羽毛ケラチンの電気泳動的挙動と 構造的特性に関する研究

乙第46号

横 手 よし子

羽毛ケラチンの電気泳動的挙動と

構造的特性に関する研究

横 手 よし子

緒		
第	1章 羽=	Eケラチンの可溶性成分の分析化学的研究
	第1節	可溶化ケラチンタンパク質のアミノ酸組成 および一次構造
	第2節	羽毛ケラチンの電気泳動的挙動と種依存性
	第3節	小活
第	2章 羽=	Eケラチン分光学的研究
	第1節	FT-IR による羽毛ケラチンの
		二次構造成分の研究
	第2節	羽毛ケラチンの側鎖のラマンスペクトル
第	3章 羽=	Eケラチンの熱的性質に関する研究
	第1節	固体状態熱変性ミオグロビンの FT-IR による
		二次構造研究
	第2節	熱変性羽毛ケラチンの FT-IR による
		二次構造研究
	第3節	示差走査熱量測定による解析
	第4節	小活

-i-

目 次

総 括	 73
略語表	 77
謝辞	 78
引用文献	 79

緒言

ケラチンは上皮系細胞の角質化による生産物で,毛髪, 羽毛,角,蹄,表皮などを構成する構造タンパク質である。 その役割は,主に外界からの刺激に対する,生体の保護に ある。完全な成熟組織においては,生細胞としての機能は 失われている。しかし,ケラチン本来の役割はこの状態 で果たされている。

ケラチンの役割を生物進化の過程で考えると,脊椎動物 の魚類はその生活圏が水中であるが,両生類を中間的な存 在として爬虫類は完全に陸上に進出した。 陸上生活に適 応するには肺呼吸系の獲得と同時に,生体の乾燥を防ぐた めに表皮ケラチンが重要な役割を果たしている。 魚類, 両生類もケラチンを持つがまだ未熟で,生体の乾燥防御の 役割を果たすにはほど遠いものである。 さらに,鳥類, 哺乳類は体温を一定に維持するシステムを獲得し,活動の 場と時期を拡大し進化し,その体温維持に体毛,羽毛のケ ラチンが必須であった。 特に,羽毛は体温維持のみでな く,独特の形態と物理的,化学的強靭さが飛翔を可能にし 鳥類を独特な進化に導いたと言える。 羽毛ケラチンの分 子とその集合体の構造がどのようになっているか,さらに 羽毛の形態形成における遺伝子の発現メカニズム等は興 味ある問題である。

ケラチンは、X線回折によるタンパク質の立体構造の研 究において、最初の材料として取り上げられ、先駆的役割 を果たした。 Astbury[1,2]は、羊毛ケラチンのネイティ ブ型の子午線反射 5.15Å、赤道反射 9.8Åのものをα-パ

Class	Name	X-ray diffrac- tion pattern	Туре	Source
Soft Keratin	Epidermis Stratum corneum Corns Calluses	Q.	œ	mammals, birds, reptile amphibians, fishes
Hard Keratin	Hair	α	ÔI.	mammals
	Hair stretched	β	ta:	mammals
	Nails	Ô.	Cr.	mammals
	Hooves	Q.	C(mammals
	Horns	Q	α	mammals
	Feathers	feather(ß-like)	φ.	birds
	Beaks	feather(s-like)	φ	birds
	Claws	feather(β -like)	φ	birds, reptiles
	Scales	feather(g-like)	Ű	reptiles

Table	1.	Classification	of	Keratins

ターン,温湯中で引き伸ばしたものの,子午線反射 3.3 Å,赤道反射 9.7Åと 4.65Åのものをβ-パターンと命名 した。 また,羽毛の X線回折は,子午線反射 3.1Å,赤 道反射 9.7Åと 4.7Åを示し,α-パターンを伸ばしたβ-パターンと似ているが,同一ではないとして,新たに羽毛 パターン(ϕ -パターン)とした (Table 1) [3,4]。 これ らは,後年 Pauling と Corey[5-7]により提唱された,α -helix とβ-sheet 構造の基礎的データとなった。

ケラチンは、その X 線回折像に基づき、 α 型と φ 型に区 別される。 α -ケラチンは、 α -helix 様の基本骨格を持 ち、毛髪、羊毛に代表され、哺乳類の爪、角もこれに属す る。 一方鳥類の羽毛, 嘴, 爪, 爬虫類のうろこ, 爪等は φ-ケラチンに属し, β-sheet 様の基本骨格を持つと考え られている。 また, Fraser ら[8]は X 線回折データと電子 顕微鏡データに基づいて, α-型ケラチンには coiled-coil rope モデルを ϕ -型ケラチンには twisted-sheet モデルを それぞれ提案した(Fig. 1)。 このように、X線回折による 研究には早期に取り上げられたケラチンであるが、その後 のケラチン構造に関する研究は少なく、X線構造解析研究 また、ケラチンの化学的研究は非常に立ち遅れている。 そ の理由は,通常のタンパク質研究に用いられる溶媒には不 溶で,タンパク質分解酵素の作用も受け難いなど,物理的, 化学的に極めて安定な物質であることによる。 したがっ て, 直接ケラチンを分析しようとする試みは余り行われず, 近年は遺伝子による研究に重点が置かれるようになって きた。

化学的研究として,羽毛ケラチンを比較的強い変性条件

Fig. 1. (a) Left-handed helical ruled surface of pitch 95 Å. (b) Strand of pleated sheets distorted so as to lie in the left-hand ruled surface. Each sheet contains four sections of polypeptide chain eight residues long. Each residue is represented by a sphere. (c) Model for the framework of the feather keratin microfibril consisting of two strands of the type shown in (b) running in opposite directions. The two pleated sheets at each level are related by a horizontal diad. The primitive helix is right-handed and the pair of sheets at one level superpose on the pair at the level above if rotated 90° and advanced 23.6 Å in a right-handed sense.

で処理し、結合の一部を切断して、可溶化した場合、いず れも電荷的には不均一であるが分子量的には約 10kD 程度 の均一な低分子タンパク質群が得られる[9-11]。 この分 子量値は他の繊維性タンパク質と比較して,異常に小さい。 しかし、羽毛ケラチンの電子顕微鏡による観察では、羊毛 ケラチンと同様に明らかな繊維性を示すことから[12,13]、 羽毛ケラチン分子の繊維形成は,他の繊維性タンパク質と は異なる独特なものであると推測される。 従って,その 構造的特徴は、アミノ酸配列にもある程度反映されている に違いない。 タンパク質のアミノ酸配列はその働きの分 子的機構を考える基礎であり、立体構造解明にも必要であ る。 羽毛ケラチンから得られる分子量 10kDa 程度の可溶 性成分について、これらの分離精製法は Akahane ら [14-16]によって既に確立されており、また、ニワトリ羽 毛ケラチンの可溶性成分の主成分のアミノ酸配列も決定 されてきた[17,18]。 このようにして同一個体,同一種, 関連種の相同ケラチンタンパク質の一次構造データを蓄 積し、比較すれば、タンパク質の働きと同時に、タンパク 質の進化, それを持つ生物の進化についての知見が得られ, 形態分類とあいまってさらなる発展が見込まれるであろ う。

ー方,羽毛ケラチンには、コラーゲンのような分子量が 285,000kDa,成分数17種,アミノ酸組成は1/3がグリシ ン、15~30%がプロリンと4-ヒドロキシプロリンというよ うな際立った特徴は見られないが、強い不溶性繊維を形成 し、独特な羽毛の形態を保持している。そのような形態 を研究するには、羽毛を化学的に破壊せずにそのまゝの状

態で情報を得る必要がある。本研究は IR から得られる二 次構造情報を中心に,羽毛の Schroeder ら[19](Fig.2)の 示した形態学的部位 barbs, calamus, rachis のネイティ ブ状態および熱変性状態におけるケラチンの挙動を調べ た。

第1章では、羽毛ケラチンの可溶性低分子タンパク質に 関する分析化学的研究をまとめて記述し、第2章では、固 体状態のタンパク質に赤外分光(FT-IR)が利用できるこ とを確かめた後に羽毛ケラチンに応用し、また、ラマンス ペクトルから得られた羽毛中の側鎖情報について記述す る。 第3章では羽毛ケラチンの熱的性質について、ミオ グロビンを用いて、タンパク質変性をFT-IRで追跡できる かを検討した後、羽毛ケラチン(calamus)について得られ た FT-IR 情報および示差走査熱量測定(DSC)(barbs, calamus, rachis,)の情報を記述する。

Fig. 2. —Anatomy of white turkey feather; view from dorsal side.

第1章 羽毛ケラチンの可溶性成分の分析化学的研究

第1章 羽毛ケラチンの可溶性成分の分析化学的研究

羽毛ケラチンは変性剤存在下で、還元処理すると、ジス ルフィド結合が選択的に切れて可溶化成分が得られる。こ のことから、羽毛ケラチンの不溶性は-S-S-結合の存在が 大きく影響していると思われる。しかし、-S-S-結合が切 れても羽毛全部が完全に溶解するわけではなく、10~15% の量は、不溶性のまま残るので、-S-S-結合のみの原因と も断定できない。羽毛の溶解には変性剤の存在も大きく寄 与しており、可溶性を維持するには、尿素濃度が4~8M必 要であることがわかっている。また、その可溶性の低分子 タンパク質の混合物をゲル濾過法およびイオン交換クロ マトグラフィーにより単離精製する方法も確立している [14-16]。これらの手順について、各精製段階の概要を記 述する。

 $\mathbf{7}$

第1節 可溶化ケラチンタンパク質のアミノ酸組成 および一次構造

1. ニワトリ羽毛の調製

全羽毛を非イオン性界面活性剤を用いて洗浄し,続いて 流水で十分にすすぎ,最後にナノピュアー水で洗浄し, 風乾した。乾燥羽毛をアセトンで2回脱脂した。羽毛 はFig.2に示した形態学的(Schroeder 6)に,barbs(羽 枝),calamus(羽かく),rachis(羽軸)およびmedulla(羽 髄)の4部位に切り分けた。この組成は質量比で,barbs 72%, rachis-medulla 24%, calamus 4%であった。

2. 試料の溶解

羽毛 barbs の溶解は,8M 尿素-ホウ砂-リン酸緩衝液 (pH8.6),メルカプトエタノールで還元可溶化した。 いでモノヨード酢酸を加え,S-カルボキシメチル化した。 barbs ケラチンは変性剤存在下で還元剤を加えることに より-S-S-架橋が切断され可溶性ポリペプチド鎖の混合 物となり,約85%が可溶化した。

3. ゲルおよびイオン交換クロマトグラフィー

可溶化物を SephadexG-75 カラムにかけ,4M 尿素-1M NaCl で溶離し(Fig. 3),全体の 80%を占める分子量約 10kDa の 主画分(GF-3)を集め,DEAE セルロースで分離した。 GF-3 の溶離は 4M 尿素-トリスー塩酸(pH8.5),0-0.2M KCl のリ ニアーグラジェント法で行った(Fig.4)。 ケラチン分子 は,電荷が極端に少なく非常に凝集し易いため、変性,可 溶化の働きのある尿素の共存により, ケラチンモノマーと して分離することができた。 各ピーク(B1~7)を DEAE セ ルロースで再クロマトグラフィーを行うことにより, barbs からのケラチン各成分を単離することができた。

Fig. 3. Gel chromatography of SCM-proteins from whole fowl feathers.

Fig. 4. DEAE-cellulose chromatography of the fraction separated from body feather barbs by gel chromatography.

4. Fig.4から得られた画分 B-1~7 および再 DEAE クロマ トグラフィーで精製した画分 B-1~4 をディスクゲル電気 泳動により調べた。 Ornstein と Davis の方法に従い 4M 尿素を添加してゲル電気泳動を行い,各画分とも単一なバ ンドであることを確かめた。 泳動後,10%トリクロロ酢 酸で 1hr 処理し, 0.04%クーマシーブリリアントブルー R-250 を含むメタノール:酢酸:H₂0(1:1:8)溶液で一昼夜 タンパク染色した。 脱色は,染色剤を除いた溶液を用い た。

Fig. 5. Electrohoretic patterns of DEAE reactions $(B1\sim7)$ and GF-3(C). a: initially chromatographed fractions, and b: rechromatographed fractions.

5. アミノ酸組成分析

装置は JEOL JLC-5AH アミノ酸分析機装置を用いた。 Table 2 に全羽毛タンパク質,不溶性残渣と可溶化物を SephadexG-75 カラムで分離した画分(GF-1~4)(Fig.3)の アミノ酸組成を示した。 表より溶解物はセリン、プロリ ン、そしてグリシンに富み、グルタミン酸、リジン、ヒス チジン、チロシン、メチオニンは不溶性残渣に比較的多く 存在した。 画分(GF1~4)中においてもアミノ酸の含有量 の違いが見られ、GF-3、4にセリンが多く、GF-1には少な かった。 プロリンは GF-2 に多く, GF-1 は、やはり少な かった。 GF-1には他の画分と比較して、グルタミン酸、 リジン,チロシン,そしてヒスチジンが多く存在していた。 アスパラギン酸に関しても GF-2 では 100 残基当り 9.2. GF-3 では 100 残基当り 4.7 と偏りが見られた。 GF-1 と 不溶性残渣は類似した組成を示し、プロリン、セリン、グ リシンが少なく、リジン、チロシンそしてメチオニンに富 んでいた。 リジン,チロシンそしてメチオニンなどはへ リックス構造を形成するのに好ましい残基とされており. これらの残基が不溶性画分には存在するが、主要成分であ る GF-3 には殆ど存在しないことからも、羽毛タンパク質 が *α* 型ではないことがわかる。

	Residues per 100 residues						
Amino acid	Whole feather	Insoluble residue	Whole extract	Fraction GF-1	Fraction GF-2	Fraction GF-3	Fraction GF-4
Lysine	1.2	5.3	0.4	3.3	0.8	0.3	0.6
Histidine	0.3	1.4	trace	1.0	trace	0	0.6
Arginine	4.7	4.2	4.8	4.5	3.6	4.3	4.1
SCM-Cysteine	0	8.7	8.3	6.8	5.9	8.6	5.4
Aspartic acid	6.3	8.5	5.0	7.1	9.2	4.7	6.1
Threonine	5.3	6.2	4.5	5.2	4.9	6.1	4.7
Serine	15.7	8.1	14.6	9.8	13.4	16.4	16.4
Glutamic acid	8.6	11.3	7.7	11.3	8.2	7.5	8.3
Proline	11.7	7.5	11.8	8.7	12.8	11.4	11.5
Glycine	11.5	8.5	11.9	9.8	10.3	11.3	11.2
Alanine	5.6	5.8	5.3	6.3	5.8	5.2	4.7
Cystine	4.2	0	0	0	0	0	0
Valine	7.7	7.3	9.1	7.4	9.7	9.3	9.3
Methionine	0.3	1.2	trace	0.7	Irace	0	trace
Isoleucine	4.3	4.0	4.9	4.4	4.7	5.0	4.7
Leucine	7.4	6.8	7.0	8.3	6.7	7.0	6.4
Tyrosine	1.6	2.8	1.2	2.5	1.0	1.0	2.5
Phenylalanine	3.6	2.4	3.5	2.9	3.0	3.4	3.5

Table 2. Amino acid analyses of fowl body feather keratins and their fractions. Results uncorrected for destruction during hydrolysis; tryptophan not determined.

Table 3. Amino acid composition of SCM-proteins fractionated from GF-3 of the body feather barbs of fowl. The values are given as residues of amino acid per 100 residues and are uncorrected for destruction during hydrolysis.

Amino acid	Whole extract	GF-J	B-1	B-2	B-3	B-4	B-5	8-6
Lysine	0,2	0	0	0	0	0	0	0
Histidine	0,1	0	0	0	0	0	0	0
Arginine	4.6	4.5	5.0	4.8	4.8	4.7	4.6	4.3
SCM-cysteine	7.1	6.9	2.9	5.2	6.3	7.0	7.4	7.9
Aspartic acid	5.1	5.1	4.5	4.4	4.8	5.0	5.0	5.1
Threoniné	5.0	5.1	5.1	4.8	4.8	4.9	4.9	5.1
Serine	17.3	17.7	18.6	18.3	18.3	17.9	17.7	17.3
Glutamic acid	7.7	7.7	8.1	7.7	7.8	7.7	7.6	7.6
Proline	12.1	11.9	12.3	11.8	11.6	11.6	12.1	12.5
Glycine	11.7	11.6	12.7	12.1	12.1	11.8	11.7	11.4
Alanine	4.9	4.8	5.5	5.2	5.1	4.9	4.9	4.7
Valine	7.8	7.8	8.0	7.8	7.5	7.7	7.8	7.8
Methionine	0	0	0	0	0	0	0	0
Isoleucine	4.7	4.9	5.4	5.2	5.1	4.8	4.6	4.5
Leucine	6.9	7.0	7.1	7.0	7.3	i.3	6.9	6.8
Tyrosine	1.4	1.8	1.1	1.1	1.0	1.0	1.3	1.5
Phenylalanine	3.5	3.6	3.7	3.6	3.7	3.7	3.6	3.4

3. 一次構造の比較

腹部 barbs の GF-3 画分を DEAE セルロースで分画し(B-1 ~6), 再クロマトグラフィーにより精製し一次構造の決定 に用いた。 そのアミノ酸組成を Table 3 に示す。各成分 とも非常に良く似た組成を示していて、羽毛ケラチンの可 溶化物は極めて複雑な多成分系の低分子タンパク質混合 物であることがわかった。 ニワトリ,アヒル,ハト,ト ビ、キジの barbs (B-4) 成分について、一次構造解析した結 果を Fig. 6 に示す。 五種羽毛の配列の比較から、羽毛 ケラチンの顕著な特徴が見出される。(1)シスチンがN末 端領域に局在している。すなわち、半シスチンとして全体 で 7~8 個のうち 6 個までが N 末端領域残基番号(1~26) に 集中している。(2)中央部領域残基番号(30~80)はシスチ ンが全く存在せず, 疎水性アミノ酸が多く, 配列の相同性 も非常に高い。(3)C 末端領域残基番号(81~96)の配列は 非常に変化に富んでおり, 類似性は 44%と低かった。 以 上のような,一次構造上の特徴と Chou-Fasman [20, 21] によ る経験的な二次構造予測ソフト(GENETYX-SV/RC)を用いた 結果を考え合わせると、羽毛ケラチンのミクロフィブリル を形成する領域は配列中央部の残基が関与しているもの と思われる。

Fig. 6. Comparison of feather proteins B-4 from five avian species and prediction of secondary structure of N-terminal and central regions of the chains. Homologous amino acids in five sequences are boxed and homologous S-carboxymethylcysteines are doublyboxed. Prediction of secondary structure is represented under the sequence with Zig-Zag line (β -sheet), stepped line (turn) and straight line (coil).

第2節 羽毛ケラチンの電気泳動的挙動と種依存性²²⁾

前節で記述したように、可溶化羽毛ケラチンは分子量が 約 10kDa と小さいが一分子中に 6~7 残基あるシステイン が分子問架橋を形成して強固な構造を形づくっている。 そしてそのジスルフイド結合を変性剤存在下に切断する と容易に可溶化し、それらは分子量的には均一であるがア ミノ酸組成の類似した十数種以上の成分からなっている ことが電気泳動およびイオン交換クロマトグラフィーに よる分析で明らかになっている[14-16]。 さらに最近ニワ トリ羽毛ケラチンの遺伝子の分析でケラチン遺伝子がフ ァミリーを形成し、クラスターとして存在していることも 明らかになってきた[23,24]。

アミノ酸配列に関する研究では、これまでニワトリ[17]、 ハトおよびカモ[18]、キジおよびトビ[25]の barbs とエミ ュー[26]、銀カモメ[27]の calamus の計 7 種の主成分に関 するアミノ酸配列が報告されている。 それらの約 100 ア ミノ酸残基の中央領域は疎水性残基に富みβシートを形 成しやすい状態となっており、シスチン残基がN末端領域 に集中し、さらにC末端領域にはアミノ酸置換が特に多い という共通した特徴を持っている。 前節 Fig.6 にまとめ た5種のbarbsケラチンのアミノ酸配列の類似性は82%で あり、鳥類間での配列の違いは鳥類の進化と関係があるか もしれないと考えられた。 そのような関連を調べるには より多くのデータが必要であり、本研究では23 種にわた る鳥類の羽毛ケラチンについてキャピラリー電気泳動で

の挙動を先ず調べた。 その泳動パターンは種により異な り、ケラチンの多様性の程度が鳥類の進化を反映している こと、および羽毛の形態学的に異なる部位のケラチンは別 個の遺伝子群に由来していることがわかった。

1. 羽毛試料の調製

各部位に切断した羽毛約 10mg を小型試料管にとり,6M グアニジン塩酸/2mM EDTA/1.0M トリス塩酸緩衝液(pH6. 8)の1m1に還元剤としてジチオスレイトール(DTT)10mg を溶解して加えた。約15分間窒素ガスをパブリングして 密栓をして,一夜40℃恒温水槽でインキュベートした。還 元溶解した後モノヨード酢酸24mgを加え30分間暗所に放 置した。 繊維状の不溶性残渣をピンセットで取り除き, 溶液は透析チューブにいれて4M 尿素に対して透析した。 透析後,0.45µmのフィルター(Acrodisc,Gelman)でろ 過して泳動用試料とした。 実際の測定用試料の濃度は羽 毛ケラチンの可溶性成分が80~85%,さらに透析時の体積 増加は約0.5%(w/v)であった。

2. 装置および測定

装置は Waters 社 Quanta4000, 分離用キャピラリーとし て内径 75µm, 長さ 60cm の溶融シリカチューブを用い, 試 料の注入は静水圧法(10cm, 10sec)により約 15n1, 泳動 電圧は 15kV, 検出は UV185nm で行った。 泳動用緩衝液は 0.05M KH₂PO₄ / Na₂HPO₄ 緩衝液(pH7.0)に 1.0M トリメチル アンモニウムプロピルスルフオン酸(AccuP-ure[™]Z1methyl, Waters)を添加したものを用いた。 測定を開始

する前にキャピラリーを 0.5M KOH で 5 分間,泳動用緩衝 液で 10 分間平衡化し,さらに泳動用緩衝液で 20 分間予備 泳動を行い,その後 20 検体連続分析を行った。 ただし各 検体の分析の前に 0.05M KOH 洗浄を 1 分間および緩衝液洗 浄を 2 分間行った。

3. 結果と考察

3-1. ニワトリ羽毛ケラチンの分離

Fig.7にニワトリ barbs の泳動図を示してある。7分か ら 10 分の間に現われているピークはケラチンのものであ り小さいものまで含めると13ピーク程確認できる。また, 6.5 分付近の大きなピークは 4M 尿素溶液のブランクテス トから尿素そのもののピークであることが確認された。 キャピラリー電気泳動によるこの分離パターンがイオン 交換セルロースカラム (DE52, Whatman) から 4M 尿素/ト リス塩酸緩衝液で溶出したもの(Fig.4)と殆ど同じである ことは注目される。 ケラチンは水溶性に乏しく、カルボ キシメチル化した後でさえ尿素のない緩衝液で透析また はクロマトグラフィーをすると凝集し白濁してくる。 し たがってこれまでのケラチンの分離では試料溶液だけで なく使用する緩衝液中にも尿素の存在が必須であった。 しかしキャピラリー電気泳動は緩衝液に尿素は存在せず. また試料溶液中の尿素は泳動中にケラチンと完全に分離 していたにもかかわらず、 ケラチンは凝集せずに理想的に 分離した。これは分離が短時間で終了したことや、高濃 度の両性電解質(Z1メチル)の存在が凝集を防ぐ役割をし ていたためかもしれない。

Migration Time (min)

Fig. 7. Electrophoretogram of fowl feather barbs keratin by high performance capillary electrophoresis. The keratin sample solution (about 5 mg/ml) was prepared by S-carboxymethylation in the presence of 6M guanidium hydrochloride and dialyzed against 4M urea solution. Electrophoresis conditions were as follows. Capillary : 75μ m i.d. $\times 60$ cm, Buffer : 0.05 M phosphate buffer (pH 7.0) with 1.0 M AccuPureTMZ1-Methyl reagent (Waters), Injection : 10 sec hydrostatic (about 15 nl), Voltage : 15 kV, Detection : UV 185 nm.

なお,還元アルキル化後 4M 尿素で透析せずそのまま分析 した場合,ケラチンは分離せず幅広な一つのピークとして 現われた。 カルボキシメチル化に使用した高濃度の緩衝 液および過剰の試薬の存在が分離に影響したと考えられ る。

キャピラリー電気泳動法によるタンパク質の分析にお いて、タンパク質のキャピラリー内壁のシラノール基への 吸着は分離に悪影響を及ぼすことはよく知られている。本 報告のカルボキシメチルケラチンは等電点が約3の酸性タ ンパク質であり、キャピラリーへの吸着はあまりないと考 えられる。 実際、pH7.0において Z1 メチルを添加した緩 衝液としないものとの比較では分離に大きな違いはなか ったが、添加したものの方が全体にピークが接近し、泳動 時間もわずかに早かった。 また、Z1 メチルの添加により 泳動時間の再現性は大きく改善された(変動係数約6%)。 さらに安定したデータを得るためには初めにキャピラリ ーを充分にアルカリ洗浄した後20分間の予備泳動が効果 的であった。

検出には185nmの吸収を利用するのが有効であった。ケ ラチンにはトリプトファンがなく、10kDaの1分子中にチ ロシンが1個しか存在しないため紫外吸収が非常に弱い。 185nmによる検出感度は214nmに比べて約8倍であった。

3-2. 各種鳥類 barbs の泳動パターンの特徴

測定した羽毛の鳥類名を Table 4 に載せてある。キジ目 4 種,チドリ目 6 種,スズメ目 7 種,ハト目,ガンカモ目

Table 4. List of 23 species tested of birds.

Order	Species				
キジ目 Galliformes	キジ Green Pheasant (Phasionus versicolor)				
	= 7 > y Domestic Fowl (Gallus gallus var. domesticus)				
	パラワンコクジャク Palawan Peacock Pheasant (Polyplectron emphanum)				
	ライチョウ Rock Ptamigan (<i>Lagopus mutus</i>)				
チドリ目 Charadriiformes	ウミネコ Blacktailed Gull (Larus crassirostris)				
	ウトウ Hornbilled Puffin (Cerorhinca monocerata)				
	ウミガラス Guillemot (<i>Uria aalge</i>)				
	ウミスズメ Ancient Murrelet (Synthliboramphus antiquus)				
	エトロフウミスズメ Crested Auklet (Aethia cristatella)				
	ケイマフリ Spectacled Guillemot (Cepphus carbo)				
スズメ目 Passeriformes	ハシブトカラス Jungle Crow (Corvus macrorhynchos)				
	カケス Jay (Garrulus glandarius)				
	オナガ Azurewinged Magpie (Cyanopica cyana)				
	ムクドリ Grey Starling (Sturnus cineraceus)				
	モズ Bull-headed Shrike (Lanius bucephalus)				
	カワラヒワ Oriental Greenfinch (<i>Carduelis sinica</i>)				
	アオジ Blackfaced Bunting (Emberiza spodocephala)				
ハト目 Columbiformes	ハト Domestic Pigeon (Columba livia var. domestica)				
	サケイ Pallas' Sandgrouse (Syrrhapies paradoxus)				
ガンカモ目 Anseriformes	アヒル Duck (Anas platyrhynchos var. domestica)				
	オシドリ Mandarin Duck (Aix galericulata)				
コウノトリ目 Ciconiiformes	ゴイサギ Black crowned Night Heron (Nycticorax nycticorax)				
キツツキ目 Piciformes	アカゲラ Great Spotted Woodpecker (Picoides major)				

 $\mathbf{20}$

Fig. 8. Electrophoretograms of feather barbs keratins from birds in Galliformes. a : Green pheasant, b : Domestic fowl, c : Parawan peacock-pheasant, d : Rock ptamigan. Experimental conditions were the same as described in the legend to Figure 7.

各 2 種, コウノトリ目, キツツキ目各 1 種の 7 目 23 種 の羽毛について測定した。

Fig. 8にキジ目キジ科に属する4種の鳥類の泳動図を示 す。 ライチョウの泳動図 (Fig.8d) は他のものよりピー クが接近した形であるが,いずれも 5~6 の近接した主要 ピークがあり,その3または4番目のピークが最大である ことは類似している。 さらに主要ピークの後に 5~6 の小 さな成分が連続している。

Fig.9に6種のチドリ目鳥類の泳動図を示す。6種のパ ターンはいずれもキジ目のものとはだいぶ異なっている。 Fig.9a に代表して示したように速く泳動される成分を F グループ,遅いものをSグループと名付けた。 Fグルー

Fig. 9. Electrophoretograms of feather barbs keratins from birds in Charadriiformes. a : Blacktailed gull, b : Hornbilled puffin, c : Guillemot, d : Ancient murrelet, e : Crested auklet, f : Spectacled guillemot. Bars in Figure 3a indicate Groups F and S. Experimental conditions were the same as described in the legend to Figure 7.

プの成分はキジ目の主要成分と同等の位置に現われてい るが,各成分の分布が異なり,前半は顕著なピークがなく 徐々に昇り,後半に はっきりとしたピークが見られるの はキジ目と対照的である。また,Sグループのピークは キジ目よりかなり大きく約10成分のピークがほぼ同じ高 さで現われている。6種のうちウミネコ(Fig.9a)を除 く5種はウミスズメ科に属し殆ど同一のパターンを示し ている。ウミネコのみがカモメ科でありFグループの分 離がシャープでない。これがカモメ科の特徴である可能 性があるがより多くのカモメ科のサンブルを検討する必 要がある。 スズメ目 7 種の鳥類の泳動図を Fig. 10 に示す。 Fig. 9 と同様に Fig. 10a に代表して F グループと S グループの表 示を示してある。 スズメ目はいずれも S グループのピー クが顕著に大きくなっているのが特徴的である。 オナガ, カケス, ハシブトガラス (Fig. 10a, b, c) は同じカラス 科に属しパターンと成分比がよく似ている。 他の 4 種は すべて異なる科に属する。 アオジ (Fig. 10g), モズ (Fig. 10e) は明らかに F グループと S グループの成分比

Fig. 10. Electrophoretograms of feather barbs keratins from birds in Passeriformes. a : Jungle crow, b : Jay, c : Azurewinged magpie, d : Grey starling, e : Bull-headed shrike, f : Oriental greenfinch, g : Blackfaced bunting. Bars in Figure 4a indicate Groups F and S. Experimental conditions were the same as described in the legend to Figure 7.

は逆転し,特にアオジは圧倒的に S グループの成分が多く なっている。 スズメ目は基本的に類似した特徴を持って いながら,そのパターンはかなり多様性に富んでいる。 これはスズメ目が鳥類ではもっとも進化が進み,種の多様 性に富んでいることとも合っている。

Fig.11にハト目2種, ガンカモ目2種, その他の鳥類2 種の泳動図を示す。 アヒルとオシドリ(Fig.11c, d)

Fig. 11. Electrophoretograms of feather barbs keratins from other six birds. a : Domestic pigeon, b : Pallas' sandgrouse, c : Duck, d : Mandarin duck, e : Black-crowned night heron, f : Great spotted woodpecker. Experimental conditions were the same as described in the legend to Figure 7.

はキジ目と同様に S グループがないように見える。 しか しF グループはキジ目のものより幅広で後半のピークがよ り顕著である。 ハトとサケイ (Fig. 11a, b) はともにハ ト目で泳動パターンも基本的に類似している。 しかし、 科レベルではハト科とサケイ科と異なっており,同目同科 のもの同士の類似性よりも劣っている。 ゴイサギ (Fig. 11e) の S グループの現われ方はややチドリ目に似 ているが F グループの前半のピークの分離がよい点は明ら かに異なる。 アカゲラ (Fig. 11) はまったく独特なパタ ーンを示した。 顕著な主成分が見当たらず小さなピーク が連続している。 そのケラチン分子または遺伝子はかな り独特なものかも知れない。

3-3. 各種鳥類羽毛 barbs の泳動パターンの比較

Fig. 12 にキジ目, チドリ目, スズメ目鳥類の泳動図を規 格化およびパターン化して表してある。 縦軸は全ピーク の高さの総和に対する各ピーク高さのパーセント, 横軸は 泳動距離を示す。 各目ごとに S 成分の比率が顕著に異な ることがわかる。 更に Table 5 に F 成分と S 成分の比率 を数値化してのせてある。 全体に対する S 成分の比率は スズメ目 58.7%, チドリ目 37.9%, キジ目 14.6%となり明ら かに有為な差が見られた。 鳥類はキジ目, チドリ目, ス ズメ目の順に進化が進んでいると考えられている[28,29]。 そして S 成分の存在量が進化の程度に比例していることは 明らかに S 成分が鳥類の進化を反映していると思われる。

また,SグループとFグループの主成分のアミノ酸配列 分析からの比較においてはかなり置換が見られたが基本

Fig. 12. Electrophoretic patterns of feather barbs keratins from birds of the three orders. a : Passeriformes, b : Charadriiformes, c : Galliformes. The vertical axis shows percentage of each peak height to total peak height. The horizontal axis is migration time of the peaks. Bars indicate the ranges of Groups F and S.

Table 5. Proportions of Groups F and S to total keratins. The values were obtained by summation of the values in the ranges of the bars F and S indicated in Figure 6.

Order	Species	F(%)	S(%)
Passeriformes	Jungle Crow	54.4	45.6
	Jay	56.6	43.4
	Azurewinged Magpie	54.3	45.7
	Grey Starling	39.9	60.1
	Bull-headed Shrike	28.3	71.6
	Oriental Greenfinch	38.6	61.4
	Blackfaced Bunting	19.5	83.3
	Average	41.7	58.7
Charadriiformes	Blacktailed Gull	60.5	39.5
	Hornbilled Puffin	63.8	36.2
	Guillemot	60.7	39.3
	Ancient Murrelet	59.8	40.2
	Crested Auklet	57.0	43.0
	Spectacled Guillemot	70.8	29.2
	Average	62.1	37.9
Galliformes	Green Pheasant	83.2	16.8
	Domestic Fowl	97.0	3.0
	Peacock-Pheasant	95.6	4.4
	Rock Ptamigan	88.9	11.1
	Average	85.4	14.6

的なケラチンの特徴は保持していた(類似性:オナガ75%, モズ70%)。 F成分はすべての鳥類が保有していること, および成分数においてSはFとほぼ同じことから考え,S 成分は進化の過程で,F成分が重複したのかもしれない。 タンパク質レベルでの存在量の差は遺伝子の数の差によ るのか発現機構の違いによるのか又はその他の原因によ るのかは遺伝子レベルでの解明を待たなければならない。 3-4. 羽毛の形態学的部位における差

ニワトリとムクドリの calamus の泳動図を Fig. 13 に示 す。barbs の F グループとほぼ同じ位置に現れ泳動パター ンもよく似ていた。barbs が鳥類の種間で顕著な差を示す のに対して calamus はパターンが単純で殆ど鳥類問の違い が見られない。 特に barbs において見られた S グループ の成分がスズメ目においてさえ見られなかったことは注 目される。barbs の F 成分の泳動パターンと calamus のパ ターンは類似しているが同一遺伝子から由来するタンパ ク質分子ではない。 実際, ニワトリ calamus の配列は barbs と異なっていた (未発表データ)。 Presland ら [23, 24]はニワトリの羽毛ケラチン遺伝子 18種がタンデム に並んでクラスターを構成していることを明らかにし, そ

Fig. 13. Electrophoretograms of feather calamus keratins from fowl (a) and staring (b).

の内の3遺伝子の配列が barbs のものであることを明らか にした。 ニワトリ barbs の成分数から考えて, それら 18 遺伝子はすべて barbs ケラチンのものであり calamus のも のは含まれないと予想される。 従って, calamus ケラチ ン遺伝子は別の遺伝子クラスターを構成し, 羽毛発生の過 程で発現調節も別に行われていると考えられる。

第3節 小括

羽毛タンパク質のジスルフイド結合を穏やかな条件で 切断し,尿素存在下で可溶化してくる成分は以下の性質を 示した。

ゲルろ過による主ピークは GF-3 である。この画分は可 溶性成分のおよそ 70%を占めている。 GF-3 画分は分子量 的に均一で約 10kDa である。

各部位における GF-3 画分は、ディスクゲル電気泳動で 確認すると主要成分が4種と少量成分が17種以上含まれ ていた。 主要成分はゲルろ過、DEAE クロマトグラフィー を組み合わせることで完全に単離することが出来た。 GF-3 画分を DEAE イオン交換クロマトグラフィーにかけ、 単離した B-4 画分を一次構造解析に用いた。 ニワトリ、 ハト、アヒル、カモ、キジのアミノ酸配列を比較し(Fig. 6)、 その中からニワトリ、ハト、アヒルの一次構造情報をまと めると Fig. 14 のようになる。

このように鳥類の可溶化物は類似性の高い低分子タン パク質の集まりであり,可溶化ケラチンはキャピラリー電 気泳動によるパターン分析がケラチンを理解するうえで 大変有効であった。 分子進化を考察するには多くの種の タンパク質および遺伝子の配列を明らかにしなければな らないが,それには多くの時間と労力が必要である。 こ れまでデータ不足のためケラチンタンパク質と鳥類進化 との相関があるのかどうか不明だったが,本研究の結果か らかなり密接な相関がありそうであるということがわか った。 また,ケラチンの構造解析をする場合イオン交換 クロマトグラフィーで精製する必要があるが,キャピラリ ー電気泳動で予め分離パターンを予測できることは大変 有用である。

Fig. 14. Characterization of the primary structure of feather keratin. Homology; common amino acid residues among fowl, duck and pigeon B-4 are shown by bars. Half cystine; common half cystines among the above three species are shown by open circles. Hydrophobicity; hydrophobic residues(HI \geq 3.0; Phe, Tyr, Val, Ile, Leu) in fowl B-4 sequence are shown by black dots. Conformation; Predicted β -sheets in fowl B-4 sequence are shown by zig-zag lines.

第2章 羽毛ケラチンの分光学的研究
第2章 羽毛ケラチンの分光学的研究

前章には羽毛ケラチンを化学的に処理し,ペプチド以外 の結合を切断して可溶化したものについての研究をまと めた。 生体におけるケラチンは多くの分子が集合するこ とによって,物理的・化学的に強靱であるという特質を獲 得している。 従ってその特質を理解するには,試料を破 壊せずに集合状態の高次構造を明らかにすることが重要 である。

タンパク質の赤外吸収においてアミド I および II 吸収 帯はタンパク質の二次構造を反映している。 Susi ら [30, 31] は,球状タンパク質の水溶液の赤外吸収スペクトルを 解析して X線回折からの結果に近い二次構造成分を決定 した。また, Fraser ら [8] は銀カモメの羽毛 rachis の X線回折と赤外吸収分析から sheet model (Fig. 1)を提案 している。

本章では結晶球状タンパク質の FT-IR 分析により得ら れた結果が、X線回折の結果と比較して信頼できることを 確め、羽毛 rachis および calamus に応用し、それらの定 量的二次構造解析について記述する。 また、rachis のラ マン分光測定によりアミノ酸の側鎖および S-S 結合の存 在状態について知見が得られたので記述する。

第1節 FTIRによる羽毛ケラチンの二次構造成分の研究

羽毛ケラチンの二次構造は、Lewis ら[32]、および

31

Chou-Fasman[20,21]の方法により可溶性成分のアミノ酸 配列データから推定した。 アヒルの配列(Fig.6)よりβ -sheet 成分が約 30%であり,銀カモメの rachis[8]とほぼ 一致していた。 ニワトリケラチンは,配列残基番号 22-70 のβ-構造の多い領域に限るとβ-sheet 成分は約47%であ った。 そこで,羽毛ケラチンを化学的な処理をせずに直 接測定する方法として,顕微 FT-IR を選択し,モデルタン パク質として高次構造がよく分かっている球状タンパク 質をとりあげ,タンパク質の二次構造を推測する手法とし て FT-IR の有用性をまず検討した。 次いで,羽毛ケラチ ンの FT-IR スペクトルから,二次構造成分を得たので記述 する。

試料の調製

羽毛は可溶化実験の前処理と同様洗浄、乾燥した。

ミオグロビン(Bovine Type II), リゾチーム(Chickin Egg White), コンカナバリン A(Canavalia ensifomis, Jack Bean)は SIGMA (St. Louis, MO) から購入したものをその まま用いた。 羽毛ケラチン calamus, rachis はメスで注 意深くスライスして,厚さ約 10μ m 以下を 1 枚の KBr 結晶 板 (3mm x 3mm x 0.5mm) の上に載せ,その上にもう 1 枚 の KBr 結晶板を重ね合わせ,2 枚の結晶板が剥がれない程 度にハンドプレス機でシールした。

球状タンパク質は、試料量(約 0.01mm²,0.5μg)を上記 と同様に KBr 結晶板でシールした。

2. 装置および測定

装置は日本電子製フーリエ変換赤外分光光度計(JIR-5500),顕微赤外ユニット(FI-IR-MAU110),測定する前に 分光部は乾燥空気で充填した。 サンプルを顕微ステージ 部分に置き,口径(150 μ m x 150 μ m)に合わせて,KBr バッ クグラウンドを測定後,試料の透過スペクトルを測定した。 検知器は水銀カドミテルル(MCT)を液体窒素で冷却して用 いた。 測定パラメーターはビーム方式:シングル,波数 領域:250~4200cm⁻¹,分解能:4cm⁻¹,スキャン回数:500 回,スキャン速度:高速モード,アンプゲイン:オートゲ インを用いた。

結果と考察

3-1. 球状タンパク質の赤外スペクトルと解析 ミオグロビン(αパターン),リゾチーム(α+βパターン), およびコンカナバリン A(βパターン)を代表タンパク質 として IR スペクトルを測定し, Fig. 15 に示した。

Fig. 15. FT-IR spectra of myoglobin, lysozyme, and concanavalin A.

形状からもわかるように、ミオグロビンとリゾチームは 1654cm⁻¹に、コンカナバリンAは1635cm⁻¹に極大吸収を示 した。 スペクトル解析には、骨格構造を形成するペプチ ド結合の C=0 伸縮振動をよく反映している、赤外アミド I 領域(1720~1600cm⁻¹)を用いた。

 フーリエ・セルフ・デコンボリューション(FSD)による 波形分離解析

FSD とは、見かけ上の分解能を上げ、幾つかの成分が重 なり合っているバンドを個々の成分バンドに分解する方 法である。 Fig. 16 に FSD 処理したミオグロビンのスペク トルおよび Fig. 17 に、カーブフィットしたスペクトルを 示した。 それぞれの分離したピーク面積から成分比を算 出する。

Fig. 16. FT-IR spectrum, deconvolved spectrum, and second-derivative spectrum of myoglobin.

ミオグロビンの FSD 処理に用いた各パラメータはアポダイ ゼーション関数, triangular; 半値幅 (FWHH), 50 cm⁻¹; 分解 能向上係数 (K), 2.1 である。 FSD 処理スペクトルのを波形 分離ソフトを用いて, ピークの数, 4; 形状, Gauss; 位 置, 波数 (cm⁻¹); 強度,吸光度 (absorbance); 半値幅を基に, 実測スペクトルと最もよく一致する値を, 最適化計算し, 個々のバンド成分を決定した。 それらのバンド成分は Dong ら [33] の帰属 (Table 6) に従った。 ミオグロビンの成 分は, α -helix 75.7%, β -sheet 7.6%, turn 16.7%であ った。 コンカナバリン A の成分も β -sheet 59.1%, turn 40.9%と主成分に関してはほぼ満足のいく値が得られた。 しかし, FSD を用いた解析法はピーク位置を一意的に設定 することができず, 解析に関し主観の入る可能性が生じた ので,算術的に生じたピークを直接二次構造成分に帰属す る二次微分法からも検討した。

Table	6.	Esti	nation	of	the S	Secondar	ry St	ructu	re	of	alpha,
beta+e	xter	nded,	beta,	turn,	, and	other	from	Dong	et	al.	

mean frequencies	assignment	estimation
1610cm ⁻¹	Phe	other
1618cm ⁻¹	Tyr	other
1624cm ⁻¹	β−sheet	β -sheet
1627cm ⁻¹	β-sheet	β -sheet
1632cm ⁻¹	β -sheet and extended chain	β -sheet
1638cm ⁻¹	β-sheet	β -sheet
1642cm ⁻¹	β-sheet	β -sheet
1650cm ⁻¹	unordered	other
1656cm ⁻¹	a-helix	a-helix
1666cm ⁻¹	turn	turn
1672cm ⁻¹	turn	turn
1680cm ⁻¹	turn	turn
1688cm ⁻¹	turn	turn
1695cm ⁻¹	β-sheet	β -sheet

2) 二次微分解析

基本的には Fig. 16 から分かるように, FSD と殆ど同じ位 置にピーク(谷)を検出した。 このピーク高さ又は面積か ら成分比を算出する。 二次微分法は Susi ら[30]により球 状タンパク質のピーク高による算出が報告されている。 ここでは, ピーク面積を用いて二次構造成分を算出した。

スペクトル解析には GRAMS/32, Ver. 5.0 を用い, スムー ズは Savisky - Golay 関数 9 ポイントをかけ, 更に二次微 分は, Savisky - Golay 関数 7 ポイントをかけた。 二次微 分スペクトルにベースラインを引き, 谷の面積を求めた。 それらのバンド成分は先の Dong ら[33]の帰属に従い, ス

36

ペクトルを解析し、結果を Table 7 に示した。

タンパク	<u>a —helix</u>	β—sheet	turn	other	定量法
Myoglobin	87	6	7	888	This Work
	85	0	8	7	X-線
	67~85	1~4	15~20	9~16	CD
Lysozyme	40	21	28	11	This Work
	45	19	23	13	X-徽
	29~45	11~39	8~26	8~60	CD
Concanavalin A	4	67	29	886	This Work
	3	60	22	15	X一線
	3~25	41~49	15~27	9~36	CD

Table 7. Secondery Structure Assignent of Protein Spectra.

結晶タンパク質から求めた二次構造の成分比は, X 線解析の結果[33]とほぼ一致し,固体又は結晶状態のタンパク質に対しても FT-IR 分析が信頼できることを示している。

このことより水溶液タンパク質の測定データに基づい たスペクトルの二次構造への帰属表が,固体試料に対して も適用できることが明らかになった。また,従来タンパ ク質の二次構造の簡便な測定法として CD スペクトル法が 使われてきた。Table 7 にその値 Provencher 6 [34] も 参考に載せた。 α-helix が圧倒的に多い myoglobin に 関してはX線回折の値に近いが, β-sheet を含むタンパ クに対してはかなりの差が生じ,本研究の値の方がよい。 このように近年の FT-IR 装置の発達に伴い,赤外分光法は 溶液のみでなく固体タンパク質に対しても信頼できる方 法であることを示している。

37

3-2. 羽毛ケラチンの赤外分光測定

羽毛ケラチンの calamus と rachis の IR スペクトルを Fig. 18 に、二次微分スペクトルを Fig. 19 に示した。 rachis および calamus のオリジナルスペクトルは非常 によく似ており、アミド I 吸収帯の極大吸収が 1655cm⁻¹ を示し、一見したところ β -sheet に富むコンカナバリン A よりも α -helix の多いミオグロビンに似ていた。 しかし 二次微分法による波形解析では球状タンパクの α -helix

成分とは異なっており、また羽毛ケラチンに α -helix は 存在しないというX線回折の報告 [8] を考慮して、二次 構造は rachis に対して β -sheet; 80.5%、 α -helix; 15.2%、turn; 3.1%、other; 1.1% calamus については β -sheet; 82.1%、 α -helix; 15.6、turn; 0.4%、other; 2.0% と判定した。

Fig. 19. Second-derivative FT-IR Spectra for dry Rachis and Calamus.

ここでは便宜的に β -sheet と述べたが明らかに羽毛ケ ラチンの β -sheet 構造は球状タンパク質のそれと同一で はない。 Astbury [3]がX線回折データに基づいて羽毛の パターンを β パターンと区別して ϕ パターンと報告した が赤外吸収においても、それを裏付けるものとなった。 また Fraser[8]は羽毛ケラチンのシートがらせん状にね じれている twisted-sheet model を提案しているが、本研 究の α -helix約15%という値はその sheet の twist を反 映しているのかもしれない。

Tsuboi ら [36] は羽毛 barbs を FT-IR で測定し、 β 成 分を 50%, unordered 成分を 50%と報告おり、本研究の rachis および calamus の値とはかなり異なる。 rachis および calamus は羽毛の軸を構成しており物理的強度は barbs より高い。それは高い β 成分量に由来していると考 えられる。 また、第1章において述べたように、barbs から単離された B-4 に関して、Chou-Fasman 法による一次 構造に基づいた二次構造の予測では β -sheet が約 30% で あり、Tsuboi らの値とかなりの差がある。 これには二つ の可能性が考えられる。 第一は予測法の信頼度の問題で ある。これはX線回折法により立体構造が明らかになった いくつかの球状タンパク質の二次構造中のアミノ酸存在 確率に基づいている方法である。 繊維状タンパクのケラ チン等に用いることは適切ではないかも知れない。 第二 は barbs 中には一次構造が決定された以外の成分, 例えば 不溶性部分などにβ-sheet を高含量に持つ成分があるか も知れないことである。 第2節 羽毛ケラチンの側鎖成分のラマンスペクトル

タンパク質の芳香族アミノ酸側鎖は,高い特性ラマン光を 与えることが知られている[37-41]。 羽毛ケラチンの構造が, β -構造で存在することは,X線回折や分光学的研究によって 既に明らかにされている[8,42-44]が,側鎖の構造について のラマン研究はこれまで全く行われてこなかった。 ここで は比較的配向性に富む構造[3]を持つことで知られている羽 毛ケラチン rachis の側鎖の状態について調べた結果を記述 する。

1. 実験

試料調製

第1章で調製した試料を,さらに乾燥エーテルで2日間還 流して不純物である蛍光物質を抽出除去した。乾燥羽毛を形 態学的部位に,rachis,barbs そして calamus に Schroeder ら[19]の述べた方法に従って切り分け,rachis を分析に用い た。 なお重水素化は乾燥 rachis の 0.1gを 5 ml の D₂0 に 浸け,真空封管アンプル中で 40°C 7日間放置した。 羽毛試 料は,H→D 交換に数日を要するという報告[45,46]があるた め,7日間重水素化処理後凍結乾燥した。

2. 装置及び測定

装置は JASCO NR-1800 ラマン分光計:励起光 488nm (Coherent Innoa 70 Ar⁺レーザー),70mW,スリット幅 6 cm⁻¹, スキャタリング 90°を用いて測定した。 試料の蛍光を減ら すために測定する前に低出力レーザーで照射した。 3. アミノ酸分析

ネイティブ羽毛に 3%メルカプト酢酸を含む蒸留塩酸を加 え,110℃,24,48 そして 72 時間真空下で加水分解しそれぞ れをアミノ酸分析計で測定した。 トリプトファンは Penke ら[47]の方法により定量した。

4. 結果と考察

ネイティブ rachis と重水素化 rachis のラマンスペクトル を Fig. 20 に示し, 帰属は Table 8 にまとめた。

Fig. 20. Raman spectra of native (a) and deuterated (b) feather rachis in the solid state.

Table 8	Raman spectra	of native and	deuterated r	achis from	fowl feather
Table 0.					

cm⁻¹

Tentative Assignment^b

Native*			Deuter	ated			
510	м	br				٦	GGG
			517	М	br	≻	ν (S-S) $\int GGT$
525	W	sh				ر	<u> </u>
623	W	S	625	W	S		Phe (F6b)
648	W	sh	648	W	sh	-	Tyr (Y6b)
			666	VW	br	ļ	ν (C-S) \downarrow P _H
746	W	sh	746	W	br	J	L P _c
760	М	br					Trp (W18)
830	W	S	832	W	sh		Tyrosinedoublet \downarrow (Y1)
854	W	sh	857	W	sh		(2Y16a)
866	W						-
882	W	br	882	W	br		Trp(W17)
908	٧W)	
925	W	sh				ļ	ν (CC) + Amide III -
935	W	br	932	W	br	(
958	VW	br	962	VW	br	J	
1006	S	s	1006	S	s		Phe(F1) and Trp(W16)
1033	W	s	1034	W	8	`	Phe (F18a)
1053	WV	sh	1053	W	sh		
1084	WV	br	1095	VW	br	}	u (C-N)
1129	W		1129	W	s	J	
1159	W	br	1160	W	br	-	$ u$ (=C-C=) (β -carotene)
1211	W	sh	1210	Ŵ	sh		Tyr (Y7a) and Phe (F7a)
1243	s	br)	
			1249	М	br	Į	Amide 🎞 + Tyr(Y7a)
1269	М	sh					
			1274	М	br	}	
1324	М	br	1324		br	1	C-H deformation
1345	М	br	1344	М	br	ſ	
1453	s	s	1454	S	S		δ(CH ₂), δ (CH ₃)
1528	VW	br					$(-C=C-)$ (β -carotene)
1554	w	br	1555	W	br		Trp (\3)
1587	vw	br	1588	WV	br		Phe (F8b)
1608	W	S	1611	WV	sh		Phe (F8a)
1620	٧W						Tyr(Y8a) and Trp(W1)
1669	S	s	1668	S	s		Amide I, Amide I ´

^a Abbreviations used in the table of Raman lines: intensity: S(strong), M(medium), W(weak), VW(very weak); shape: s(sharp), br(broad), sh(shoulder)

^b Vibration: ν (strech), δ (deformation), Trp or W(tryptophan residue), Tyr or Y(tyrosine residue), Phe or F(phenylalanine residue)

	Residues per	100 residues	
Amino acid	Calamus	Rachis	Barbs
SCM-Cys	6.01	6.60	6.98
Tyr	1.98	1.35	2.58
Phe	3.02	3.64	3.74
Trp	0.76	0.42	0.45
His	0.58	0.29	0.68

Table 9. Amino acid analyses of fowl body feather parts

ペプチド骨格振動によるアミド I とアミドⅢの帰属は Hsu[48]に基づいて行った。 ラマンスペクトルで強い振動が 見られる芳香族側鎖はニワトリ腹部羽毛ケラチン中に4種あ るが、シスチンの存在量とくらべて低い(Table 9)。

トリプトファン残基を含んだタンパク質の3置換インド ールリングから現れるラマンバンドは,羽毛 rachis(Fig. 20a)から4つのトリプトファンピーク,即ち1620(チロシン のY8aがオーバーラップしたW1),1554(W3),882(W17)760 cm⁻¹(W18)が観察された。W1~18と波数の帰属はFig.21に まとめて示した[41]。

Rachisの W3 波数に対する絶対値の値を Miura [49,50] らの 関係式を用いて求めると約 103°であった。この高い値はア ミノ酸骨格の C_a原子とインドールリングの C₂原子とは離れ る方向に向いていることを示唆している。

Fig.21. Resonance Raman spectra of aqueous L-tryptophan (1 mM) with (a) 200-, (b) 218-, (c) 240-, and (d) 266-nm excitation and (e) the Raman spectrum with 488-nm excitation (pH 6.8, 40 mM). Resonance Raman spectra reprinted with permission from Rava and Spiro, J. Phys. Chem., 89, 1856. Copyright (1985) American Chemical Society.

 N_1 H 振動は, rachis では 882 cm⁻¹に観察されたので,水素 結合の形成は弱いものと思われる[51,52]。 N_1 サイトを重水 素化すると約 20 cm⁻¹シフトダウンするが, rachis の場合, 試料を7日間重水素化したにも拘らず Fig. 20b に見られるよ うに,880 cm⁻¹付近はそのまゝで,20 cm⁻¹のずれが見られな かった。 このことから N_1 サイトは重水が置換できない環境 構造を形成しているものと思われる。

羽毛 rachis の観測結果(Fig. 20a)からは強度比 10:7 の

510 と 525 cm⁻¹(肩)の二つのバンドが見られた。 タンパク質 の-S-S-架橋結合の回転異性、X-C-S-S-C-Yグループ のS-S伸縮振動数の帰属は、ゴーシュ-ゴーシュ-ゴーシュ (GGG)形は約 510cm⁻¹, トランス-ゴーシュ-ゴーシュ(TGG)形 または(GGT)形は約 525cm⁻¹; トランス-ゴーシュ-トランス (TGT)形は約 540cm⁻¹と Sugeta ら [53, 54] により報告されてい る。 したがって、ネイティブ羽毛 rachis はモル比 10:7 の GGG と GGT (or TGG)形の二つのアイソマーを持つことが推測 できた。 羽毛 rachis を重水素化したときは, Fig. 20b に見 られるように二つの S-S は合体して 517cm⁻¹に一つの大きな ピークとして現われた。 波数と強度の変化はおそらく S-S 架橋の幾何学上の変化が重水素化の過程で生じたものと思 われる。 含硫アミノ酸, 即ちシスチン, システイン, メチ オニンの三つは C-S 伸縮バンドを 630-760 cm⁻¹ に与える。 こ れら三残基のうち,羽毛ケラチンにはシステインは存在せず, また, Table 9 に示してあるようにメチオニンは非常に少な い。 この領域で観察されたバンドはシスチングループに帰 属して差し支えないと思われる。 トランス X-C-CH₂-S の構 造とジアルキル-ジスルフィドの C-S 伸縮振動との相互作用 から,Xが水素(P_n)のとき,C-S 伸縮振動の波数は 630-670 cm⁻¹ 付近に, X が炭素(Pc)のとき 700-745cm⁻¹に現れる [41,53,54]。 Fig.20a より 746cm⁻¹のショルダーは C-S 伸 縮振動のPcに帰属でき、トリプトファンのW18バンド760cm⁻¹ とは、はっきりと分かれていた。 重水素化によって、これ ら二つのバンドは合流してブロードなバンド 746cm⁻¹になっ たと考えられる。

46

第3節 小括

球状タンパク質の結晶固体試料を FTIR で測定し, アミド I 領域の波形解析から二次構造の成分比を推定することが 可能であった。 その値は CD スペクトルからのものより結晶 X線回折のデータに近いものが得られた。 スペクトルの二 次構造への帰属は水溶液試料に基づいたものを使用したが 固体試料に対しても有効であった。

羽毛 rachis と calamus の赤外吸収スペクトルは 1655cm⁻¹ に極大吸収を持ち, α -helix の多いタンパク質のものに似て いたが,波形解析し β -sheet 様構造と判定した。 明らかに 羽毛ケラチンの sheet 構造は球状タンパク質のものとは異な ると考えられる。 Rachis, calamus とも sheet 構造の成分比 は約 80%と推定した。

また、rachisについてラマンスペクトル(400 - 1800cm⁻¹) を観測した。 その中で、トリプトファンの W17 バンドは 882cm⁻¹に現れ、N₁H基のインドール環が弱い水素結合状態に あることがわかった。また、それが重水素により置換されな かったことより水分子が接近できない位置に存在している と考えられる。 ケラチン分子の集合に重要な役割を果たし ていると考えられるジスルフィド結合に関するピークも 510 および 525cm⁻¹に観測され、GGG 形と GGT(or TGG)形が共存 していると考えられた。 初めてラマンスペクトルによるア ミノ酸側鎖の情報が得られた。しかし、それらが羽毛ケラチ ンの全体構造の中でどのような役割を果たしているかは、明 らかではなく、今後の研究を待たなくてはならない。

47

第3章 羽毛ケラチンの熱的性質に関する研究 55)

第3章 羽毛ケラチンの熱的性質に関する研究 55)

第2章で羽毛ケラチンには一般球状タンパクにみら れるβ-sheet とは異なる羽毛特有の sheet 構造が多く存 在していることを述べた。 そしてそれが羽毛の物理的強 靱さを維持する役割を果たしていると考えられる。 本章 では実際に羽毛ケラチンの構造安定性を測定する一方法 として加熱による構造変化を FT-IR と示差走査熱量計 (DSC)で検討した。 FT-IR は試料室にホットステージを組 み込むことにより,加熱による構造変化が赤外吸収の変化 としてリアルタイムに観測でき,DSC は構造変化を反映す る熱の出入りを直接観測できる点で最適である。

第1節では球状タンパク質の固体ミオグロビンをFT-IRで 測定し,加熱による二次構造の変化を述べた。 第2節で は羽毛 calamus の加熱 FT-IR を行い,ミオグロビンの熱安 定性と比較した。 第3章では DSC により barbs, rachis, calamus それぞれについて乾燥,湿潤,尿素浸漬状態の試 料を測定し,各部位の熱安定性の差と水および尿素の影響 を述べた。 さらに,湿潤試料を機械的に磨砕し,高次構 造が変化するかどうかを試みた。

49

第1節 固体状態における熱変性ミオグロビンのFT-IR による構造研究⁵⁶⁾

1. 試料の調製

ミオグロビン(Bovine Type Ⅱ)は SIGMA (St. Louis, MO) から購入したものをそのまま用いた。 試料調製は,第2章第1節の試料調製と同様に KBr 結晶板 に挟んでシールした。

2. 装置および測定

装置は第2章第1節に記したものにミクロスコープホットステージ (Mettler, FP-82) を組み合わせた。 熱分析 コントロールユニット (Mettler, FP-90) により温度調 整した。

Fig. 22. Microscope FT-IR equipped with a thermo-optical FP82.

また,加熱分析システムの温度プログラムは Table 9 と Table 10 のバッチメニューを併用して 30-200℃における スペクトルを測定した。 データ処理には,JEOL の JX ソフ トウェアー及び NEC PC9801RX を用いた Lotus 1-2-3 で行った。 なお, SD,波形分析はそれぞれ Table 11, 12 に示してあるパラメータを用い実施した。

Table 10. Autostepwise Method

A		
Start temp.	:	30.0℃
Rate	:	5.0°C/min
End temp.	:	200°C
Time iso	:	4.0min
Waiting	:	120sec
Stop after event	:	Yes
Afterwards	:	At T end
Link to method nr	:	

Table 11. FT-IR Automatic Analysis Batch

1. Wait C1, 120	6. Fill line
2. Loop V1	7. Save file
3. Measure sample	8. Wait C2, 120
4. Move	9. Loop end
5. Option 25	10. End

Table 12. Self-deconvolution Parameter

Apondazuation			
Full width at half-height	:	20.00cm	
Length of interferograms	:	0.050cm	
Enhancement factor (K)	- :	2.100	

Table 13. Wave-analysis parameter

Absorption region	: 1750-1610cm ⁻¹
Base region	$: 1710-1480 \text{ cm}^{-1}$
Final fits	: 0.001
	and the second

3. 結果と考察

Fig. 23a はミオグロビンの 30℃から 200℃までの温度範 囲で測定したアミド I,Ⅱ領域の吸収スペクトル曲線を重 ね書きしたものである。 この重ね書き曲線を見ると,一 見してミオグロビンの二次構造が熱変性を受けているこ とが分かる。 アミド I 吸収バンドのスペクトル曲線は 80℃で,1654 cm⁻¹を頂点とする正規分布型を示している が,温度上昇に伴い山の形は崩れ,やがて 1664 cm⁻¹,1629 cm⁻¹を頂点とする明りょうな二つのピークに分かれてい

Fig.23. Temperature dependence of the amide I and II bands of myoglobin in the solid state a: spectra without self-deconvolution; b: deconvolved spectra

これは1654cm⁻¹の吸収バンドが熱変性を受け低波数側の 1629cm⁻¹にシフトしたためと考えられる。 そこで,この 変化の過程をより明確なものとするため,30℃で与えられ ているスペクトル曲線を対照とし,各温度における曲線の 差スペクトルを描いた。 これらの差スペクトルを多重表 示したのが Fig.24 である。 Fig.24 から温度依存性の高

Fig. 24. Difference spectra in the amide I and II regions of myoglobin in solid state

The spectrum observed at 30° C was subtracted from the spectra observed at the temperatures indicated. Above 80° C temperature intervals were 10° C. い吸収帯は 1653 cm⁻¹ と 1628 cm⁻¹ の 2 つ であることが分かる。 1653 cm⁻¹ の吸収帯 は 30 ℃ から 80 ℃ 近くまで,いったん上 昇し,その後,減少に 転じている。もう一方 の 1628 cm⁻¹ の吸収 帯は 90 ℃ 付近から 上昇を始め,130 ℃ 近 くまでその傾向は続 き,130 ℃ を過ぎると

ピークの形が変わるとともに 1618 cm⁻¹ に肩バンドが見 られるようになった。このことから,高温領域において, 再度の変性が予測される。 また, α -helix の減少がアミ ド I 領域(1653 cm⁻¹), アミド II 領域(1545 cm⁻¹)でも生じ ていることから α -helix が変性していることが確認され た。 さらに定量性を持たせるために, 1628 cm⁻¹, 1653 cm ⁻¹の両ピーク高さの変化を 80℃から 200℃までのそれぞ

る。

れの温度に対してプロットした。 これが Fig. 25 である。

Fig.25. Plots of the 1653 cm^{-1} (O) and 1628 cm^{-1} (A) peak heights of difference spectra in Fig.23. against temperature.

これをみると,1653 cm⁻¹ が 80℃ 以上 で一方的に減少し ているのに対し, 1628 cm⁻¹は90℃付 近から上昇を始め, 120℃ で頂点に達 し,以後下降線をた どっている。 した がって,1628 cm⁻¹ のこの減少曲線は 再度の変性が起き

ていることを示唆している。 これらの結果より, ミオグ ロビンの固体状態における二次構造の変化は 1653 cm⁻¹ から 1628 cm⁻¹へのシフトであり, 90℃ 付近から急激に 進行していることが分かる。 さらにまた, いったん生成 した 1628 cm⁻¹ は 120℃ 付近から再度の熱変性を受け ていることが分かる。 Yamamotoら[57]のリボヌクレアー ゼ A の溶液状態での変性が 58℃ であることとは大きく 相違している。 次いで, ミオグロビンのアミド I 吸収帯 をフーリエ・セルフ・デコンボリューション(FSD)処理し て, 二次構造の推定を行った。 FSD は見かけ上の分解能を 上げ, 幾つかの成分の重なり合っているバンドを個々の成 分バンドに分解する方法であるが, 波形分析に支障をきた さない程度の条件(Table 12)で行った。 Fig. 23b は FSD 処理した吸収スペクトル曲線を多重表示したものである。 未変性状態 (30°)のアミド I バンドからは 1619 cm⁻¹, 1629 cm⁻¹, 1639 cm⁻¹, 1653 cm⁻¹, 1664 cm⁻¹, 1672 cm⁻¹ , 1682 cm⁻¹, 1693 cm⁻¹ の波数位置に, それぞれ肩ピー クが認められた。 Dong ら[32]は, 水溶液タンパク質につ いて, 二次微分と FSD 処理によって二次構造成分比を報告 している。 一方, Byler ら[30]によれば, ミオグロビン の X線解析からの二次構造の含有量はそれぞれ, α -helix: 87%, unordered: 8%, turn: 7% であり, FT-IR からの含 有量はそれぞれ α -helix: 76%, extended chain: 24%で あるという。 β -sheet を含まないということでは一致し ているが, α -helix の含有量や extended chain 含有量 において相違を見せている。 したがって, FT-IR の結果

を主に検討する ことにする。 ミ オグロビンの二 次構造の 帰属に基づき FSD処理後のス ペ クトルを Curve Fitting法 で波形解析 (Table 13)して, 二次構造の相対 含量を求めた。

30℃ での各含量を 1 として各温度に対してプロットした のが Fig.26 である。 Fig.26 の 3 本の曲線のうち 2 本は extended chain と α -helix にそれぞれ特定されて いるが、もう 1 本はこれら 2 つの構造以外をまとめて表 わしたものである。 1628 cm⁻¹ (extended chain)、1653 cm -¹ (α -helix) の 2 本の曲線の動きと、その他から総合 的に判断すると、80℃未満の温度で増加を示した α -helix は、近傍の側鎖を巻き込み、 α 様の構造を示し、以後他の 構造へ変化したものと思われる。 ミオグロビンの固体状 態での熱変性は、 α -helix の螺旋が熱によりやや延びた 形の β -sheet に近い extended chain となり、更にこれ が unordered など規則性のない形へと変換する 2 段階 経由の変性が起こっているものと結論した。 また、 Fig. 23a から分かるように 200℃ でもスペクトル曲線が 描かれていることから、若干の規則性は維持されているものと思われる。

以上のミオグロビンの結果から,固体状態における FT-IR 測定は,タンパク質の高次構造の変化を評価する方 法として有用であることがわかったので,羽毛ケラチンの 熱的性質の検討に利用することにした。

第2節 熱変性羽毛ケラチンの FT-IR による二次構造研究

1. 実験

1-1. 試料の調製

羽毛試料は、第1章の調製と同様に全羽毛を処理した。 熱変性に使用したネイティブ羽毛 calamus はそれ以上の処 理は行わず、測定に用いた。 第2章第1節の試料調製と 同様に KBr 結晶板に挟んでシールした。

1-2. 装置及び測定

装置は,前節 Fig.22 に示したとおりである。 calamus を前節の加熱手順で処理し, 80-200℃の IR スペクトルを 得た。 測定条件はミオグロビン測定と同様にした。

結果と考察

calamus の IR スペクトルと FSD スペクトルを Fig. 27 に示した。 解析には,波数領域 1600-1700cm⁻¹を用いて Dong ら [32]の方法に従い,次のように帰属した:1655 cm⁻¹, helix; 1628 cm⁻¹, β - sheet; 1688 cm⁻¹, turn。 第 2 章第 1 節でも述べたように, 1656 cm⁻¹は一般には α - helix に帰属されるが, sheet の twist 構造への帰属が妥当と考 えられた。 Fig. 27a に示したように, calamus は 80℃に おいて,ミオグロビンに近いスペクトルを示し,熱変性後 のピークは 1662 cm⁻¹, 1630 cm⁻¹に存在した。 1652 cm⁻¹に見 られるアミド I 領域については 120℃付近から 1630 cm⁻¹に 小さなピークの出現が観測された。 180℃以上でこのピー クは急激に減少し、さらにピーク形状も著しく変化し、高 波数側へシフトした。

Fig. 27. Original FT-IR spectra(a) and deconvolved spectra(b) of fowl feather calamus in the temperature range from 80 to 200° C.

また, Fig.27b の FSD 処理したスペクトルから, calamus の変性は 110℃付近から徐々に起こっているこ とが確認された。

1630cm⁻¹の出現温度は、ミオグロビンでは 90℃であった が、calamus では 110℃と 20℃高い温度であった。 こ の変化の過程をより明確なものとするため、ミオグロビ ンの解析と同様に 30℃のスペクトルをリファレンスと した差スペクトルを多重表示したのが Fig. 28 である。 Fig. 28 から温度依存性の高い吸収帯は 1647cm⁻¹ (unordered)と 1628cm⁻¹(β -sheet)であることが分かる。 その面積変化を 80℃から 190℃までそれぞれの温度に 対してプロットしたのが Fig. 29 である。

Fig. 28. Difference spectra in the amide I and II regions of calamus.

Fig. 29. Plots of the 1647 cm^{-1} (\diamondsuit) (unordered) and 1628 cm^{-1} (\blacksquare) (β -sheet) peak area of difference spectra against temperature.

Fig. 29 より 110℃までは,構造変化は見られなかった が,110℃から 170℃までは温度に比例して 1647cm⁻¹は 減少を示し,1628cm⁻¹は増加を示した。 球状タンパク 質に基づいた Dong らの帰属表によれば 1650cm⁻¹付近の ピークは unordered とされるがケラチン特有の sheet 構 造によるものと考えられる。 1630cm⁻¹付近のピークは extended chain か β -sheet か紛らわしいが、Fig. 29 に おいて温度上昇と共に規則的な構造を持った β -sheet がこれほど増加することは考えにくい。 よって、 1628cm⁻¹のピークは extended chain と考えて間違いな いであろう。 即ち、羽毛 calamus の熱による構造変化 は、110℃付近からケラチン特有の sheet 構造を保って いるペプチド鎖間の水素結合が切れ始め、鎖間に結合の ない引き延ばされた状態となり、温度上昇とともに、そ れがさらに進行し、180-190℃で頂点に達し、200℃に至 って急激に全く不規則な構造になると考えられる。 さ らに, Fig. 30 にこの構造変化を 2 次微分スペクトルか らも確認したところ, 1628cm⁻¹(β-sheet)の存在が 180℃までは確かであったが,以後急激に減少している ことが分かる。よって, calamus は 200℃までスペクト ルが存在していたが,規則構造は破壊されているものと 思われる。

Fig. 30. Second-derivative FT-IR spectra for the dry fowl feather calamus with heating from 160°C to 200°C.

固体ミオグロビンの変性温度(90℃)は,水溶液におけ るリボヌクレアーゼ A の変性温度(58℃)Yamamoto ら [57]と比較して約 30℃以上高い。さらに,羽毛 calamus は,約 20℃高いことになる。このことから,羽毛ケラチ ンは熱に対しても強い抵抗性を示すことが確認された。 第3節 示差走査熱量測定による解析

1. 試料

ニワトリの羽毛を鋏で3部位(barbs, rachis, calalus)に 分け,前節と同様にエタノール処理,水置換を行った。水 置換したものを湿潤試料とし,湿潤試料を凍結乾燥して乾 燥試料とした。また, rachis湿潤試料を尿素(2-8M)に40℃, 4h浸漬処理した。湿潤粉砕試料を Polytron(Kinematica, Switzerland) によって,氷冷下で24,000 回転, 30sec 粉 砕し, 60sec 休止する粉砕操作を 10 回繰り返し,フィルタ ー (no.101,濾紙, Advantech, Tokyo, Japan)を用いて 濾過して調製した。本研究には,このように調製した乾 燥試料,湿潤試料,湿潤粉砕試料および尿素処理試料を用 いた。

2. 示差走查熱量測定 (DSC)

湿潤試料,湿潤粉砕試料,乾燥試料および尿素処理試料 の DSC は,SSC-5020DSC100 (Seiko, Chiba, Japan)、を用 いて, 5 K/min の昇温速度を用いたことを除いては Takahashiら[58]の方法に従って測定した。

採取した各試料(乾燥重量,約3mg)をカプセル底部に 密着させるために,銀板(厚さ0.2mm)をかぶせて試料を 押さえ込んで密封した。 湿潤試料および乾燥試料のリフ アレンスには,それぞれ水を封入したカプセルおよび空カ プセルを用いた。DSC 測定後,カプセルの蓋を清浄なニッ パーで切除し,110℃で8h乾燥し,続いて,550℃で8h灰 化した。 カプセル中の試料重量は,灰化後の重量の減量

62

から求めた。

3. 結果と考察

3-1. ケラチンの水分量

湿潤試料を凍結乾燥して得た barbs, rachis および calamus の乾燥試料の水分は, それぞれ 6.3 %,8.2 %およ び 9.2 %であった。

3-2. アミノ酸組成

乾燥試料の barbs, rachis, および calamus は, ヒドロキ シプロリンとヒドロキシリシン(Table 14)が検出されず, 他のコラーゲンのような皮膚由来の硬タンパク質の混入 がないことを確かめた。 全ての試料は, シスチンが非常 に高含量(41-44 残基/1000 残基)であることを示した。 シ スチンから派生するランチオニンは検出されなかったの

	Barbs	Rachis	Calamus	Whole ^b
Hyp	0	0	0	0
Asp	53	51	59	63
Thr	48	45	44	53
Ser	152	151	143	157
Glu	87	83	83	86
Pro	121	124	104	117
Lan	0	0	0	
Gly	115	113	136	115
Ala	57	56	74	56
Cys	44	43	41	42
Val	77	75	68	77
Met	3	5	0	3
Ile	48	45	35	43
Leu	.72	70	87	74
Tyr	17	16	18	16
Phe	28	33	33	36
Hyl	0	0	0	
Lys	9	8	10	12
His	5	4	5	3
Arg	47	46	47	47

Table 14. Amino Acid Compositions^a of Barbs, Rachis, and Calamus from Fowl Feather

*Residues/1,000 residues.

^bAkahane et al.¹⁾

で,過酷な試料調製がなされていないことを示した。 その他のアミノ酸組成は第1章第1節に述べた通りである。

3-3. 乾燥状態における熱挙動

乾燥状態で, ニワトリ羽毛 barbs, rachis, calamus (6.3-9.2 %湿度)の DSC の吸熱ピークは, 湿潤試料(約 110-160℃)と比べ170-200℃(Fig.31, Table 15)と著しく 高い温度領域に認められた。 通常の状態で生体高分子を

Fig. 31. DSC Curves for Dry Fowl Feather Barbs, Rachis, and us as Compared with Those for the Wet Samples., dry sample; -----, wet sample.

加熱すると、高い温度領域では、次のような反応が起こ ると考えられる。(1)高次構造の変化、(2)主鎖の切断、 および/もしくはその限定的再結合(3)構成単位残基を含 む生体高分子の熱分解、および/あるいは無制限な発熱を 伴う酸化分解などである。

ニワトリ羽毛 barbs, rachis, calamus(2-3 mg)を DSC によ る反応終点の温度(160℃)まで加熱し, 室温の水(50m1)で 2min 強く攪拌したが,各々の試料においてタンパクの溶解 は認められなかった。 ケラチンのペプチド結合は吸熱転 移の間では実質的に分解されることはないので, 吸熱ピー クは高次構造の変化を検知したものと考えられる。

Table 15 Thermal characteristics of barbs, rachis, and calamus fromfowl feather evaluated by DSC under the dry condition.

		Pea	ak 1		Peak 2			
	Transition temp. (°C)			Enthalpy	Transition temp. (°C)			Enthalpy
	To	Тр	Tc	(mJ/mg)	Tp1	Tp2	Tc	(mJ/mg)
Barbs	188.4 ±0 .8	191.8 ± 0.8	195.8±0.9	28.0 ± 2.3				
Rachis	175.4 ± 0.8	180.2 ± 0.6	185.2 ± 0.8	6.2 ± 0.8	191.5 ± 0.4	201.3 ± 1.1	207.1 ± 1.2	24.7 ± 1.9
Calamus	172.3 ± 2.1	176.6±2.0	182.1 ± 1.8	10.0 ± 0.7				

To. Onset temp.; Tp, peak temp.; Tc, conclusion temp. Mean±S.D. (n=7).

3-4. 湿潤状態における熱挙動

湿潤状態での羽毛 rachis の吸熱転移は球状タンパク質 やコラーゲンのようなタンパクより(Fig. 32, Table 16)著 しく高い温度領域 110-160℃に 2 つの吸熱ピークを示した。

After immersing rachis in 2-8 M urea at 40 °C for 4 h, DSC was carried out using an airtight silver sample capsule at a heating rate of 5 K/min.
	Peak 1				Peak 2				
	Tı	ransition temp. (°	C)	Enthalpy	Transition temp. (°C)			Enthalpy	
	То	<i>T</i> p	Tc	(mJ/mg)	To	Tp	Tc	(mJ/mg)	
Barbs								1	
native	116.2 ± 1.1	127.1 ± 1.4		7.2 ± 0.8		140.3 ± 1.3	147.6 ± 2.4	17.5 ± 0.7	
pulverized	130.2 ± 1.1	140.7 ± 0.4		2.0 ± 0.3		151.4 ± 0.8	157.0 ± 0.6	17.0 ± 0.9	
Rachis									
native	113.3 ± 1.7	124.0 ± 0.8	133.6 ± 0.5	4.1 ± 1.8	143.1 ± 0.9	148.3 ± 0.4	153.3 ± 0.5	18.4 ± 1.3	
2м urea					132.2 ± 0.5	137.3 ± 0.1	142.8 ± 0.7	10.2 ± 1.3	
4 м urea		·			131.8 ± 0.6	135.4 ± 0.3	141.1 ± 0.3	10.9 ± 1.6	
8 M urea					125.0 ± 0.3	129.8 ± 0.5	134.8 ± 0.8	9.4 ± 2.1	
pulvrized					146.4 ± 1.6	152.8 ± 0.7	158.5 ± 0.7	14.5 ± 1.4	
Calamus									
native	112.6 ± 1.1	122.2 ± 0.7	131.1 ± 0.4	2.6 ± 1.1	143.5 ± 1.2	148.1 ± 0.7	152.4 ± 0.9	9.8 ± 0.5	
pulverized	110.1 ± 2.3	126.8 ± 1.1		8.3 ± 0.9		146.5 ± 1.2	153.8 ± 1.9	20.5 ± 0.9	

Table	16. Thermal	Characteristics of	Barbs, Rachis, and	Calamus from Fo	wl Feather with	or without Urea	a-treatment, or v	with Pulverization	Evaluated
by D	SC under the	Wet Condition							

To, oneset temp.; Tp, peak temp.; Tc, conclusion temp. Mean \pm S.D. (n = 7).

低い方のピーク(ピーク1)は比較的弱くブロードで、高い 方のピーク(ピーク2)は強く鋭く、ピーク2のエンタルピ ーはピーク1の4倍を示した。 したがって, ピーク2は ニワトリ羽毛rachisの主たる熱転移に相当すると考えた。 はじめの DSC 測定後、引き続き室温まで急速に冷却し、再 度同じ昇温速度で加熱したが、 つぎの測定では吸熱ピーク は認められなかった(Fig. 32)。 したがって, ここで検知 された吸熱転移は不可逆であると考えられる。 2-8M 尿素 に 40℃で 4h 浸漬した rachis は. 尿素濃度の増加により転 移温度とエンタルピーが著しく減少した(Table 16)。 尿 素濃度(X)と転移温度(ピーク温度, Y) との間には, Y = 0.311X² - 4.67X + 147.5 (R = 0.978) で示される相関性 の高い関係があることが認められ,エンタルピー(Y)との 間にも、同様に Y = $0.272X^2$ - 3.16X + 17.4(R = 0.902)なる相関性があることが認められた。 これは、おそらく 尿素によって水素結合が破壊されて rachis の高次構造が 不安定になったものと推定した。 ニワトリ羽毛 barbs お よび calamus も、湿潤状態の DSC 曲線は2つの吸熱ピーク を持ち rachis の熱変性と類似していた。 barbs のピーク 2は、rachisと calamus のそれより 8℃低い吸熱ピークを 示した(Fig. 31, Table 16)。 barbs と rachis のエンタルピ ーは類似していたが, calamus はかなり低い値を示した (Table 16)。 これは calamus のアモルファス成分が、 rachisより高い割合を占めているためと考えられる。

粉砕による熱挙動の変化 Fig.33に水中で粉砕した試料のDSC曲線を示す。 粉砕し た試料は,ネイティブ試料の結果と比較して低い方のピー ク(ピーク 1)は rachis では減少又は消滅し,高い方のピー ク(ピーク 2)は高い温度にシフトした(Table 16)。 この

3 - 5

Fig.33. DSC Curves for Wet Fowl Feather Barbs, Rachis, and Calamus as Compared with Those for the Pulverized Samples. -----, native sample; -----, pulverized sample. See Materials and

Methods for the DSC conditions.

ことは、粉砕による剪断力が加わり、ニワトリ羽毛ケラチ ン分子に規則的分子再配列をもたらし、わずかに高い安定 性を与えたのかもしれない。 calamus の場合, 粉砕によっ て粉末部分と針状部分が形成されたが,粉末部分はろ紙に 固着して取れず回収できなかった。 その結果, 粉砕 calamus 試料はほとんど針状部分のみであった。 粉砕 calamus の変性温度はネイティブに近い値を示したが、エ ンタルピーはネイティブの2倍高い値を示したので、これ らの針状部分が規則構造の熱転移において重要な役割を 担っていると考えられ, 粉末部分は事実上アモルファスで あると考えられた。 barbs と rachis の粉砕試料のエンタ ルピーは, ネイティブのそれと類似していた。 ケラチン のペプチド結合は吸熱転移の間ではほとんど分解されな いので、吸熱ピークの存在は、高次構造の変化を検知した ものと考えられる。 また,熱転移における水の著しい効 果は,種々のタンパク質[59,60],殿粉[61]でも報告されて いるが、繊維構造かつ不規則な高次構造のケラチンにおい ても、水分による強い影響が認められた。 羽毛ケラチン の熱変性挙動を検知して高次構造や形態学的差異を評価 するうえで、DSC は有用であった。

第4節 小 括

本章は羽毛ケラチンの構造安定性を検討する一環とし て、熱的挙動を FT-IR と DSC により測定した。 第1節に 基礎的検討としてすでに高次構造の確定しているミオグ ロビンの構造変化を詳細に検討した。固体のミオグロビン は加熱により3段階にわたって構造変化を起こした。 即 ち、30 - 80℃; α-helixの僅かな増加と unordered 構造 の僅かな減少, 80 - 130℃; α-helix の減少に伴う extended chain の急激な増加,130-160℃;extended chain の急激な減少,である。主要な変化は90℃付近から起こり、 α-helixが壊れて伸びた状態になり130℃以上になるとそ れが規則性のない形へと2段階で起きている。 また, 200℃においても 1654cm⁻¹のピークは消失せず残っている ことから熱安定性の高いhelixも存在することがわかった。 第2節では前節の方法を羽毛 calamus に適用し、110℃付 近から構造変化を起こし、180℃以上でさらなる変化を起 こすことがわかった。 これはミオグロビンの場合より約 20℃高く、ケラチンの構造安定性を示していた。

第3節はDSCにより羽毛各部位の熱挙動および水,尿素 の影響を調べた。 乾燥試料では吸熱ピークが barbs;約 190℃, rachis;約 185℃, calamus;約 180℃に現れた。 湿潤試料ではいずれも 150℃付近となり,水分子の存在が 構造変化を起こし易くしていた。 尿素水溶液に浸した試 料ではさらに転移温度は低くなり,また尿素濃度に依存し ていた。乾燥試料から得られた転移温度は FT-IR での測定 の第2段階目の変化に対応していると思われるが,第1段

階目の 110℃付近の変化に対応する吸熱ピークは得られな かった。

.

総 括

ケラチンは生体保護物質として上皮系細胞の角質化に よる生産物である。 羽毛ケラチンは表皮や毛髪と著しく 異なり,身体の保護ばかりでなく飛翔の役割を担うため, 非常に強固な形態を形成しているものと思われる。 そし て羽毛の独特な形態を見ても羽毛ケラチンの分子構造は, 他の繊維タンパク質とは異なる特有なものであると予想 される。 その構造と性質を明らかにするための各種方法 論の開発は,薬学研究も含めて広い研究分野に貢献するば かりでなく,鳥類の進化を研究する上でも重要なことであ ろう。 本研究は一次構造と二次構造, さらに羽毛ケラチ ン分子の集合体の構造安定性を明らかにすることを目的 に行った。

その構造的な特徴は、アミノ酸配列により裏付けられる。 第1章にはその分離精製法、各精製過程における、タンパ ク質の種類、数を明らかにした。それらのアミノ酸、低 分子タンパク質の特性について記述し、アミノ酸配列から、 二次構造の推定を行った。また、その低分子タンパク質 の数を簡便に調べる方法として、キャピラリー電気泳動が 有効であり、その泳動パターンは、鳥類の種により異なり、 最も進化したスズメ目は最も複雑な成分数を持ち、成分の 多様性の程度が鳥類の進化を反映していること、また、羽 毛の形態学的に異なる部位(barbs, calamus)のケラチンは 別個の遺伝子に由来していることが明らかになった。 さらに、ケラチンの構造解析をする場合イオン交換クロマト グラフィーで精製する必要があり、キャピラリー電気泳動

で予め分離パターンを予測できることは大変有用である ことがわかった。

第2章は、固体タンパク質の二次構造とアミノ酸側鎖の 状態を知るため立体構造が既知の球状タンパク質および 羽毛の各部位をFT-IRとラマン分光法で測定した結果を述 べた。固体ミオグロビン、リゾチーム、コンカナバリンA を FT-IR で測定し、解析した結果はいずれもX線データと よく一致し、タンパク水溶液に基づいた Dong ら「31]の 二次構造帰属表が有効であった。 羽毛 calamus および rachis のスペクトルはともに α -helix に富むミオグロビ ンに似ていた。 しかし、波形解析の結果、約 80%の B -sheetが存在すると見積もられた。羽毛ケラチンの sheet 構造は明らかに球状タンパク質中のそれとは異なること が分かった。 ラマン分光からは、トリプトファンと S-S 結合の存在状態が得られた。 特に,7日間重水素化しても N.H サイトのバンドシフトが生じなかったことは、トリプ トファンが重水に接しにくい構造を形成していると推測 される。

第3章では,羽毛ケラチンの構造安定性を調べるために, 試料を加熱しその構造変化を FT-IR で観測し,また DSC で 構造変化に伴う熱変化を測定した。

モデルタンパク質として高次構造がよく分かっている ミオグロビンを用いて、顕微 FT-IR に熱分析システムを組 み込み、温度を連続的に変化させながら構造変化に対応す るスペクトルをとり、それの解析を試みた。 ミオグロビ ンの構造変化は室温から 80℃まで α -helix 隣接部がわず かに巻き、その後130℃付近まで α -helix が引き延ばされ、 さらに温度が上がると不規則構造になるという3段階で 進むと考えられる。 この方法はタンパク質の熱的構造変 化を観測するのに有効であった。 羽毛 calamus に応用し た結果,110℃付近から構造変化を起こし,180℃以上でさ らに変化した。 これはミオグロビンの場合より約20℃高 く,ケラチンの構造安定性が高いことを示している。

DSC の測定では,乾燥状態における羽毛の吸熱ピークは, 高い温度領域(170-200℃)に認められた。 羽毛の各部位の うち barbs が他より約 10℃高く,ピークのトップは 190℃ であった。 また,水分を含んだ状態における羽毛の吸熱 転移は乾燥試料よりも低く,110-160℃の範囲で 2 つの吸 熱ピークを生じた。 2 つの吸熱ピークのうち高温側のピ ークのエンタルピーは,低温側のピークの約4倍であった。 また,尿素存在下における転移温度は湿潤試料よりもさら に低くなり,尿素濃度に依存していた。 当然の結果なが らタンパク質の構造変化に水分子および変性剤としての 尿素の役割が大きかった。

FT-IR においても、DSC で吸熱転移に相当する温度 180-200℃において1626-1628cm⁻¹(β-sheet)は激的な減少 を示した。 ケラチンのペプチド結合は吸熱転移の間では ほとんど分解されないので、吸熱ピークの存在は高次構造 の変化を検知したことを反映したものと考えられる。

DSCの結果において barbsの転移温度が calamus, rachis よりも高く, エンタルピーも2倍以上大きかったことは推 測の外であった。触覚的には barbs は軟らかく, calamus, rachis は硬い。 また, sheet 構造の含有量が barbs は 30-50%, calamus と rachis は 80%である。 規則構造が多

ければ高次構造は安定で物理的にも強固になると考えられる。しかし、熱に対する安定性は機械的な強度とは異なり分子配列の緻密さが重要であり、barbs は細くても強度を保つために緻密な組織なのではないだろうか。

本研究で鳥類特有の羽毛ケラチンの組織学的な部位が 似た性質でありながら、タンパクの成分構成、構造的な違 い、物性の差などがあることが明らかになった。 羽毛の 拡大図 Fig. 34 に示している[19]。 鳥類がこのような微細 構造を持った羽毛を進化の過程でどのように獲得して、ど のように生体内で作り上げているのかという問題を明ら かにするには、まだ多くの研究を必要とするであろうが、 本研究がその一助となっていることを確信する。

Fig. 34. Stereogram showing the structure of a representative feather

略 語 表

SCM	S-カルボキシメチル,
	S-carboxymethyl
DEAE	ジエチルアミノエチル,
	Diethylaminoethyl
CE	キャピラリー電気泳動,
	Capillary electrophoresis
Z1-メチル	トリメチルアンモニウムプロピルスルフォン酸,
	Trimethylammoniumpropansulfonate
FT-IR	フーリエ変換赤外分光々度計,
	Fourier transform infrared spectroscopy
MCT	水銀ーカドミウムーテルル(Hg _{1-x} Cd _x Te),
	Mercury-Cadmium-Tellurium
FSD	フーリエ・セルフ・デコンボリューション,
	Fourier - Self – Deconvolution
DSC	示差走查熱量測定,
	Differential scanning calorimetry

謝 辞

本研究に際し、終始御懇篤なるご指導、御鞭撻を賜りまし た城西大学薬学部薬品分析化学教室 鮫島啓次郎 教授に深 く感謝の意を表します。

実験研究ならびに本論文の作成にあたり有益なご助言,ご 指導を賜りました城西大学理学部分析化学研究室 赤羽 競 客員教授、元城西大学理学部分析化学研究室 新井 邦男 助教授、東京農工大学農学部 高橋 幸資 教授に深謝致し ます。

本論文の作成にあたり、御校閲と御教示を賜りました城西 大学薬学部 山田 紘一 教授並びに従二 和彦 教授に深 く感謝致します。

さらに、この研究にご協力頂きました城西大学理学部分析 化学研究室 高橋 理恵子 助手に深く感謝致します。

引用文献

- 1. Astbury, W.T., and Street, A., *Phil. Trams. Roy. Soc.*, 230A, 75-101 (1931).
- Astbury, W.T., and Woods, H.J., *Phil. Trams. Roy. Soc.*, 333-394 (1933).
- Astbury, W.T., and Marwick, T.C., Nature, 130, 309-310 (1932).
- Bear, R.S., and Rugo, H.J., Ann. N.Y. Acad. Sci., 53, 627-648 (1951).
- 5. Pauling, L., and Corey, R.B., *J. Am. Chem. Soc.*, **72**, 5349 (1950).
- Pauling, L., and Corey, R.B., *Proc. Natl. Acad. Sci.*, USA 37, 251-256 (1951).
- Pauling, L., and Corey, R.B., Proc. Natl. Acad. Sci., USA 37, 261-271 (1951).
- Fraser, R. D. B., MacRae, T. P., Rarry, D. A. D., and Suzuki,
 E., *Polymer*, 12, 35-56 (1971).
- 9. Jeffrey, P.D., Aust. J. Biol. Sci., 23, 809-819 (1970).
- 10. Woodin, A.M., Biochem. J., 57, 99-109 (1954).
- 11. Harrap, B.S., and Woods, E.F., *Biochem. J.*, **92**, 19-26 (1964).
- 12. Filshie, B.K., and Rogers, F.E., *J. Cell Biol.* 13, 1-12 (1962).
- Rogers, D. E., and Filshie, B. K., in 'Ultrastructure of Protein Fibers' p. 123, Academic Press. (1963).
- 14. Akahane, K., Murozono, S., and Murayama, K., J. Biochem.,

81, 11-18 (1977).

- 15. Murayama, K., Akahane, K., and Murozono, S., *J. Biochem.*, 81, 19-24 (1977).
- Murozono, S., Murayama, K., and Akahane, K., J. Biochem., 82, 53-58 (1977).
- Arai, K., Murayama, K., Takahashi, R., Yokote, Y., and Akahane, K., *Eur. J. Biochem.*, 132, 501-507 (1983).
- Arai, K., Murayama, K., Takahashi, R., Yokote, Y., and Akahane, K., *Biochim. Biophys. Acta.*, 873, 6-12 (1986) Elsevier
- Schroeder, W.A., Kay, L. M., Lewis, B. & Hunger, N. J. Am. Chem. Soc., 77, 3901-3908 (1955).
- 20. Chou, P.Y., and Fasman, G.D., *Biochemistry* 13, 211-221 (1974).
- Chou, P.Y., and Fasman, G.D., *Biochemistry*, 13, 222-245 (1974).
- 22. Arai, K., Terasawa, R., Yokote, Y., Takahashi, R., and Akahane, K., *Chromatography* (in Japanese), 15, 161-167 (1994).
- Presland, R. B., Gregg, K., Molloy, P. L., Morris, C. P., Crocker, L. A., and Rogers, G. E., *J. Mol. Biol.*, 209, 549-559 (1989).
- 24. Presland, R. B., Whitbread, L. A., and Rogers, G. E., J. Mol. Biol., 209, 561-576 (1989).
- 25. Takahashi, R., Arai, K., Yokote, Y., and Akahane, K., Sci. Bull. of Josai Univ., 1, 31-47 (1993).

- 26. 0' Donnell, I. J., Aust. J. Biol. Sci., 26, 415-437 (1973).
- 27. 0' Donnell, I. J., and Inglis, A.S., Aust. J. Biol. Sci.,
 27, 369-382 (1974).
- 28. Sibley, C. G., & Ahlquist, J. E., J. Mol. Evol., 26, 99-121 (1987).
- 29. 山階 芳麿, "鳥類," p16-20, タイム ライフ ブックス (1977).
- 30. Susi, H., and Byler, D. M., *Biochem. Biophys. Res. Comm.* 115, 391-397 (1983).
- 31. Byler, D. M., and Susi, H., *Biopolymers*, 25, 469-487 (1986).
- 32. Lewis, P. N., Momany, F. A., and Scheraga, H. A., Proc. Nat1. Acad. Sci. USA, 68, 2293-2297 (1971).
- Dong, A., Huang, P., and Caughey, W. S., *Biochemistry*, 29, 3303 -3308 (1990).
- 34. Levitt, M., and Greer, J., J. Mol. Biol., 114, 181-239 (1977).
- 35. Provencher, S.W., and Glockner, J., *Biochemistry*, 20 33-37(1981).
- 36. Tsuboi, M., Kaneuchi, F., Ikeda, T., and Akahane, K., Can. J. Chem., 69, 1752-1757 (1991).
- 37. Lord, R.C., and Yu, N. T., *J. Mol. Biol.*, **50**, 509-524 (1970).
- 38. Lord, R.C., and Yu, N. T., J. Mol. Biol., 51, 203-213 (1970).
- 39. Tu, A. T. Raman Spectroscopy in Biology: Principles and

Applications. (John Wiley and Sons: New York, N. Y.) p448 (1982).

- 40. Tu, A. T. Spectroscopy of Biological Systems, Advances in Spectroscopy, Vol. 13, Clark, R. J. H., and Hester, R. E. eds., p47-112, Wiley Chichester (1986).
- 41. Harada, I., and Takeuchi, H. Spectroscopy of Biological Systems, Advances in Spectroscopy, vol. 13, Clark, R. J. H., and Hester, R. F. eds, p113-175, Wiley, Chichester (1986).
- 42. Fraser, R. D. B., MacRae, T. P., Rarry, D. A. D., and Rogers,
 G. E. Keratins Their Composition, Structure, and Biosynthesis, p4-6; p121-131, Tomas, Springfield, Illinois. (1972).
- 43. Woodin, A. M., Nature, 173, 823-824 (1954).
- 44. Rudall, K. A., *Biochim Biophys. Acta.*, 1, 549-562 (1947).
- 45. Parker, K. D., *Biochim. Biophys. Acta.*, 17, 148-149 (1955).
- 46. Fraser, R. D. B., and MacRea, T. P., *J. Chem Phys.*, 29, 1024-1028 (1958).
- 47. Penke, B., Ferenczi, R., and Kovacs, K., *Anal. Biochem.*,
 60, 45-50 (1974).
- 48. Hsu, S.L., Moore, W. H., and Krimm, S. *Biopolymers* 15, 1513-1528 (1976).
- 49. Miura, T., Takeuchi, H., and Harada, I., *J. Raman* Spectrosc., 20, 667-671 (1989).
- 50. Miura, T., Takeuchi, H., and Harada, I., *Biochemistry* 27, 88-94 (1988).

- 51. Siamwiza, M. N., Lord, R. C., Chen, M. C., Takamatsu, T., Harada, I., Matsura, H., and Shimanouchi, T., *Biochemistry*, 14, 4870-4876 (1975).
- 52. Takeuchi, H. Watanabe, N. Satoh, Y., and Harada, I., J. Raman Spectrosc, 20, 233 -239 (1989).
- 53. Sugeta, H., Go, A., and Miyazawa, T., *Chem. Lett.*, 83-86 (1972).
- Sugeta, H., Go, A., and Miyazawa, T. Bull. Chem. Soc. Japan, 46, 3407-3411 (1973).
- 55. Takahashi, K., Yamamoto, H., Yokote, Y., and Hattori, M., Biosci. Biotechnol. Biochem., 68, 1875-1881 (2004).
- 56. Akahane, K., Yokote, Y., Arai, K., and Takahashi, R., Bunseki Kagaku (in Japanese), 44, 815-819 (1995).
- 57. Yamamoto, T., and Tasumi, M., *Can. J. Spectrosc.*, 133, 133-138 (1988).
- 58. Takahashi, K., Shirai, K., and Wada, K., J. Food Sci., 49, 1920-1921 (1988).
- 59. Takahashi, K., Shirai, K., Wada, K., and Kawamura, A., *Nippon Nogeikagaku Kaishi*, (in Japanese), 54, 357-359 (1980).
- Fujita, Y., and Noda, Y., Bull. Chem. Soc. Jpn., 51, 567-1568 (1978).
- Takahashi, K., Shirai, K., and Wada, K., Agric. Biol. Chem., 46, 2502-2511 (1982).

