴⁹⁾により算出し た本検討における LC および BA イオンの輸率(Table 11)は、易動度の高い Na⁺、K⁺、 CIおよび HCO₃のような共存イオンの輸率(Na⁺: 0.42, K⁺: 0.02, CI: 0.48, HCO₃: 0.07)に 比べて極めて低く、その値は電流値依存的に低下した(Table 11)。このことから、適用 した電流のほとんどは薬物イオンによるものではなく、共存イオンの移動によるもの であると推測された。また、適用電流値に対して比例関係ではない LC および BA の IP 透過促進効果は、LC および BA の輸率が電流値依存的に低下していることに起因 していると考えられた。加えて、IP 適用中に観察された TEER の低下から、細胞間隙 の拡大による各種イオンの移動の増大が考えられ、このことも薬物イオンの輸率が低 いことに起因していると考えられる。したがって、IP により低分子イオン性薬物に対 して高い透過促進効果を得るためには、薬物の妥当な輸率が得られるイオン組成を考慮する必要があると考えられる。事実、点眼薬や結膜下注射に比べて眼内局所で数十倍の薬物濃度が得られている眼組織 IP の *in vivo* 研究では、共存イオンの影響を受けない水を薬物リザーバー溶液に使用している^{18,22,24)}。以上より、低分子イオン性薬物の眼組織 IP では、共存イオンの影響を考慮した条件設定が重要であることが示唆された。

Tissue	Ionic compound	Current density (mA/cm ²)	Transport number
Cornea	LC	0.5	0.0081 ± 0.0012
		1.0	0.0047 ± 0.0006
		2.0	0.0030 ± 0.0003
		5.0	0.0014 ± 0.0001
	BA	0.5	0.0164 ± 0.0008
		1.0	0.0077 ± 0.0003
		1.5	0.0056 ± 0.0006
		2.0	0.0046 ± 0.0002
Conjunctiva	LC	0.5	0.0085 ± 0.0012
		1.0	0.0038 ± 0.0005
		2.0	0.0020 ± 0.0002
		5.0	0.0013 ± 0.0000
		10	0.0026 ± 0.0002
	BA	0.5	0.0251 ± 0.0015
		1.0	0.0115 ± 0.0001
		2.0	0.0117 ± 0.0006
		5.0	0.0089 ± 0.0009
		7.5	0.0164 ± 0.0017

Table 11Transport number of LC and BA in the cornea and conjunctiva as measuredby IP experiments.

Data represent mean \pm S. E. (n = 3-5).

非イオン性親水性高分子のモデルとして用いた FD-4 の角膜および結膜を介した透 過に対して、種々電流値で IP 適用したとき、PD 依存的な flux の増大が観察された(Fig. 13)。Eq. 3(第一章第三節)で示されるように、EO の効果は膜を介した電位差に依存す

るので、FD-4の flux の増大は、生理的 pH で負に荷電した生体膜において、陽極から 陰極方向へ生じる EO 効果^{16,47)}に起因すると思われた。実際に、結膜において FD-4 flux の増大はIP 適用中のみ観察されており、EO による溶媒流の一過的な誘導に起因して いることを強く示唆している(Fig. 11B)。一方、角膜を介した FD-4 flux は、結膜での 挙動とは異なり、IP 適用後にも持続した(Fig. 11A)。これは角膜中に FD-4 が滞留して いることによると推測されたため、IP 適用から 210 分後の角膜内 FD-4 量および角膜 からの放出 flux を測定したところ、IP 適用群の FD-4 量および放出 flux は、IP 非適用 群と比較して明らかに高かった(Figs. 14A および 15A)。また、ドナー側 FD-4 存在下 では、非存在下に比べて角膜中 FD-4 量は高く、角膜からの放出 flux も高い値で維持 された(Fig. 16)。このことから、IPにより角膜へ移行した FD-4 が組織内に滞留するこ とによって、放出 flux が保たれているものと推察された。これは角膜と結膜の構造的 な違い^{50,51)}によるものかもしれない。すなわち、角膜は上皮細胞層、ボーマン膜、基 質層、デュア層、デスメ膜および内皮細胞層から成り(Fig. 18a)、特に上皮細胞層と内 皮細胞層に挟まれた領域に高分子薬物が滞留し、内皮細胞層もバリアとして機能して、 flux が持続化した可能性が考えられる。一方、結膜は上皮細胞層および翼細胞(Fig. 18b) から成り、組織中で高分子薬物が滞留できる領域が少ないものと考えられる。

Figure 18 Corneal (a) and conjunctival (b) structure of the human eye.

第二編

イオントフォレシスにより細胞間隙が受ける影響と 促進機構との関連性

結膜では、FD-4 のような親水性高分子は、その見かけの透過係数(Paap)は TEER の 逆数に比例し、その透過経路は細胞間隙であることが知られている¹³⁾。また poly-L-arginine (PLA)のようなカチオン性透過促進剤の処理による、結膜 TEER の可逆 的な低下、すなわち細胞間隙経路の可逆的な拡大により、FD-4 のような親水性高分 子の透過が増大することが報告されている¹³⁾。前編で示したように、比較的低い定電 流の 30 分間の適用により、角膜および結膜 TEER の可逆的な低下が生じたことから (Figs. 7, 8 および 12)、IP 適用が細胞間隙経路に影響し、親水性高分子の透過促進に関 与している可能性がある(Fig. 19)。

Figure 19 Schematic diagram of reduced barrier of paracellular pathway and permeation enhancement of FD-4 in the ocular epithelia by IP application.

上皮組織を介した薬物の細胞間隙透過は TJ により制限され、それは 4 回膜貫通タ ンパク質である claudins や occludin、膜裏打ちタンパク質である zonula occludens proteins (ZOs)、さらには細胞骨格である actin filament (F-actin)などのタンパク質複合 体で形成される(Fig. 20)^{52,53)}。

Figure 20 Schematic diagram of tight junction complex in consist of claudins, occludin, ZOs and actin filament (F-actin) in epithelial and endothelial cell-cell junction.

Leonald らは、小腸結腸のモデルとして広く利用されている Caco-2 単層膜を用いた IP 研究を行い、TEER の低下に伴い親水性高分子化合物の透過が促進され、電子顕微 鏡画像に基づき IP 適用が TJ 開口を導くことを報告した⁵⁴⁾。すなわち生きた上皮組織 では、IPはTJ 関連タンパク質の会合状態を変化させることで細胞間隙経路を拡大し、 通常は制限されている親水性高分子の膜透過促進に関与していることが考えられる。 しかしながら、重層上皮細胞層から成る角膜や結膜における薬物の IP 透過促進機構 に関する研究はほとんど行われておらず、細胞間隙透過性の制限に重要な TJ 機構に 対して IP がどのような影響を及ぼしているのかは明らかにされていない。

そこで第二編では、細胞間隙部位に存在する TJ 機構に対する電流適用の影響を明 らかにするため、家兎摘出角膜および結膜における上皮 TJ 関連タンパク質の局在性 および存在量に対する電流適用の影響、さらには上皮 F-actin の局在性に対する影響 を評価し、IP による薬物透過促進と TJ 開口との関係について考察した。

第一章 角膜および結膜上皮タイトジャンクション

関連タンパク質の局在性に対する電流適用の影響

まず、TJ 関連タンパク質の会合状態を定性的に評価するため、TJ 関連タンパク質 のバイオイメージングに広く使用される免疫染色法により局在性を評価することと した。Huong らは、角膜および結膜を用いた薬物透過性に関する *in vitro* 研究を行い、 親水性化合物の角膜および結膜透過が分子サイズ依存的であり、horse radish peroxidase の結膜透過が上皮細胞のTJ により制限されることを報告した⁵⁵⁾。著者らの 予備的検討では、重層細胞層を有する角膜および結膜上皮において、TJ 関連タンパク 質である claudin-1、claudin-4、occludin および ZO-1 の局在が一致するのは第1層目の みであり、TJ は上皮層の最上皮のみで形成されることが示唆された(data not shown)。 そこで本章では、角膜および結膜上皮細胞層の第1層目に着目し、TJ 関連タンパク質 の局在性に対する電流適用の影響を試験した。

第一編において、IP 適用終了後の角膜および結膜 TEER の回復速度が電流値に依存 し、電流値増大に伴い回復が遅れることが認められたため、適用電流値が TJ 関連タ ンパク質の会合状態の回復過程に影響していると考えられる。本章では、TEER の回 復速度に明らかな違いが認められた電流値を用いることにした。すなわち、上皮側を 陽極とした場合は、角膜では 0.5 および 2.0 mA/cm²、結膜では 0.5 および 10 mA/cm²、 上皮側を陰極とした場合は、角膜では 0.5 および 2.0 mA/cm²、結膜では 0.5 および 5.0 mA/cm²を 30 分間適用する条件とした。Figs. 21 および 22 は、上皮側をそれぞれ陽極 および陰極とした場合の角膜上皮 TJ 関連タンパク質の蛍光画像、Figs. 23 および 24 は、それぞれ上皮側を陽極および陰極とした場合の結膜上皮 TJ 関連タンパク質の蛍 光画像を示している。角膜および結膜ともに、電流適用前に細胞辺縁部に局在してい

た claudin-1、claudin-4、occludin および ZO-1 の蛍光シグナルは(Figs. 21-24, Before IP)、 適用終了直後に全てのタンパク質において低下した(Figs. 21-24, 0 min after IP application)。低下した TJ 関連タンパク質の蛍光シグナルは、本検討で適用した電流値 に関係なく、角膜では適用終了から 210 分後(Figs. 21 および 22, 210 min after IP application)、結膜では適用終了から 90 分後に細胞辺縁部に再び確認された(Figs. 23 お よび 24,90 min after IP application)。しかし、適用電流値が低い条件では、角膜では電 流適用終了から 30 分後(Figs. 21 および 22, 30 min after IP application)、結膜では電流適 用終了から15分後の蛍光画像から(Figs. 23 および24, 15 min after IP application)、蛍光 シグナルの細胞辺縁への再局在が確認できるが、高い条件ではそうではなく、適用電 流値が高い場合、再局在に長い時間が必要と考えられた。これらの結果は、IP 適用時 のTJ 関連タンパク質の局在性変化が Figs. 7,8 および 12 に示した TEER の変化に一致 する傾向であることを示し、IP 適用中に認められた角膜および結膜バリアの低下は TJ 関連タンパク質の会合状態の可逆的な変化によるものであると推察された。しかし ながら、電流適用終了直後の TJ 関連タンパク質の蛍光シグナルの低下は、電流適用 が抗原抗体反応に重要なタンパク質のエピトープ部位に影響を及ぼしていることや、 TJ 関連タンパク質の分解を引き起こしていることによるとも考えられる。そこで、次 章では、TJ 関連タンパク質の量的な変化を観点として着目して評価した。

+	\odot)			
Ductoin	 Defens ID	Current density	A	fter IP applicati	on
Protein	Delore IP	$(\mathbf{mA/cm}^2)$	0 min	30 min	210 min
		0.5			
		2.0			
Claudin-4		0.5			
		2.0			
Occludin		0.5			
		2.0			
ZO-1		0.5			
		2.0			

Figure 21 Localization of tight junction (TJ) -associated proteins in the rabbit corneal epithelium before and after anodal IP application. Bar = $10 \ \mu m$.

Green signal is TJ-associated proteins. Blue signal is nucleus.

Epithelial side

Г

Epithelial side	
\odot	+

Protein Refore IP		Current density	After IP application		
Protein	Before IP	(mA/cm ²)	0 min	30 min	210 min
Claudin-1		0.5		X	-
		2.0			
Claudin-4	0.5			-	
		2.0			
Occludin		0.5		AL.	-
	2.0	2.0			
ZO-1		0.5			-
		2.0			

Figure 22 Localization of tight junction (TJ)-associated proteins in the rabbit corneal epithelium before and after cathodal IP application. Bar = $10 \ \mu m$.

Green signal is TJ-associated proteins. Blue signal is nucleus.

Epithelial side	
+	\odot

D	Defense ID	Current density	A	on	
Protein	Before IP	(mA/cm ²)	0 min	15 min	90 min
Claudin-1		0.5			Ľ
		10			
Claudin-4	0.5			NR -	
		10			
Occludin	t de	0.5		Æ	32
		10		42	
ZO-1	SI	0.5	212		<u>He</u>
	T1	10			ED S

Figure 23 Localization of tight junction (TJ) -associated proteins in the rabbit conjunctival epithelium before and after anodal IP application. Bar = $10 \ \mu m$.

Green signal is TJ-associated proteins. Blue signal is nucleus.

Epithelial side	
\odot	+

D	D.f ID	Current density	After IP application		
Protein	Before IP	(mA/cm ²)	0 min	15 min	90 min
Claudin-1		0.5	100 m		-
		5.0			
Claudin-4	0.5			-	
	200	5.0			
Occludin	st.	0.5		A A	-
		5.0			ALL.
ZO-1	SI	0.5			-
	TI	5.0			段

Figure 24 Localization of tight junction (TJ) -associated proteins in the rabbit conjunctival epithelium before and after cathodal IP application. Bar = $10 \ \mu m$.

Green signal is TJ-associated proteins. Blue signal is nucleus.

第二章 角膜および結膜タイトジャンクション

関連タンパク質の存在量に対する電流適用の影響

前章では、電流適用により角膜および結膜上皮細胞辺縁の TJ 関連タンパク質の蛍 光シグナル強度の低下が観察され、TJ 関連タンパク質の局在性変化や分解もしくは消 失が生じているものと示唆された。上皮 TJ バリアでは、claudin-1 や occludin の共発 現部位が強いバリア機能を果たすことが明らかにされている⁵⁶⁾。Claudin-1はTJの構 築に重要な役割を果たし⁵⁷⁾、occludinは高分子薬物の透過を制限⁵⁸⁾していることから、 親水性高分子の IP の透過促進効果には claudin-1 および occludin の局在性だけでなく、 細胞内に含まれる量自体の変化が影響していることも考えられる。そこで、IP が角膜 および結膜組織内における claudin-1 および occludin 存在量に影響するかどうかをウェ スタンブロット法により評価し、IP によるバリア機能低下や高分子薬物の透過促進に 関与しているかを考察した。上皮側を陽極とした場合、角膜では 2.0 mA/cm²、結膜で は 10 mA/cm²、上皮側を陰極とした場合、角膜では 2.0 mA/cm²、結膜では 5.0 mA/cm² の電流を 30 分間適用し、適用終了直後の組織中 claudin-1 および occludin 量を測定し た。なお、上皮細胞層のみの評価が困難であったため、試験サンプルは組織全層のホ ールライセートとした。Figs. 25 および 26 はそれぞれ、家兎摘出角膜および結膜にお ける claudin-1 または occludin のウェスタンブロット解析結果を示している。角膜にお いては、上皮側を陽極および陰極とした場合の電流適用終了直後の clauidn-1 および occludin の発現バンドは IP 適用前と比較して明らかな変化は認められなかった(Fig. 25A)。また、ハウスキーピングタンパク質であるGAPDH量で補正した claudin-1 量は、 上皮側を陽極および陰極とした場合に対してそれぞれ IP 適用前の 1.01 倍および 0.93 倍であった(Fig. 25B)。同様に、occludin 量は、それぞれ IP 適用前の 0.95 倍および 1.04

倍であった(Fig. 25C)。一方、結膜においては、上皮側を陽極および陰極とした場合の 電流適用終了直後の clauidn-1 および occludin の発現バンドにおいても、角膜と同様に、 IP 適用前と比較して明らかな変化は認められなかった(Fig. 26A)。また、GAPDH 量で 補正した claudin-1 量は、上皮側を陽極および陰極とした場合に対してそれぞれ IP 適 用前の 1.37 倍および 1.27 倍であり(Fig. 26B)、occludin 量は、それぞれ IP 適用前の 0.92 倍および 0.95 倍であった(Fig. 26C)。これらの結果から、角膜および結膜における TJ 関連タンパク質の存在量に対して電流適用が明らかな影響を及ぼさないことを意味 している。したがって、IP による角膜および結膜バリアの低下と、それに伴う親水性 高分子の透過促進は、TJ 関連タンパク質の量的変化を伴わない局在性変化によること が示唆された。加えて、claudin-1 および occludin の発現バンドは電流適用後も定位置 で変化しなかった。このことから、電流適用がこれらタンパク質の構造自体には影響 を及ぼさないものと考えられる。電流適用により細胞辺縁からの TJ 関連タンパク質 の蛍光シグナルが消失し、適用終了後、短時間のうちに細胞辺縁で確認されたのは内 在化した TJ 関連タンパク質が細胞辺縁に再局在したことによると考えられた。

一方、Ye らは TNF-α を Caco-2 細胞に適用した *in vitro* 研究において、TNF-α は TJ 関連タンパク質の合成に必要な mRNA 量の減少を引き起こし、TJ 関連タンパク質の 合成を 24-48 時間かけて徐々に減少することで、TJ バリア能の低下を誘導することを 報告している ⁵⁹。本研究では、電流適用後短時間での影響のみ評価を行ったが、今後 の研究では、電流適用後 24 時間以上にわたる経時的な mRNA 量やタンパク質量を評 価することで、これらタンパク質の合成過程に IP 適用が影響するかどうかについて も検討する必要が考えられる。

Figure 25 Expression of tight junction-associated proteins in the cornea before and termination of application at anodal (2.0 mA/cm²) and cathodal (2.0 mA/cm²) IP. (A), Western blotting analysis in cornea; (B) and (C), the density of claudin-1 and occludin corrected GAPDH respectively. Mean \pm S. E. (n = 6).

Figure 26 Expression of tight junction-associated proteins in the conjunctiva before and termination of application at anodal (10 mA/cm²) and cathodal (5.0 mA/cm²) IP. (A), Western blotting analysis in conjunctiva; (B) and (C), the density of claudin-1 and occludin corrected GAPDH, respectively. Mean \pm S. E. (n = 4).

第三章 角膜および結膜上皮の細胞骨格に対する 電流適用の影響

F-actin は TJ 関連タンパク質の会合のみならず細胞の形態維持に重要な役割を果た す⁶⁰⁾。近年、ヒト気管支上皮細胞株である Calu-3 を用いた研究で、細胞外 Ca²⁺が TJ 関連タンパク質と F-actin の会合維持に重要な役割を果たしていることが報告された ⁶¹⁾。IP は強制的な電位勾配を生じさせることにより、細胞内外のイオン環境を変化さ せ、細胞形態に影響を及ぼすことが推測される。そこで、電流適用が細胞形態に対し て影響を及ぼすのかを評価するため、細胞骨格である F-actin の局在性を評価した。 電流適用は、上皮側が陽極の場合、角膜では 2.0 mA/cm²、結膜では 10 mA/cm²、上皮 側が陰極の場合、角膜では 2.0 mA/cm²、結膜では 5.0 mA/cm² とし、各条件で電流を 30 分間適用した。Figs. 27 および 28 はそれぞれ、上皮側を陽極および陰極とした場合 の角膜または結膜上皮 F-actin の蛍光画像を示している。上皮側を陽極および陰極と した場合ともに、角膜および結膜において電流適用前に細胞辺縁部に局在していた F-actin の蛍光シグナルは、適用後も細胞辺縁に維持していた(Figs. 27 および 28)。こ れらのことから、電流適用は F-actin の局在性に対して明らかな影響を及ぼさないも のと考えられ、細胞骨格に対する影響は考慮する必要がないものと考えられる。

Figure 27 Localization of F-actin in the rabbit corneal (A) and conjunctival (B) epithelium observed by anodal IP experiments. Bar = $10 \ \mu m$.

Figure 28 Localization of F-actin in the rabbit corneal (A) and conjunctival (B) epithelium observed by cathodal IP experiments. Bar = $10 \ \mu m$.

第四章 本編の考察および小括

前編第二章において、親水性高分子の IP 透過促進効果の特徴づけを行い、IP 適用 は角膜および結膜 TEER の可逆的な低下を引き起こしたことから、IP 適用は上皮組織 の TJ の状態変化を誘導し、細胞間隙を介した親水性高分子の薬物透過を促進したと 考えられた。

本編では、TJ 機構に対する電流適用の影響を明らかにするために、まず角膜および 結膜上皮 TJ 関連タンパク質の局在性を評価した。角膜および結膜上皮の claudin-1、 claudin-4、occludin および ZO-1 のような TJ 関連タンパク質の局在性は、上皮側を陽 極または陰極とした両条件で電流適用により可逆的に変化し(Figs. 21-24)、前編で明ら かとなった TEER の可逆的な変化(Fig. 7,8 および 12)とよく対応することから、電流 適用は TJ 関連タンパク質の会合と分布の状態に可逆的な影響を与えるものと推察さ れた。また、電流適用終了直後の TJ 関連タンパク質の免疫染色画像において、いず れのタンパク質でも蛍光シグナルの低下が観察されたことから、細胞辺縁からの TJ 関連タンパク質の局在性変化だけでなく、タンパク質の分解も生じている可能性が考 えられた。そこで、高い TJ バリア能の形成に重要な claudin-1 および occludin の量的 変化をウェスタンブロット法で解析した。その結果(Figs. 25 および 26)、角膜および 結膜のいずれのタンパク質において、電流適用前と適用終了直後の存在量に明らかな 違いは認められず、発現バンドも定位置から変化しなかった。したがって、電流適用 により細胞辺縁からの TJ 関連タンパク質の蛍光シグナルの消失は、細胞質内への内 在化によるものと確認された。またさらに、IP は膜を介して強制電位を生じさせるた め、細胞内外のイオン環境を変化させ、細胞形態に影響を及ぼすことも考えられたが、 F-actin の局在性は明らかな影響を与えないことも確認された(Figs. 27 および 28)。こ

れらのことから、角膜および結膜に対する IP 適用は角膜上皮および結膜上皮細胞の 形態を維持したまま、TJ 関連タンパク質の局在性を変化させ、可逆的な TJ 開口を誘 導すると考えられた。

電流適用終了後に TJ 関連タンパク質が再局在する時間が、電流値間で異なること が明らかとなった。したがって、TEER の回復に対する適用電流値依存性は、細胞辺 縁から局在変化した TJ 関連タンパク質の再局在性の違いによるものと考えられた。 最近、腎上皮 A6 細胞層において静水圧や浸透圧のような細胞に対する物理的な作用 が、claudin-1 のような TJ 関連タンパク質の局在性に影響することが報告されている ^{62,63)}。したがって、IP 適用中に陽極から陰極方向に生じる溶媒流(EO)により生じる物 理的な作用が TJ 関連タンパク質の会合に対して何かしらの影響を及ぼしている可能 性もあり、さらなる検討が必要と思われる。

以上、眼組織を介した親水性高分子薬物透過に対する IP の促進効果は Fig. 29 のようにまとめることができる。通常、親水性薬物は細胞間隙を透過すると考えられ、特に親水性高分子の透過の場合には、上皮 TJ によるバリア機能によりそれが制限されている。上皮組織への電流適用は、細胞辺縁に局在している TJ タンパク質の会合と局在の状態を変化させることにより、高分子薬物の細胞間隙透過性を増大させる。電流適用下では、陽極から陰極方向に EO 効果による溶媒流を生じ、それが、これらの変化の引き金となって親水性高分子の膜透過が増大するものと推測される。

これまでに、TJ 関連タンパク質をターゲットとした眼内への吸収促進法として、 PLA¹³⁾およびキトサン⁶⁴⁾のようなポリカチオン性ポリマーを利用した研究が行われて おり、親水性化合物の吸収を促進することが示されている。Nemoto らは PLA を摘出

Figure 29 Scheme of enlargement of paracellular pathway *via* opening TJ by IP application in the corneal and conjunctival epithelial cells.

結膜に適用した研究¹³⁾を行い、PLA 適用は可逆的な結膜 TEER の低下および TJ 開口 を誘導することを明らかにした。加えて、角膜および結膜に対する PLA 適用は *in vivo* 試験および MTT 試験により、明らかな組織および細胞傷害を引き起こさないことも 報告している。IP 適用もまた、適用電流値に応じて可逆的な角膜および結膜 TEER の 低下および TJ の開口を誘導することから、適切な電流適用条件を用いることにより、 明らかな細胞および組織傷害を引き起こさずに透過促進効果を期待することができ、 安全性の高い眼内薬物送達法として利用できるものと思われる。

結論

これまでに、眼組織 IP に関する多くの in vivo 研究が行われており、特に角膜およ び結膜 IP の利用はそれぞれ、前眼部および後眼部疾患に対する薬物吸収促進技術と しての進展を期待されている。IP の利用は効率的な眼内への薬物送達を可能にし、点 眼薬に比べ薬理効果が高いことが明らかにされている。現在のところ、眼組織 IP は 実用化に至っていないが、その理由の一つとして生きた角膜および結膜における IP の吸収促進特性について十分な検討がなされていないことが挙げられる。角膜および 結膜に対する安全性を考慮した眼組織 IP の実用化に向けて、IP の透過促進特性に関 する基礎的情報を収集する必要があると考えられた。そこで著者は、低分子イオン性 および非イオン性高分子薬物を用いて、眼組織 IP の透過促進効果および細胞間隙を 介した透過促進機構について特徴づけを行った結果、以下の知見が得られた。

(1)まず初めにモデル透過物質としてイオン性薬物にLC (cation, MW: 288.81)お よび BA (anion, MW: 144.11)を用いて角膜および結膜透過に対する適用電流値の影響、 さらには組織生存性および integrity に対する影響を評価した。その結果、LC および BA の角膜および結膜透過は電流適用により一過的に増大し、その増大は電流値依存 的であった。また、その透過促進効果は PD に依存しており、ER 駆動によるもので あると考えられた。角膜では 2.0 mA/cm²、結膜では 10 (陽極)または 5.0 (陰極) mA/cm² までの電流値の範囲において、角膜および結膜 TEER の低下が引き起こされるものの、 適用後に回復することから、経皮 IP 薬物送達で許容される電流値(~ 0.5 mA/cm²)より 高い電流値であっても十分に安全に適用可能であることが明らかとなった。次に、親 水性高分子非イオン性薬物に FD-4 (MW: 4400)を用いて、イオン性薬物の検討と同様 の評価を行った。その結果、FD-4 の角膜および結膜を介した透過 flux は、電流値依 存的な EO により増大すると考えられたが、結膜ではその増大が一過的であるのに対 し、角膜では電流適用終了後にも持続した。親水性高分子の上皮組織を介した透過は 細胞間隙により制限されており、電流適用により TEER が低下することから、細胞間 隙の拡大が EO を増大させて透過促進につながっていると推測される。角膜で持続的 に flux が増大し、結膜で一過的に flux が増大するという促進特性の違いは、角膜およ び結膜内での FD-4 滞留の違いによるものであり、構造的な要因によることが推測さ れた。

(2) 非イオン性親水性高分子薬物に対する眼組織 IP の透過促進機構を明らかに するために、TJ 関連タンパク質の会合状態に対する電流適用の影響について検討した。 初めに、TJ 関連タンパク質の局在性を評価した。その結果、角膜および結膜上皮の claudin-1、claudin-4、occludin および ZO-1 のような TJ 関連タンパク質の局在性は、 上皮側に陽極または陰極を設置したいずれの条件においても電流適用により可逆的 に変化し、角膜および結膜のいずれのタンパク質に対しても、ウェスタンブロット法 による解析では電流適用前と適用終了直後の存在量に差が認められなかった。また、 発現バンドも定位置以外には認められなかった。これらのことから、電流適用は会合 状態の TJ 関連タンパク質を解離させ、細胞辺縁から細胞質内へ内在化を誘導し、そ の後細胞辺縁に再局在することにより可逆的な変化を起こしているものと推測され た。加えて、IP は強制電位を生じさせるため、細胞内外のイオン環境を変化させるこ とにより、細胞形態に影響を及ぼすことも考えられたが、F-actin の局在性に明らかな 影響はなかった。これらのことから、角膜および結膜に対する IP 適用は角膜上皮お よび結膜上皮細胞の形態を維持したまま、TJ 関連タンパク質の細胞辺縁での局在性を

変化させ、可逆的に TJ を開口し、新水性高分子に対する透過バリアを低減している ものと考えられた。この状況下、電流適用に伴う EO の発生が親水性高分子の透過に 対する主な駆動力となっていることが推測された。

以上のことから、眼組織 IP は角膜および結膜上皮 TJ の一過的な開口を伴う薬物透 過を促進するものと考えられた。特に、FD-4 のような親水性高分子化合物の IP 効果 は低分子イオン性化合物に比べて高い透過促進を示すことから、眼組織 IP は抗体や 核酸医薬品のような高分子薬物に対する眼内薬物送達システムとして期待できると 考えられ、本研究の結果は今後の眼組織 IP のシステム開発や電流適用条件の決定に 対して有益な情報となるものと考える。

謝辞

本研究に際し、研究テーマの決定から結論に至るまで、終始御懇篤なる御指導並び に御鞭撻を賜りました城西大学薬学部 病院薬剤学講座教授 上田秀雄先生に深甚 なる謝意を表します。

本研究に際し、御指導並びに御鞭撻を賜りました城西大学薬学部 製剤学講座教授 夏目秀視先生、城西大学薬学部 生化学講座教授 荒田洋一郎先生に深謝の意を表し ます。

本研究に際し、研究遂行に対する御指導並びに御激励を賜りました城西大学 学長 森本雍憲先生、城西大学薬学部 病院薬剤学講座助教 木村聡一郎先生、城西大学薬 学部 薬局管理学講座助教 武藤香絵先生に深謝の意を表します。

本論文作成に際し、御校閲並びに御教示を賜りました城西大学薬学部 薬品物理化 学講座教授 関俊暢先生、城西大学薬学部 薬剤学講座教授 從二和彦先生、城西大 学薬学部 医薬品化学講座教授 坂本武史先生に深謝の意を表します。

学術論文作成に際し、御校閲並びに御教示を賜りました香港中文大学薬学部 教授 Vincent H.L. Lee 先生に深く感謝いたします。

本研究のタンパク質解析に際し、御助言を賜りました城西大学薬学部 製剤学講座 助手 八巻努先生に深く感謝いたします。

本研究の遂行に際し、御協力並びに御支援いただきました城西大学薬学部 病院薬 剤学研究室関連諸氏に感謝いたします。

最後に、長い期間の学生生活を温かく支えていただいた両親、祖父母、妹、弟をは じめ、親族一同に心から感謝いたします。

実験の部

第一編 実験方法

(1) 試薬

Lidocaine hydrochloride monohydrate (LC, MW: 288.81)、sodium benzoate (BA, MW: 144.11)および fluorescein isothiocyanate-dextran (FD-4, MW: 4400)は、Sigma-Aldrich Co., Lcc. (St. Louis, USA)から購入した。2-Morpholinoethanesulfonic acid monohydrate (MES) は Wako Pure Chemical Industries, Ltd. (Osaka, Japan)から購入した。HPLC 分析用の methanol および acetonitrile は、Kanto Chemical Co., Inc. (Tokyo, Japan)から購入した。 その他の試薬は、すべて特級品を使用した。

(2) 実験動物

体重 2.5-3.5 kg の雄性日本白色種家兎は、Sankyo Labo Service Co., Inc. (Tokyo, Japan) から購入した。本実験における家兎を用いたすべての動物実験は、城西大学実験動物 規定に沿って計画し、全学実験動物管理委員会の承認(平成 24 年度: H24086, 平成 25 年度: H25020, 平成 26 年度: H26034, 平成 27 年度: H27033)を得て実施した。

(3) リンゲル液の調製

重炭酸リンゲル液(BRS)の組成は、111.5 mM NaCl、4.8 mM KCl、29.2 mM NaHCO₃、 0.75 mM NaH₂PO₄、1.04 mM CaCl₂、0.74 mM MgCl₂および 5 mM D-glucose (pH 7.4, 浸 透圧:約 280 mOsm/kg H₂O)で調製した。15 mM MES in BRS (MES-BRS, pH 5.9, 浸透 圧:約 280 mOsm/kg H₂O)は、LC のイオン形分率を高めるために LC 透過実験の緩衝

液として用いた。

(4)角膜および結膜組織の調製

家兎の耳介静脈に sodium pentobarbital 溶液(20 mg/kg)を投与し、深麻酔後に KCl の 静脈内投与により安楽死させ、直ちに眼球を眼窩から摘出し、角膜および結膜組織を 採取した。採取した角膜および結膜組織にダメージを与えないように注意深くトリミ ングし、各組織を tissue adapter (有効面積 0.44 cm²)にマウント後、Fig. 30 に示す Ussing-type chamber にセットした。角膜では上皮側を 3 mL、内皮側を 7 mL、結膜で は両チャンバーを 5 mL の BRS で満たし、37°C、95% O₂/5% CO₂ でバブリングし、pH を維持した。

Figure 30 Ussing-type chamber system used in present study.

(5) 電気生理学的パラメーターの測定

電気生理学的パラメーターは短絡電流測定装置(CEZ-9100, Nihon kohden, Tokyo, Japan)により測定した。自発的膜電位(PD)および短絡電流(Isc)は、各2対の塩橋(3.3 M

KCI中に4%寒天を含む)とそれぞれカロメル電極またはAg/AgCI電極に連結した系に おいて測定した(Fig. 30)。経上皮電気抵抗(TEER)は角膜および結膜に対し、それぞれ 5 mV および 3 mV を 3 秒間適用した時の Isc 変化量(ΔIsc)をオームの法則に代入し算 出した。角膜および結膜における TEER の計算式を以下に示す(Eqs. 7 and 8)。

角膜: TEER (
$$\Omega \cdot cm^2$$
) = $\frac{5000 (\mu V)}{\Delta Isc (\mu A)}$ × Area (cm²) (Eq. 7)

結膜: TEER (
$$\Omega \cdot cm^2$$
) = $\frac{3000 (\mu V)}{\Delta Isc (\mu A)}$ × Area (cm²) (Eq. 8)

ここで、Area は有効面積(0.44 cm²)である。

IP 適用中の TEER は定電流適用中の PD をオームの法則に代入し算出した(Eq. 9)。 ただし、PD \geq 200 mV の場合、デジタルマルチメーター(PC700, Sanwa Electric Instrument, Co., Ltd. Tokyo, Japan)を使用し、組織無しの blank PD (例: 組織有りで 10 mA/cm²適用時に PD \geq 200 mV の場合は組織無しで 10 mA/cm²適用した際の PD)を差 し引くことにより補正した組織 PD をオームの法則に代入し算出した(Eq. 10)。

・IP 適用中(PD < 200 mV)

角膜および結膜: TEER (
$$\Omega \cdot cm^2$$
) = $\frac{PD \times 1000 (\mu V)}{$ 定電流 I (μA) × Area (cm^2) (Eq. 9)

・IP 適用中(PD ≥ 200 mV)

角膜および結膜: TEER (
$$\Omega \cdot cm^2$$
) = $\frac{(PD - blank PD) \times 1000 (\mu V)}{定電流 I (\mu A)} \times Area (cm^2)$ (Eq. 10)

(6) 電流適用方法

IP 適用装置は CEZ-9100 またはアイソレーター(SS-104J, Nihon Kohden, Tokyo, Japan) に連結した電気刺激装置(SEN-8203, Nihon Kohden, Tokyo, Japan)を用いた。CEZ-9100 および SS-104J に連結した SEN-8203 はそれぞれ、0.5-2.0 および 5.0-20 mA/cm²の定電 流適用に使用した。Fig. 31 で示すように、ドナー側の薬物が LC および FD-4 の場合 ではドナー側を陽極(Fig. 31a)とし、BA の場合では陰極(Fig. 31b)として電流を適用し た。

Figure 31 Method of IP application for LC (a), BA (b) and FD-4(c) permeation study.

(7) イオントフォレシス透過実験

角膜を用いた透過実験は、角膜の形状を維持するために上皮側(donor side)に 3.0 mL、 内皮側(receiver side)に 7.0 mL の BRS または MES-BRS で満たし、結膜を用いた透過 実験は、粘膜側(donor side)および漿膜側(receiver side)ともに 5.0 mL の BRS または MES-BRS で満たした。電気生理学的パラメーター(PD、Isc および TEER)が安定した 後、ドナー側には最終濃度が LC では 0.50 mg/mL、BA では 2.0 mg/mL、FD-4 では 2.5 (角膜)および 5.0 (結膜) mg/mL となるように調製した溶液を添加し、透過実験を開始 した。透過実験開始から経時的にレシーバー側溶液 0.20 mL をサンプリングし、直ち に同量のフレッシュな BRS もしくは MES-BRS をレシーバー側に添加した。また、透 過実験開始から 120 分後、Fig. 31 で示すように電極を設置し、角膜では 0.50-5.0 mA/cm²、 結膜では 0.50-20 mA/cm²の電流を 30 分間適用した。さらに、透過実験中も電気生理 学的パラメーターをモニターした。

(8)角膜および結膜内 FD-4 量および放出実験

実験条件はイオントフォレシス透過実験と同様に、FD-4 添加から 120 分後に、角 膜では 0.50 もしくは 2.0 mA/cm²、結膜では 2.0 もしくは 10 mA/cm²の電流を 30 分間 適用した。電流適用終了直後、両側チャンバー中の BRS をフレッシュな BRS 100 mL で wash out した。電流適用終了直後および wash out から角膜の場合は 210 分後、結膜 の場合では 150 分後に組織を Ussing chamber から取り出し、フレッシュな BRS で表 面に付着した薬物を洗い、有効面積 0.44 cm²の周辺部位を取り除いた。切り出したサ ンプル表面の水分をキムワイプ[®]で拭き取り、組織重量を測定した。重量測定後、眼 科用剪定ハサミで組織を細かく切断し、4^oC の BRS 中で 5 分間ホモジナイズした。得 られた角膜または結膜ホモジネートを 4^oC、10,000 × g で 5 分間遠心分離して上清を 採取し、FD-4 量を測定した。なお、FD-4 量は組織重量で補正した。また、wash out 後から組織を取り出すまでの間、経時的にチャンバー中の溶液をサンプリングして膜 からの FD-4 放出を同時に評価した。

(9) 定量方法

LC および BA の定量は UV detector (SDP-10A_{VP} (Shimadzu, Kyoto, Japan))に接続した HPLC system (system controller: SCL-10A_{VP} (Shimadzu), auto injector: SIL-10A_{XL} (Shimadzu), pump: LC-10A_{VP} (Shimadzu), degasser: DGU-12A (Shimadzu), octadecyl reversed-phase column: Mightysil RP-18 GP (250 mm × 4.6 mm × 5 µm, Kanto Chemical Co., Inc.), column oven: CTO-10A (Shimadzu))を用いて行った。LC および BA の定量条 件を Table 12 に示す。

FD-4 の定量は multi-label reader (ARVO[™] X 3 system, PerkinElmer Japan Co., Ltd.)を 用いて行った。励起波長は 485 nm、蛍光波長は 535 nm として測定を行った。

Table 12HPLC conditions for a	analysis of LC and BA.
-------------------------------	------------------------

Compound	Mobile phase (volume ratio)	Flow rate (mL/min)	Oven temp. (°C)	UV wavelength (nm)	Internal standard (concentration)	Injection volume (µL)
LC	CN ₃ CN : CH ₃ OH : 5 mM KH ₂ PO ₄ buffer (pH 2.0) = 1.5 : 1.5 : 7.0	1.0	40	262	p-hydroxybenzoic acid (1 μg/mL)	70
BA	CN ₃ CN : 5 mM KH ₂ PO ₄ buffer (pH 2.2) = 1 : 1	1.0	40	230	a)	20

a) Absolute calibration method was used.

(10) データ解析

すべてのデータは、平均値 ± S. E.値で示した。二群間の統計解析には *Student's t*-test、 三群間の統計解析には *Turkey-Kramer* test を用いて評価した。PD と maximal flux 間の 相関解析にはピアソンの積率相関分析を用いて評価した。危険率(*p*)が両側 0.05 未満 の場合を有意な差とみなした。

第二編 実験方法

(1) 試薬

Mouse anti-claudin-1、mouse anti-claudin-4、mouse anti-occludin、mouse anti-ZO-1、 mouse anti-GAPDH、Alexa Fluor[®] 488 goat anti-mouse IgG、horseradish peroxidase (HRP)-conjugated anti-mouse IgG、rhodamine phalloidin、RNase A、propidium iodide、 Pierce[®] BCA Protein assay kit および SuperSignal[®] West Dura Extended Duration Substrate は、Thermo Fisher Scientific Inc. (Massachusetts, USA)から購入した。VECTASHIELD[®] は Vector Laboratories, Inc. (CA, USA)から購入した。その他の試薬は、すべて特級品を 使用した。

(2) 実験動物

第一章(2)と同様のものを用いた。

(3) リンゲル液の調製

第一章(3)と同様の方法を用いた。ただし、薬物を適用しない評価であったため、 MES-BRS は用いなかった。

(4)角膜および結膜組織の調製

第一章(4)と同様の方法を用いた。

(5) 電気生理学的パラメーターの測定

第一章(5)と同様の方法を用いた。
(6) 電流適用方法

第一章(6)と同様の方法を用いた。なお、電流適用は上皮側を陽極として、角膜では 0.50 および 2.0 mA/cm²、結膜では 0.50 および 10 mA/cm²の電流を 30 分間適用した(Fig. 32a)。同様に、上皮側を陰極として、角膜では 0.50 および 2.0 mA/cm²、結膜では 0.50 および 5.0 mA/cm²の電流を 30 分間適用した(Fig. 32b)。

Figure 32 Methods of IP application for analysis of TJ-associated protein in the cornea and conjunctiva. a), anode in epithelial side; b), cathode in epithelial side.

(7)免疫染色法

角膜および結膜の電気生理学的パラメーターが安定した後、薬物を添加せずに上皮 側を陽極として、角膜では 0.50 および 2.0 mA/cm²、結膜では 0.50 および 10 mA/cm²、 上皮側を陰極とした場合、角膜では 0.50 および 2.0 mA/cm²、結膜では 0.50 および 5.0 mA/cm²の電流を 30 分間適用した。電流適用前および電流適用終了後の角膜および結 膜サンプルを、aceton を用いて 5 分間、-20°C で固定した後、0.1% Triton[®] X-100 溶液 で 10 分間、室温でインキュベートした。その後、ブロッキング溶液として 5% skim milk および 0.1% Tween-20 を 含む Tris buffered saline (T-TBS)溶液 (50 mM tris (hydroxymethyl) aminomethane (Tris), 139 mM NaCl, 2.7 mM KCl, pH 7.4)で 1 時間、室温 でインキュベートした。次に、T-TBS 溶液で希釈した一次抗体(claudin-1, claudin-4, occludin および ZO-1 (1:40))で一晩、4°C でインキュベートした。次に、T-TBS で希 釈した二次抗体(Alexa fluor[®] 488 anti-mouse IgG (1:2000))で 2 時間、室温でインキュ ベートした。その後、核染色のために、T-TBS で希釈した RNase A (1:400)で 20 分間、 室温でインキュベートしてから、T-TBS で希釈した propidium iodide (1:2000)を 10 分 間、室温でインキュベートした。サンプルは VECTASHIELD[®]を 1-2 滴滴下し、カバ ーガラスを被せて標本とした。観察は、共焦点レーザー走査型顕微鏡 FV-1000 (OLYMPUS[®], Tokyo, Japan)で行った。全ての実験は 3 回以上行った。

(8) Western blot 法

角膜および結膜の電気生理学的パラメーターが安定した後、薬物を添加せずに上皮 側を陽極として、角膜では 2.0 mA/cm²、結膜では 10 mA/cm²、上皮側を陰極とした場 合、角膜では 2.0 mA/cm²、結膜では 5.0 mA/cm²の電流を 30 分間適用した。電流適用 前および電流適用終了直後の角膜および結膜から有効面積0.44 cm²周辺を取り除いた サンプルを、乳棒を用いて液体窒素中でホモジナイズした。ホモジナイズした後、サ ンプルは NP-40 を Triton[®] X-100 に置き換えた RIPA buffer (0.1% Sodium dodecyl sulfate (SDS), 1% Triton[®] X-100, 0.5% sodium deoxycholate, 150 mM NaCl, 50 mM Tris-HCl pH 8.0)に溶解した。角膜または結膜ホモジネート溶液を10分間、4℃、12,000×gで遠心 分離して上清を採取し、タンパク質サンプルとした。得られたタンパクサンプルを Pierce[®] BCA protein assay kit を用いてタンパク質量を均一にした。サンプルを 2× sample buffer と 1:1 の割合で混合し、100℃ の水浴で 5 分間インキュベートし、 SDS-PAGE サンプルとした。12% Mini-PROTEAN TGX[™] Gel にアプライし、SDS-PAGE (200 V, 35 分間)を行った。次にゲルから PVDF membrane に電気的に転写(70 V, 2 時間) した後、PVDF membrane を T-TBS で希釈した 5% skim milk で 1 時間、室温でブロッ キングした。次に、1% skim milk T-TBS 溶液で希釈した一次抗体(claudin-1 (1:400), occludin (1:300)および GAPDH (1:40000))で一晩、4℃ でインキュベートした。次に、

1% skim milk T-TBS 溶液で希釈した二次抗体(HRP-conjugated anti mouse IgG, claudin-1 (1:1000), occludin (1:1000)および GAPDH (1:80000))で2時間、室温でインキュベー トした。目的のタンパク質を検出するために、SuperSignal[®] West Dura Extended Duration Substrate を用いて発光させ、ChemiDocTM XRS+ System (Bio-Rad laboratories, Inc. California, USA)により観察した。Claudin-1、occludin および GAPDH のバンド強度を Image J software program を用いて定量し、claudin-1 および occludin 強度を GAPDH 強 度で補正した。

(9) F-actin 染色

角膜および結膜の電気生理学的パラメーターが安定した後、薬物を添加せずに上皮 側を陽極として、角膜では 2.0 mA/cm²、結膜では 10 mA/cm²、上皮側を陰極とした場 合、角膜では 2.0 mA/cm²、結膜では 5.0 mA/cm²の電流を 30 分間適用した。電流適用 前および電流適用終了後の角膜および結膜サンプルを、4% paraformaldehyde を含む PBS を用いて 1 時間、室温で固定した。固定後、1% Triton[®] X-100 溶液を 30 分間、室 温でインキュベートした。その後、T-TBS で希釈した rhodamine phalloidin (1:100)を 1 時間、室温でインキュベートした。サンプルは VECTASHIELD[®]を 1-2 滴滴下し、カ バーガラスを被せて標本とした。観察は、共焦点レーザー走査型顕微鏡 FV-1000 (OLYMPUS[®], Tokyo, Japan)で行った。全ての実験は 3 回以上行った。

(10) データ解析

Western blot の結果は、平均値 ± S. E.で示した。三群間の統計解析には *Turkey-Kramer* test を用いて評価した。 危険率(*p*)が両側 0.05 未満の場合を有意な差とみなした。

引用文献

- 1) 笹田久美子著 (2005)『よく分かる目の病気と目の異常』久保田伸枝監修, 成美堂 出版, 東京.
- 2) O. Chastnov, Universal eye health: a global action plan 2014-2019, *WHO Library Cataloguing-in-Publication Data*, 2013.
- 3) R. Klein, T. Peto, A. Bird, M. R. Vannewkirk, The epidemiology of age-related macular degeneration, *Am. J. Ophthalmol.*, **137**, 486-495 (2004).
- 4) A. Pruss, S. P. Mariotti, Preventing trachoma through environmental sanitation: a review of the evidence base, *Bull. World Health Organ.*, **78**, 258-266 (2000).
- 5) F. K. P. Sutter, M. C. Gillies, Pseudo-endophthalmitis after intravitreal injection of triamcinolone, *Br. J. Ophthalmol.*, **87**, 972-974 (2003).
- M. C. Gillies, J. M. Simpson, F. A. Billson, W. Luo, P. Penfold, W. Chua, P. Mitchell, M. Zhu, A. B. L. Hunyor, Safety of an intravitreal injection of triamcinolone results from a randomized clinical trial, *Arch. Ophthalmol.*, **122**, 336-340 (2004).
- K. Hosoya, V. H. L. Lee, K. J. Kim, Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanism and their regulation, *Eur. J. Pharm. Biopharm.*, 60, 227-240 (2005).
- H. E. Edelbauser, C. L. Rowe-Rendleman, M. R. Robinson, D. G. Dawson, G. J. Cbader, H. E. Grossniklaus, K. D. Rittenbouse, C. G. Wilson, D. A. Weber, B. D. Kuppermann, K. G. Csaky, T. W. Olsen, U. B. Kompella, V. M. Holers, G. S. Hageman, B. C. Gilger, P. A. Campocbiaro, S. M. Wbitcup, W. T. Wong, Opthalmic drug delivery systems for the treatment of retinal diseases: Basic research to clinical applications, *Invest. Ophthalmol. Vis. Sci.*, **51**, 5403-5420 (2010).
- 9) A. Urtti, L. Salminen, Minimizing systemic absorption of topically administered ophthalmic drugs, *Surv. Ophthalmol.*, **37**, 435-457 (1993).
- U. B. Kompella, R. S. Kadam, V. H. L. Lee, Recent advances in ophthalmic drug delivery, *Ther. Deliv.*, 1, 435-456 (2010).

- N. M Davies, Biopharmaceutical considerations in topical ocular drug delivery, *Clin. Exp. Pharmacol. Physio.*, 27, 558-562 (2000).
- 12) J. G. Souza, K. Dias, T. A. Pereira, D. S. Bernardi, R. F. V. Lopez, Topical delivery of ocular therapeutics: carrier systems and physical methods, *J. Pharm. Pharmacol.*, 66, 507-530 (2013).
- 13) 根本英一, poly-L-arginine を用いた眼内薬物送達に関する研究, 博士学位論文, 城 西大学 (2006).
- 14) R. H. Guy, Y. N. Kalia, M. B. Delgado-Charroa, V. Merino, A. López, D. Marro, Iontophoresis: electrorepulsion and electroosmosis, *J. Control. Release*, **64**, 129-132 (2000).
- Y. N. Kalia, A. Naik, J. Garrison, R.H. Guy, Iontophoretic drug delivery, *Adv. Drug Deliv. Rev.*, 56, 619-658 (2004).
- E. Binstock, A. J. Domb, Iontophoresis: A non-invasive ocular drug delivery, J. Control. Release, 110, 479-489 (2006).
- M. Barza, C. Peckman, J. Baumf, Transscleral iontophoresis of gentamicin in monkeys, *Invest. Ophthalmol. Vis. Sci.*, 28, 1033-1036 (1987).
- R. E. Grossman, D. F. Chu, D. A. Lee, Regional ocular gentamicin levels after transcorneal and transscleral iontophoresis, *Invest. Ophthalmol. Vis. Sci*, **31**, 909-916 (1990).
- 19) J. F. Pery, H. Mechoulam, C. S. Siganos, P. E. Hadani, M. Shapiro, A. J. Domb, A Iontophoresis-gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe, *Exp. Eye Res.*, **78**, 745-749 (2004).
- 20) T. B. Choi, D. A. Lee, Transscleral and transcorneal iontophoresis of vancomycin in rabbit eyes, *J. Ocul. Pharmacol. Ther.*, **4**, 153-164 (1988).
- 21) D. S. Rootman, J. A. Hobden, J. A. Jantzen, J. R. Gonzalez, R. J. O'callaghan, J. M. Hill, Iontophoresis of tobramycin for the treatment of experimental pseudomonas keratitis in the rabbit, *Arch. Ophthalmol.*, **106**, 262-265 (1988).

- 22) J. A. Hobden, D. S. Rootman, R. J. O'callaghan, J. M. Hill, Iontophoretic application of tobramycin to uninfected and *pseudomonas aeruginosa*-infected rabbit corneas, *Antimicrob. Agents Chemother.*, **32**, 978-981 (1988).
- 23) B. C. Hayden, M. E. Jockovich, T. G. Murray, M. Voigt, P. Milne, M. Kralinger, W. J. Feuer, E. Hernandez, J. M. Parel, Pharmacokinetics of systemic versus forcal carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma, *Invest. Ophthalmol. Vis. Sci.*, 45, 3644-3649 (2004).
- 24) F. F. B. Cohen, A. E. L. Aouni, S. Gautier, G. David, J. Davis, P. Chapon, J. M. Parel, Transscleral coulomb-controlled iontophoresis of methylprednisolone into the rabbit eye: Influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels, *Exp. Eye Res.*, **74**, 51-59 (2002).
- 25) E. E. Binstock, F. Raiskup, J. F. Pery, A. J. Domb, Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel, *J. Control. Release*, **106**, 386-390 (2005).
- 26) M. Voigt, Y. de Kozak, M Halhal, Y Courtois, F. Behar-Cohen, Down-regulation of NOSII gene expression by iontophoresis of anti-sense oligonucleotide in endotoxin-induced uveitis, *Biochem. Biophys. Res. Commun.*, 295, 336-341 (2002).
- 27) M. A. Patane, A. Cohen, S. From, G. Torkildsen, D. Welch, G. W. Ousler, Ocular iontophoresis of EGP-437 (dexamethasone phosphate) in dry eye patients: results of a randomized clinical trial, *Clin, Opthalmol.*, 5, 633-643 (2011).
- 28) 藤堂浩明, 杉林堅次, Transdermal delivery of mal-absorbable drugs with chemical- and physical enhancement methods, *Drug delivery System*, **27**, 156-163 (2012).
- 29) M. A. Deli, Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery, *Biochim. Biophys. Acta*, **1788**, 892-910 (2009).
- 30) Y. Morimoto, S. Numajiri, K. Sugibayashi, Effect of ion species and their concentration on the iontophoretic transport of benzoic acid through poly (vinyl acetate) membrane, *Chem. Pharm. Bull.*, **39**, 2412-2416 (1991).
- 31) H. H. Ussing, K. Zerahn, Active transport of sodium as the source of electric current in the short-circuited isolated frog skin, *Acta Physiol. Scand.*, **23**, 110-127 (1951).

- 32) W. S. Marshall, S. D. Klyce, Cellular and paracellular pathway resistances in the tight Cl⁻ secreting epithelium of rabbit cornea, *J. Membrane Biol.*, **73**, 275-282 (1983).
- 33) U. B. Kompella, K. J. Kim, V. H. L. Lee, Active chloride transport in the pigmented rabbit conjunctiva, *Curr. Eye Res.*, **12**, 1041-1048 (1993).
- 34) M. A. Deli, Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery, *Biochim. Biophys. Acta*, **1788**, 892-910 (2009).
- 35) T. Nakamura, M. Yamada, M. Teshima, M. Nakashima, H. To, N. Ichikawa, H. Sasaki, Electrophysiological characterization of tight junctional pathway of rabbit cornea treated with ophthalmic ingredients, *Biol. Pharm. Bull.*, **30**, 2360-2364 (2007).
- 36) J. E. C. Lin, K. J. Kim, V. H. L. Lee, Characterization of active ion transport across primary rabbit corneal epithelium cell layers (RCrECL) cultured at an air-interface, *Exp. Eye Res.*, **80**, 827-836 (2005).
- 37) T. Kikuchi, M. Suzuki, A. Kusai, K. Iseki, H. Sasaki, Synergistic effect of EDTA and boric acid on corneal penetration of CS-088, *Inter. J. Pharm.*, **290**, 83-89 (2005).
- 38) H. Ueda, V. H. L. Lee, Characterization of iontophoretic drug transport in the rabbit conjunctiva, *Proceed. Int'l. Symp. Control. Rel. Bioact. Mater.*, **28**, 754-755 (1998).
- 39) 杉林堅次,新しい経皮投与法 イオントフォレシス, ファルマシア, 37, pp 385-387 (2001).
- 40) M. J. Pikal, Transport mechanisms in iontophoresis. I. A theoretical model for the effect of electroosmotic flow on flux enhancement in transdermal iontophoresis, *Pharm. Res.*, 7, 118-126 (1990).
- 41) D. Marro, Y. N. Kalia, M. B. D. Charro, R. H. Guy, Contributions of electromigration and electroosmosis to iontophoretic drug delivery, *Pharm. Res.*, **18**, 1701-1708 (2001).
- 42) C. Loch, S. Zakelj, S. Nagal, R. Guthoff, W. Weitschies, A. Seidlitz, Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes, *Eur. J. Pharm. Sci.*, **47**, 131-138 (2012).
- 43) K. S. Vellonena, M. Häklia, N. Merezhinskayad, T. Tervoe, P. Honkakoskic, A. Urtti, Monocarboxylate transport in human corneal epithelium and cell lines, *Eur. J. Pharm. Sci.* 39, 241–247 (2010).

- 44) H. Sasaki, K. Yamamura, C. Tei, K. Nishida, J. Nakamura, Ocular permeability of FITC-Dextran with absorption promoter for ocular delivery of peptide drug, *J. Drug Target.*, 3, 129-135 (1995).
- 45) M. R. Prausnitz, J. S. Noonan, Permeability of cornea, sclera, and conjunctiva: A literature analysis for drug delivery to the eye. *J. Pharm. Sci.*, **87**, 1479-1488 (1998).
- 46) J. E. Riviere, M. C. Heit, Electrically-assisted transdermal drug delivery, *Pharm. Res.*, 14, 687-697 (1997).
- 47) S. Nicoli, M. Cappellazzi, P. Colombo, P. Santi, Characterization of the permselective properties of rabbit skin during transdermal iontophoresis, *J. Pharm. Sci.*, 92, 1482-1488 (2003).
- 48) S. Numajiri, K. Sugibayashi, Y. Morimoto, Analysis of in vitro iontophoretic skin permeation of sodium benzoate by transport numbers of drug and additives, *Chem. Pharm. Bull.*, 44, 1351-1356 (1996).
- 49) B. Mudry, R. H. Guy, M. B. D. Charro, Transport numbers in transdermal iontophoresis, *Biophys. J.*, **90**, 2822-2830 (2006).
- 50) G. Sunkara and U. B. Kompella (2003) Membrane transport processes in the eye, In: A.
 K. Mitra (ed), *Ophthalmic Drug Delivery Systems*, Marcel Dekker, Inc., New York, pp 13-58.
- 51) H. S. Dua, L. A. Faraj, D. G. Said, T. Gray, J. Lowe, Human corneal anatomy redefined: A novel pre-Descemet's layer (Dua's layer), *Ophthalmol.*, **120**, 1778-1785 (2013).
- D. M. Denker, S. K. Nigam, Molecular structure and assembly of tight junction, *Am. J. Physiol.*, 274, F1-F9 (1998).
- 53) L. Shen, C. R. Weber, D. R. Raleigh, D. Yu, J. R. Turner, Tight junction pore and leak pathway: A dynamic duo, *Annu. Rev. Physiol.*, **73**, 283-309 (2011).
- 54) M. Leonard, E. Creed, D. Brayden, A. Baird, Evaluation of the Caco-2 monolayer as a model epithelium for iontophoretic transport, *Pharm. Res.*, **12**, 1181-1188 (2000).
- 55) A. J. W. Huong, S. C. G Tseng, K. R. Kenyon, Paracellular permeability of corneal and conjunctival epithelia, *Invest. Ophthalmol. Vis. Sci.*, **30**, 684-689 (1989).

- 56) M. Furuse, H. Sasaki, K. Fujimoto, S. Tsukita, A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts, *J. Cell Biol.*, 143, 391-401 (1998).
- 57) M. Furuse, M. Hata, K. Furuse, Y. Yoshida, A. Haratake, Y. Sugitani, T. Noda, A. Kubo, S. Tsukita, Claudin-1-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice, *J. Cell Biol.*, **156**, 1099-1111 (2002).
- 58) R. A. Sadi, K. Khatib, S. Guo, D. Ye, M. Youssef, T. Ma, Occludin regulates macromolecule flux across the intestinal epithelium tight junction barrier, *Am. J. Physiol. Gastrointest. Liver Physiol.*, **300**, 1054-1064 (2011).
- 59) J. Miyoshi, Y. Takai, Structural and functional association of apical junctions with cytoskeleton, *Biochim. Biophys. Acta*, **1778**, 670-691 (2008).
- 60) D. Ye, S. Guo, R. A. Sadi, T. Y. Ma, MicroRNA regulation of intestinal epithelial tight junction permeability, *Gastroenterology*, **141**, 1323-1333 (2011).
- 61) 関ロ友太, Calu-3 細胞の物質透過バリア機能に対する細胞外環境の影響に関する 研究, 修士論文 (未公刊), 城西大学 (2011).
- 62) S. Tokuda, H. Miyazaki, K. Nakajima, T. Yamada, Y. Marunaka, Hydrostatic pressure regulates tight junctions, actin cytoskeleton and transcellular ion transport, *Biochem. Biophys. Res. Commun.*, **390**, 1315-1321 (2009).
- 63) S. Tokuda, H. Miyazaki, K. Nakajima, T. Yamada, Y. Marunaka, NaCl flux between apical and basolateral side recruits claudin-1 to tight junction strands and regulates paracellular transport, *Biochem. Biophys. Res. Commun.*, **393**, 390-396 (2010).
- 64) A. M. Campos, Y. Diebold, E. L. S. Carvalho, A. Sánchez, M. J. Alonso, Chitosan nanoparticles as new ocular drug delivery systems: *in vitro* stability, *in vivo* fate, and cellular toxicity, *Pharm. Res.*, 21, 803-810 (2004).