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Abbreviation 

 
AMP  aminopyrine 

BA  benzoic acid 

BP  butyl paraben 

Cal  calcein 

CBS  carbonate buffer saline 

CP  clindamycin phosphate 

DFP  diisopropyl fluorophosphate 

DL
-2

  diffusion parameter 

EIP  emulsion inversion point 

F127  Pluronic 127 

FD-4  fluorescein isothiocyanate-dextran 4 kDa 

FL  fluorescein 

HF  hair follicle 

IP  ibuprofen 

ISDN  isosorbide dinitrate 

ISMN  isosorbide mononitrate 

Jss  steady-state flux 

KL  partition parameter 

LC  lidocaine hydrochloride 

P  permeability coefficient 

PBS  phosphate buffered saline 

PIT  phase inversion temperature 

SC  stratum corneum 

TEWL  transepidermal water loss 

tlag  lag time 
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Abstract  

 

 Acne vulgaris is a very common skin disease, which causes a high degree of 

psychosocial suffering and has a detrimental effect on the quality of life of the patients 

irrespective of age or gender. Treatment of acne is principally directed towards these 

known pathogenic factors. Clindamycin, tetracycline and erythromycin are commonly 

prescribed topical antibiotics for acne vulgaris with anti-inflammatory properties.  

However, the effectiveness of acne treatments has been limited by their relative inability to 

penetrate into the pilosebaceous unit, the site of acne formation.   

It is very important to evaluate concentration of the therapeutic and 

cosmeceutical chemicals in skin because their pharmacodynamics and toxicodynamics can 

be expressed by a function of these concentrations. Their permeation pathway of topically 

applied chemical compounds, i.e., stratum corneum and hair follicle (HF) is closely related 

to their skin concentration. Then, we aimed to investigate the contribution of skin 

permeation of drugs through HF as well as stratum corneum to enable their selective 

delivery to HF.  

The contribution of HF pathway on the skin permeation of chemicals was 

calculated from a difference between their permeability coefficients through skin with and 

without HF plugging using in vitro skin permeation experiment. The obtained result 

revealed that the contribution of HF pathway could be predicted by their lipophilicities. In 

a hydrophilic region of chemicals (logKo/w < 0), a higher reduction ratio was observed by 

HF plugging compared with lipophilic chemicals (logKo/w ≥ 0). In addition, the reduction 

ratio was decreased with an increase in the logKo/w. This consideration on the HF pathway 



 - 2 - 

would be helpful to investigate usefulness and safety of chemicals after their topical 

application and exposure, because skin permeation and disposition must be changed at 

different sites of skin due to different sites and densities of HF.  Furthermore, another study 

was conducted to evaluate the drug disposition in HF. HF concentration of drugs with 

different lipophilicities was investigated to evaluate the effect of physicochemical 

properties on their HF disposition, where drugs having logKo/w < 0 and logKo/w ≥ 0 were 

assumed to be lipophilic and hydrophilic, respectively. Results showed that the lag time 

observed in the skin permeation before obtaining a steady-state profile for 

hydrophilic drugs was delayed compared with that for lipophilic drugs.  Hydrophilic drugs 

were found to be distributed through the HF as well as into the shallow part of stratum 

corneum, whereas lipophilic drugs distributed both into the stratum corneum and HF from 

a histological observation using fluorescent makers.  These results suggest that lipophilic 

drugs could be easily delivered both into the stratum corneum and HF, whereas hydrophilic 

drugs were mainly delivered through HF, but not for deep layer of the stratum corneum. 

Thus, in a future study, aiming to formulate the clindamycin  and tetracycline 

nano-emulsion by using emulsion phase inversion method to increase the effectiveness of 

acne treatment through the increased the penetration of the hydrophilic active compounds 

into  the pilosebaceous unit.  However, only a few studies have been focused on selective 

drug delivery to HF.  
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General introduction 

 

Skin is the outermost and largest organ of the body; i.e., it contributes 10% of 

body weight and 1.7 m
2
 of surface area. Skin consists of three structural layers known as, 

the epidermis (outer surface layer), dermis and subcutaneous tissues (deepest layer). 

Epidermis comprises of two different layers of epithelium, which are the viable epidermis 

and the stratum corneum. The viable epidermis serves as a hydrophilic layer with 

composition of 70% water. On the other hands, the stratum corneum composed of only 

13% water and serves as a hydrophobic layer. Hydrophilic compound is not able to 

penetrate easily across the hydrophobic stratum corneum. Hydrophobic compounds can 

penetrate the stratum corneum but cannot enter the next layer of hydrophilic viable 

epidermis layer
1)

. Dermis gives a mechanical strength to the skin as it composed of 

collagen fibrils embedded in mucopolysaccharide gel. In addition, the dermis contains few 

embedded structures including blood and lymphatic vessels, hair follicles (HF), sebaceous 

glands and sweat glands
2)

. 

A topically therapeutic agent is able to penetrate through the skin via the stratum 

corneum
3) 

and skin appendages including HF
4)

. The stratum corneum route can be divided 

into transcellular and intercellular routes. The transcellular route gives a direct penetration 

of drugs to cross through the stratum corneum. However, this route gives a significant 

resistance against drug permeation as the compound has to pass through both lipophilic 

and hydrophilic layers. Intercellular route is a more common pathway for drug entrance in 

which the compound moving between the corneocytes
5)

. Recently, follicular penetration 

route has shown to be one of the efficient pathways for topically applied compounds
6)

.  
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Pig skin has been a well-known experimental animal skin for many years. It 

serves as a good representative for human model skin due to similarities in terms of 

physiological and anatomical points between human and pig.  The decision of choosing pig 

ear skin in the experiments was because it represents a suitable model for human skin 

according to Jacobi studied in 2005
7)

.  Besides that, human skin has a disadvantage of 

becoming contracted during excision. This causes the HF to be permanently blocked the 

contracted elastic fibers
8)

.  Thus, pig ear skin can be described as a superior model to 

excised human skin in follicular penetration studies. 

Acne vulgaris is one of the most common skin disorders in 80% of most 

adolescents, though it can continue to occur in adulthood especially in women due to 

hormonal imbalance during menstrual cycle.  Comedones, inflamed papules, pustules and 

nodules can be observed in the lesion of acne. Acne is mostly present in the highest 

number of pilosebaceous glands area such as the face, chest and back
9)

. 

The use of antimicrobial therapy or antibiotics in the treatment of acne has 

started since 1930s and 1940s. Although antibiotics have been a part of mainstay treatment 

for a long time, acne experts recommend it to act as an adjunctive therapy instead of 

primary in the role of acne treatment
10)

.  The mechanism on how topical antibiotics help to 

improve acne has not been clearly defined.  They probably act on Propionibacterium acne 

(P. acne) colonization and thus produce pro-inflammatory actions on the comedogenesis.  

The most commonly used topical antibiotics on the acne are clindamycin, tetracycline and 

erythromycin
11)

.  However, topical gentamicin sulfate can also be used to secondary treat 

skin infections including pustular acne
12)

.  
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General concepts of this research are to quantitatively analyze the HF 

contribution pathway on the skin permeation of topically applied hydrophilic and lipophilic 

chemical compounds.  Objective of this research is to investigate the permeation pathway 

of hydrophilic and lipophilic chemicals in the stratum corneum and HF for each chemical 

in details. Understanding the kinetic parameters in HF as well as stratum corneum will be 

essential for development of topical dosage forms for acne therapy 

Many reports have published that skin appendages such as HF and sweat glands 

becomes an important permeation/penetration pathway especially of hydrophilic 

compounds and macromolecules.  Blood and skin concentrations of topically applied or 

exposed chemicals can be calculated from their in vitro skin permeation profiles by taking 

into consideration of skin thickness and applying chemical concentrations.   It is very 

important to evaluate usefulness and safety of topically applied or exposed chemicals, 

because their pharmacodynamics and toxicodynamics can be expressed by a function of 

these concentrations.  Thus, permeation pathways of hydrophilic chemicals, i.e., stratum 

corneum and HF, should be discussed for each chemical in details. Most of the experiments 

were performed to identify the diffusion pathway and distribution of topically applied or 

exposed chemicals through and in skin by an imaging analysis using a confocal 

microscope  

In Chapter 1, contribution to HF pathway of topically applied or exposed 

chemicals was determined from a difference between permeability coefficient of chemicals 

through skin with and without HF plugging.  By concerning the topical routes of drug 

administration, the common skin permeation for drugs is mainly by passing through the 
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stratum corneum. The stratum corneum which located at the outermost layer of skin 

became a major barrier for drug permeation into the skin. Hence, several chemical and 

physical approaches have been researched to encounter the skin barrier. 

In Chapter 2, drug disposition in HF is a key issue after topical 

application.  Although dermatopharmacokinetic parameters of topically applied drugs in 

the stratum corneum have been evaluated using in vitro skin permeation experiment, in 

vivo tape-stripping technique, and so on, few studies have reported on the pharmacokinetic 

parameters in HFs after topical application.  Understanding the dermatopharmacokinetic 

parameters on the HF penetration as well as stratum corneum would be essential for 

development of topical application forms. In the present study, HF concentration of 

topically applied drugs with different lipophilicities was investigated to evaluate the effect 

of physicochemical properties on their HF disposition. 

In Appendix, development of the nano-emulsion formulations to enhance skin 

permeation and HF concentration after topical application was described.  Nano-emulsions 

can be used to deliver drugs to patients via several routes. Currently the administration of 

drugs as in nano-emulsions via topical application has gained increasing interest. Nano-

emulsions can increase the rate of absorption and eliminate variability in absorption. 

Hydrophilic and lipophilic drugs can also be delivered by nano-emulsions to increase their 

bioavailability, since the skin permeability of drugs may be affected by nano-emulsions.  
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Chapter 1 

Contribution of hair follicular pathway of topically applied and exposed chemicals for 

the total skin permeation 

 

1.1.   Introduction 

The body is exposed to many chemical compounds in daily life.  These 

chemicals are mainly absorbed via oral, pulmonary and dermal routes, as well as through 

other mucosa.  Among these, the dermal pathway is more easily accessed by chemicals 

than the other pathways because skin is the outermost tissue covering the whole body and 

has a large surface area
13)

.  The skin is also focused on as the application site of drugs and 

cosmetics.  The pathway for the permeation of therapeutic and cosmeceutical chemicals 

through the skin is thus very important to evaluate their effects.  In case of either skin 

application or skin exposure, skin permeation and the concentration of chemicals should be 

investigated to evaluate their effects and/or toxicities.  

Skin can be histologically divided into three different layers from the surface to 

deeper tissues: stratum corneum, viable epidermis and dermis.  The superficial layer, the 

stratum corneum, is composed of dead corneocytes embedded in intercellular lipid 

matrices consisting of ceramides, free fatty acids, cholesterol and cholesteryl esters
14)

.  

These lipids are organized into lamella structures in the intracellular region of the stratum 

corneum and form the primary barrier against the elimination of endogenous compounds 

and the penetration of exogenous chemicals through the skin
15)

.  The permeation profile of 

chemicals through skin is theoretically expressed by Fick’s 2nd law of diffusion, which 
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expresses the behavior of chemicals passing through the stratum corneum
9, 16)

.  On the 

other hand, many reports
17, 18, 19)

 have been published describing that skin appendages such 

as HF and sweat glands are an important permeation/penetration pathway, especially for 

hydrophilic compounds and macromolecules.   

Many researchers have already investigated the transfollicular permeation of 

topically applied chemicals.  Feldman et al.
12)

 and Maibach et al.
20)

 have reported that 

regional variation in percutaneous absorption was obtained due to different hair densities.  

Hueber et al.
21)

 investigated the role of HF as a skin permeation route with burn scar tissue.  

Grice et al.
 22)

 studied the effect of drug uptake into HF on the skin permeation by a 

cyanoacrylate casting method.  Hairy and non-hairy guinea pig skins were used for in vivo 

and in vitro studies to check the transfollicular absorption.  Furthermore, pharmacokinetic 

modeling was also applied to define the relative contribution of the HF route.  In addition 

to these skin permeation studies, the diffusion pathway and the distribution of topically 

applied or exposed chemicals through and in skin were identified by imaging analysis 

using a confocal microscope
23, 24, 1)

.  However, all of these studies did not involve 

quantitative analyses, and few studies evaluated the contribution of the HF pathway of 

topically applied or exposed chemicals by in vivo or in vitro skin permeation experiments
25, 

11, 26)
.   

Horita et al.
 27)

 have already established a HF plugging method using 

cyanoacrylate-grease mixture, and then reported that the permeation of hydrophilic 

chemicals through HF -plugged skin was dramatically decreased, whereas lipophilic 

chemical permeation through HF-plugged skin was seldom changed compared with that 
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through non-HF-plugged skin.  Otberg et al.
28)

 applied caffeine in a mixed solution of 

ethanol : polyethylene glycol (30 : 70 v/v) to volunteers before and after blocking all HF 

with a varnish solution at the site of its application.  From this study, caffeine was observed 

in blood 20 min after application on the HF-blocked skin, but 5 min after topical 

application to normal skin.  A possible reason for the more rapid appearance of caffeine in 

blood is the rapid absorption of the substance by penetrating through HF to blood 

capillaries.  In addition, Trauer et al.
29)

 reported that the in vivo absorption of caffeine from 

whole skin was much more rapid and substantial than the in vitro absorption.  Furthermore, 

a sandwich technique has been used to clarify the contribution of the HF pathway to the 

whole absorption of topically applied chemicals
26)

.  The sandwich technique revealed that 

the HF pathway could contribute 34% to 60% to the whole skin permeation of chemicals 

with different lipophilicities (logKo/w range: -1.05 to 2.29) and molecular weights (M.W. 

range: 251 to 362).  However, no clear relationship has been reported between 

physicochemical properties and the contribution of the HF pathway to whole skin 

permeation. 

Blood and skin concentrations of topically applied or exposed chemicals can be 

calculated from the in vitro skin permeation profile by taking into consideration of the skin 

thickness
30) and the applied chemical concentrations.  This is very important to evaluate 

the usefulness and safety of topically applied or exposed chemicals because their 

pharmacodynamics and toxicodynamics can be expressed as functions of these 

concentrations.  Thus, the permeation pathway of hydrophilic chemicals, namely, the 

stratum corneum and HF, should be discussed in detail for each chemical.  
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The hair follicular openings occupy only about 0.1% of the whole skin area, but 

this can be as high as about 10% for the face around the mouth and scalp
18)

.  Thus, we have 

to take this into account in terms of the applied chemicals and the skin sites in order to 

evaluate the usefulness and safety of chemicals.  In the present study, the contribution of 

the HF pathway against the whole permeation of chemicals was determined from the 

difference between the permeation coefficients of chemicals through skin with and without 

HF plugging.   

 

1.2.   Method  

1.2.1.   Materials  

Lidocaine hydrochloride (LC), fluorescein isothiocyanate-dextran 4 kDa (FD-4), 

sodium calcein (Cal-Na) and ibuprofen (IP) were obtained from Sigma-Aldrich Co., Ltd. 

(St. Louis, MO, U.S.A.).  Isosorbide dinitrate (ISDN) was kindly donated by Toko 

Pharmaceutical Industrial Co., Ltd. (Tokyo, Japan). Butyl paraben (BP) and isosorbide 

mononitrate (ISMN) were obtained from Tokyo Kasei Kogyo Co., Ltd. (Tokyo, Japan).  

Nile red was obtained from Kanto Chemical Co., Inc. (Tokyo, Japan).  Aminopyrine 

(AMP) and diisopropyl fluorophosphate (DFP) were obtained from Wako Pure Chemical 

Ind., Ltd. (Osaka, Japan).  All other reagents and solvents were of reagent grade or HPLC 

grade, and were used without further purification.  Table 1.1 shows the physicochemical 

properties of the model chemicals used in the present skin permeation experiment. 
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Table 1.1  Physicochemical properties of drugs used in this experiment 

        

Model drug M.W.   LogKo/w (pH) pKa 

FD-4 ca. 4000 -0.77 (7.4) e) 6.7 h) 

Cal-Na 644.5 -3.50 (7.4) f) 5.5 i) 

CP 505 -2.27 (10) 6.9 

FL-Na 376.3 -0.61 (7.4) e) 6.4 e) 

ISDN 236.1 1.23 (7.4) g) ─ 

LC 234.3 
-0.90 (5.0)b) 

1.40 (10.0) d) 
7.9 j) 

AMP 231.3 
-1.00 (3.0) a) 

5.0 k) 
0.98 (7.4) c) 

IP 206.3 
1.93 (3.0) a) 

4.9 l) 
1.25 (7.4) c) 

BP 194.2 3.50 (7.4) c) 8.3 m) 

ISMN 191.1 -0.15 (7.4) g) ─ 

    a)        n-octanol/pH3.0 citrate buffer logKo/w at 32 ºC. 

b)        n-octanol/pH5.0 citrate buffer logKo/w at 32 ºC. 

c)        n-octanol/pH7.4 phosphate buffer logKo/w at 32 ºC. 

d)       n-octanol/pH10.0 carbonate buffer logKo/w at 32 ºC. 
 

e)        n-octanol/pH7.4 phosphate buffer logKo/w at 32 ºC
19)

.  

f)         n-octanol/pH7.4 phosphate buffer logKo/w at 32 ºC
31)

. 

g)        n-octanol/pH7.4 phosphate buffer logKo/w at 32 ºC
32)

. 

h)        pKa at 25 ºC
8)

. 

i)          pKa at 25 ºC
33)

. 

j)          pKa at 25 ºC
6)

. 

k)        pKa at 25 ºC
34)

. 

l)          pKa at 25 ºC
10)

. 

m)      pKa at 25 ºC
4)

. 
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1.2.2.  Determination of n-octanol /buffer partition coefficient 

n-Octanol was saturated with pH3.0 citrate buffer, pH5.0 citrate buffer, pH7.4 

phosphate buffer or pH10.0 carbonate buffer for at least 24 h before the partition 

experiment at 37°C.  Drug was dissolved in n-octanol-saturated buffered solution.  The 

obtained solution was mixed with an equal volume of buffer solution-saturated n-octanol at 

37°C for 24 h.  Drug concentration in the aqueous phase was then analyzed by HPLC.  

Apparent n-octanol/buffer solution partition coefficients (Ko/w) were determined.  

 

1.2.3.   Animals  

 Frozen pig ear skins were purchased from the National Federation of 

Agricultural Cooperative Associations (Tokyo, Japan).  These skins were stored at -30°C 

until the skin permeation experiments.  All animal studies were carried out with the 

recommendations of the Institutional Board for Animal Studies, Josai University (Sakado, 

Saitama, Japan). 

 

1.2.4.   Preparation of skin membrane 

 Purchased skin was frozen at -80°C prior to use.  The skin was thawed at room 

temperature and excised from the outer surface of pig ear after being cleaned with pH7.4 

phosphate buffered saline (PBS).  The excised skin was mounted on a Franz-type diffusion 

cell to conduct the skin permeation study.  In the case of skin permeation study with HF-

plugged skin, the plugging procedure was carried out after skin excision.  The integrity of 

the excised skin was measured using a skin impedance meter 1 h after hydration with 1 mL 
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of PBS and all of the skin samples used in the present study showed resistance of above 20 

kohm/cm
2
. 

 

1.2.5.   Hair follicle-plugging process 

The HF-plugging procedure was as previously reported in detail (Horita et al., 

2014).  This procedure can be briefly summarized as follows.  HF in the designated area 

(effective skin permeation area: 1.77 cm
2
) were plugged with silicone grease-cyanoacrylate 

adhesive mixture paste to block chemical penetration through the HF.  The mixture paste 

consisted of equal parts of silicone grease (Super Lube
®
 Silicone Dielectric Grease; Synco 

Chemical Corp., Bohemia, NY, U.S.A.) and α-cyanoacrylate adhesives (Aron Alpha Jelly; 

Konishi Co., Ltd., Osaka, Japan) with small amounts of Nile red.  Nile red was used to 

visualize the area to which the mixture paste had been applied.  Thus, the HF were plugged 

with the mixture paste to prevent chemical penetration through the follicular pathway.  A 

mean of 56.1  2.5 HF (n=15) were found in the effective pig ear skin permeation area 

(1.77 cm
2
) in the preliminary experiment, and half of them were plugged with the mixture 

paste in the present experiment.  According to Horita et al.
27)

, an almost linear decrease in 

the skin permeation ratio was observed with an increase in the number of HF plugged with 

the mixture paste.  The mixture paste-treated area was measured using imaging software 

(cellSens, Olympus Corp., Tokyo, Japan), equipped with a stereoscopic microscope (SZ61, 

Olympus Corp., Tokyo, Japan).  The effective skin permeation area was about 1.62 cm
2 

after treatment with the mixture paste.  Figure 1.1 shows the skin surface with or without 

the HF plugging. 
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Fig.1.1. Pictures of the pig ear skin surface with (a) or without (b) HF plugging. 

 

1.2.6.   Preparation of applied solution  

First, 5.0 mM FD-4, 1.0 mM FL-Na, 5.0 mM ISDN, 10 mM non-ionized AMP, 

5.0 mM ionized IP, 0.6 mM BP and 500 mM ISMN were prepared with 1/30 mM PBS 

(pH7.4).  Then, 1.0 mM Cal-Na was prepared with pH7.4 PBS containing 1.0 mM EDTA-

2Na.  In addition, 10 mM non-ionized LC was prepared with 100 mM carbonate-

bicarbonate buffer solution (pH10.0) and 100 mM ionized LC was prepared with 100 mM 

citrate buffer solution (pH5.0).  Furthermore, 100 mM ionized AMP and 0.5 mM non-

ionized IP were prepared with pH3.0 citrate buffer.  The pH levels for the fluorescent 

compounds such as FD-4, Cal-Na and FL-Na and weak electrolytes except for BP were 

adjusted to ensure that about 99% were in non-ionized or ionized form.  

 

1.2.7.   In vitro skin permeation experiments  

Excised pig ear skin membrane was mounted on vertical-type diffusion cells 

  

5 mm 

  

5 mm 

a) b) 
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(effective diffusion area: 1.77 cm
2
).  The stratum corneum was hydrated for 1 h with pH-

adjusted solution or PBS containing 2.7 mol/mL DFP.  The latter was used to 

prevent the metabolism of ester compounds during the skin permeation experiment.  It has 

already been confirmed that the hydration procedures with DFP did not affect the skin 

permeation of the esters and their metabolites 
35-37)

.  

After the pre-hydration process, solution applied to the skin was completely 

removed from the diffusion cell and 1.0 mL of test chemical solution and 6 mL of pH-

adjusted solution were applied to the donor and receiver cells, respectively.  The total of 

0.54 mol/mL DFP was added on the dermis side when ester compounds were applied on 

the stratum corneum.  The permeation experiments were performed at 32°C, while the 

receiver solution was continuously stirred with a star-head-type magnetic stirrer.  At 

predetermined times, an aliquot (0.5 mL) was withdrawn from the receiver solution and an 

identical volume of fresh solution was added to keep the volume constant. Each 

experiment was performed in 3 to 4 replicates.   

 

1.2.8.   Determination of FD-4 and FL using a spectrofluorophotometer 

The concentrations of FL, Cal and FD-4 in the samples were analyzed using a 

spectrofluorophotometer (RF 5300PC; Shimadzu) at excitation wavelengths of 480 nm, 

488 nm and 490 nm, and at fluorescent emission wavelengths of 535 nm, 515 nm and 520 

nm, respectively. 

 

1.2.9.   Determination of drugs using an HPLC system  
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Concentrations of drugs (LC, ISDN, AMP, IP, BP and ISMN) in the samples 

were determined using an HPLC system (Prominence; Shimadzu, Kyoto, Japan) equipped 

with a UV detector (SPD-M20A; Shimadzu).  The drug samples (0.2 mL) were added to 

the same volume of acetonitrile for ISMN or acetonitrile containing internal standard 

(methyl paraben for LC, butyl paraben for ISDN, AMP and IP, and propyl paraben for BP), 

and mixed with a vortex mixer.  After centrifugation at 3600×g and 4°C for 5 min, 20 µL 

of the supernatant was injected into the HPLC system.  Chromatographic separation was 

performed using an Inertsil-ODS-3 (5 µm, 150×4.6 mm i.d.; GL Science, Kyoto, Japan) at 

40°C.  The mobile phase was 0.1% phosphoric acid containing 5 mM sodium 1-

heptanesulfate/acetonitrile (70/30, v/v) for LC, water/acetonitrile (55/45, v/v) for ISDN, 

0.1% phosphoric acid containing 5 mM sodium dodecyl sulfate/acetonitrile (30/70, v/v) for 

AMP, 0.1% phosphoric acid/acetonitrile (55/45, v/v) for ISMN and water/acetonitrile 

(90/10, v/v) for ISMN.  The flow rate was adjusted to 1.0 mL/min and detection was 

performed at UV 220 nm (ISMN and ISDN), 230 nm (LC), 245 nm (AMP), 260 nm (BP) 

or 263 nm (IP).  

 

1.2.10.   Analysis of permeation parameters 

Skin permeation parameters were calculated using time courses of the 

cumulative amounts of chemicals that permeated through a unit area of skin with or 

without HF plugging.  The steady-state flux (Jss) (a steady state was reached 6–10 h after 

starting the experiment) was estimated from the slope of the linear portion of the profile of 

the cumulative amount of chemical that permeated through a unit area of skin versus time, 
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and the lag time (tlag) was calculated from the intercept on the time axis by extrapolation 

from the steady-state skin permeation profile.  From Jss and the initial donor concentration 

(Cv), the permeability coefficient (P) was calculated using eq. 1.  The partition parameter 

(KL) and the diffusion parameter (DL
-2

) were then obtained from eqs. 2 and 3 
38)

:  

                                
 

  
                                                                                                                    

                            
  

  
                                                                                                            

                                                                                                                                      

where L, D and K are the thickness of the barrier membrane, the diffusion coefficient of 

chemicals in the membrane and the partition coefficient of chemicals into the membrane, 

respectively.  DL
-2

 was obtained from eq. 2 and KL was calculated from P and DL
-2

 values 

according to eq. 2. 

In addition, the reduction ratio of P of topically applied chemicals due to HF 

plugging was calculated using eq. 4. 

                 
                                               

                         
               

 

Then, the contribution of the HF pathway to the whole skin permeation of 

chemicals was obtained by doubling the reduction ratio shown in the figure, since plugging 

of 30 of the total of 60 HF in the effective skin area had been carried out.  

 

1.2.11.   Statistical analysis 

Statistical analysis was performed using unpaired Student’s t-test and ANOVA.  
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p value of less than 0.05 was considered significant. 

 

1.3.   Results 

1.3.1   Effect of pH on the skin permeation of ISDN 

Figure 1.2 shows the time course of the cumulative amount of ISDN that 

permeated through pig ear skin from its solution with different pH levels (pH3.0, 7.4 and 

10.0) in order to investigate the effect of pH on the skin permeation of the neutral drug.  As 

expected, almost the same ISDN permeation profiles were obtained independently of the 

pH under these experimental conditions.  In addition, skin permeation parameters of tlag, 

DL
-2

 and KL obtained from the skin permeation profiles of ISDN for pH3.0 and pH10 

solutions were very similar to those for the pH7.4 solution (Table 1.2).   
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Fig.1. 2.  Time course of the cumulative amount of ISDN that permeated through pig ear 

skin from its solution.  pH3.0 (), pH7.4 () and pH10.0 ().  Each point represents the 

mean  S.D. (n = 3-4). 

 

1.3.2   Effect of hair follicle plugging on the skin permeation of drugs 

Figures 1.3a and b show the effect of HF plugging on the skin permeation of 

ionized and non-ionized AMP, respectively.  The cumulative amount of ionized AMP (at 

pH3.0) that permeated through the plugged skin was about half that through the non-

Table 1.2  Skin permeation parameters of ISDN from solutions with different pHs 

 
  pH3.0 pH7.4 pH10.0 

Q6 

(mol/cm2)# 
1.3010-1  1.6410-2 1.1910-1  2.1810-2 1.2210-1  1.1110-2 

P (cm/s) 2.4610-6  4.6710-7 2.0110-6  2.9310-7 1.8610-6  2.3410-7 

tlag (h) 1.91  0.23 2.22  0.16 2.02  0.21 

DL-2 (cm-1) 1.0210-1  1.2510-2 7.5610-2  5.3610-3 8.4210-2  8.2710-3 

KL (cm) 2.3510-5  2.7410-6 2.6210-5  2.2410-6 2.3010-5  5.0310-6 

#Q6: Cumulative amount of ISDN that permeated through the skin over 6 h.    
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plugged skin (Fig. 1.3a).  On the other hand, the cumulative amount of non-ionized AMP 

(at pH7.4) that permeated through the plugged skin was about 0.7-fold that through the 

non-plugged skin (Fig. 1.3b).  The sizes of these decreases in the cumulative amount of 

AMP that permeated were greatly affected by the ratio of ionized to non-ionized forms.  

Table 3 shows permeation parameters calculated from the skin permeation profiles shown 

in Fig. 1.3.  These parameters can be utilized to evaluate the changes in distribution and/or 

diffusion of topically applied or exposed chemicals to and across the skin 
19, 39)

.  The KL 

values obtained through the HF plugging were decreased at both pH3.0 and pH7.4 

compared with those of non-plugged skin, although the DL
-2

 values were almost the same.  

These decreased KL values at both pH3.0 and pH7.4 corresponded to the sizes of the 

decreases in the cumulative amount of AMP that permeated through the plugged skin 

compared with the non-plugged skin. 

   

 

Table 1.3  Skin permeation parameters and reduction ratio of AMP with or 

without HF-plugged skin 

    Non-HF plugging HF plugging Ratio# 

pH3.0 

Q10 

(mol/cm2) 
2.4010-2  7.5510-3 1.1710-2  4.4110-3 0.49 

P (cm/s) 8.7010-9  2.3810-9 4.7310-9  2.0210-9 0.54 

tlag (h) 2.53  0.5 2.56  0.4 1.01 

DL-2
 (h-1) 1.1710-4  2.3210-5 1.1910-4  1.8610-5 1.02 

KL (cm) 7.5810-5  2.0010-5 3.9910-5  1.7010-6 0.52 

pH7.4 

Q10 

(mol/cm2) 
3.7810-2  1.4110-3 2.7310-2  2.1110-3 0.72 

P (cm/s) 1.6110-7  8.1010-9 1.4310-7  1.6110-8 0.89 

tlag (h) 3.85  0.14 4.18  0.24 1.09 
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 (h-1) 1.7810-4  6.3410-6 1.9410-4  1.1110-5 1.09 

KL (cm) 9.0610-4  5.0510-5 7.5110-4  1.0510-4 0.83 

Ratio#: HF plugging/non-HF plugging 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 

 

Fig.1.3. Time course of the cumulative amount of AMP that permeated through pig ear 

skin at pH3.0 (a) and pH7.4 (b). Non-HF-plugged skin (), HF-plugged skin (). 

Each point represents the mean  S.D. (n = 4). 

 

 

Next, a skin permeation experiment for several chemicals was carried out with or 

without HF plugging to determine their P values as listed in Table 1.4.  This table also 

shows the reduction ratio of P values calculated using eq.4.  Reductions of the P value of 

around 50% were observed for FD-4, Cal-Na, FL-Na, ionized LC, ionized AMP and ISMN, 
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whereas no or only slight reductions (less than 20%) in P value were observed for non-

ionized BP, non-ionized IP and non-ionized LC.  Furthermore, reduction ratios of P values 

of 20% to 40% were shown for non-ionized AMP, ionized IP and ISDN. 
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Table 1.4 Reduction in permeability coefficient of chemicals through the HF-

plugged skin. Values are the mean  S.E. (n = 3-4). 

 

  

pH of 

applied 

solution 

P values through 

HF-non-plugged 

skin (×10-8 cm/s) 

P values 

through HF-

plugged 

skin(×10-8 cm/s) 

Reduction 

ratio (%) 

FD-4 7.4 0.064  0.032 0.026  0.012 59 

Cal-Na 7.4 2.8  1.2 1.4  1.7 50 

CP 10.0 3.2  0.68 1.2  0.12 61 

FL-Na 7.4 1.4  0.57 0.62  0.089 56 

ISDN 7.4 371  122 242  65 35 

Ionized LC 5.0 2.3  0.61 1.1  0.31 52 

Non-ionized LC 10.0 255  109 210  49 18 

Ionized AMP 3.0 0.88  0.48 0.46  0.42 48 

Non-ionized AMP 7.4 17  0.74 13  0.50 24 

Non-ionized IP 3.0 1520  270 1300  81 14 

Ionized IP 7.4 87  16 59  5.4 32 

Non-ionized BP 7.4 132  50 132  143 0 

ISMN 7.4 8.9  1.2 4.9  3.6 45 

 

 

1.3.3   Factors of skin permeation reduction by hair follicle plugging 

Figure 1.4 shows the relationship between the molecular weight of topically 

applied chemicals and the reduction ratio of P values by HF plugging.  A reduction ratio of 

P values of around 50% was observed for chemicals with a molecular weight greater than 

400 Da.  The reduction ratio of P values seems to increase with an increase in the 
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molecular weight in the range from 200 to 400 Da, but the relationship between the 

reduction ratio of the P value of chemicals and their molecular weights was inconsistent, 

especially from 200 to 350 Da.   

 

 

 

Fig. 1. 4.  Relationship between the reduction ratio of skin permeation by HF 

plugging and the molecular weight of the chemicals. : ionized form (acidic or 

basic chemicals), : non-ionized form (acidic or basic chemicals), : neutral 

chemicals. 
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Next, the effect of the lipophilicity of chemicals, logKo/w, on the reduction ratio 

of the P value was investigated.  Figure 1.5 shows the relationship between the reduction 

ratio of the P value of chemicals and their log Ko/w values.  For hydrophilic chemicals 

(logKo/w < 0), a higher reduction ratio was observed than for lipophilic ones (logKo/w ≥ 0).  

In addition, the reduction ratio decreased with an increase in logKo/w.  Furthermore, about a 

10% reduction of chemical permeation was evenly observed for every 1.0 logKo/w increase 

of chemicals (i.e., every 10-fold increase in Ko/w value) within the range of logKo/w values 

from 0 to 4.  

 

  

Fig .1.5.  Relationship between the reduction ratio of skin permeation by HF 

plugging and the partition coefficient of the chemicals. : ionized form (acidic 

or basic chemicals), : non-ionized form (acidic or basic chemicals), : neutral 

chemicals.  
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1.4.   Discussion 

Generally, blood and skin concentration profiles of topically applied or exposed 

chemicals or drugs can be calculated from the in vitro skin permeation profile
40), 41), 42)

.  

Presently, the calculation method is especially applicable for chemicals for which the main 

permeation route is the stratum corneum.  If the contribution of HF to the total skin 

permeation of chemicals can be obtained, blood and skin concentrations of drug would be 

more precisely predicted.  Since excised skin used in an in vitro study might show a 

histological reduction in the follicular penetration pathway via contraction of the elastic 

fibers surrounding HF, Patzelt et al.
43)

 speculated that an in vitro skin permeation 

experiment may not be suitable for determining the contribution of the HF pathway to the 

total skin permeation of chemicals.  On the other hand, Raber et al.
44)

 reported an excellent 

in vivo/in vitro correlation in terms of the nanoparticles level recovered from HF after their 

topical application.  In vitro skin permeation experiments have already been broadly used 

to evaluate and develop transdermal drug delivery systems (TDDS).  Furthermore, there 

are ethical issues associated with in vivo experiments, especially regarding the 

development of cosmeceutical products.  Therefore, in the present study, an in vitro 

experiment was carried out to determine the contribution of the HF pathway.  

According to Horita et al.
27)

, a good linear regression was obtained between the 

decrease in the skin permeation of a high-molecular-weight chemical, FD-4, and the 

number of HF plugged.  About 58 visible HF were confirmed in an effective skin 

permeation area of 1.77 cm
2
.  The point at which the regression line crossed the x-axis 

showed that plugging of 28 and 58 HF led to decreases in the skin permeation of FD-4 of 



 - 27 - 

50 and 100 percent, respectively.  Furthermore, no permeation of FD-4 or FL-Na was 

observed through three-dimensional cultured human skin models
19)

.  This is because the 

cultured human skin models have no HF.  Thus, the present results strongly suggest that 

the HF pathway is the primary pathway of FD-4 and FL-Na through the skin.  Thirty HF in 

the effective skin permeation area were plugged in this study to calculate the contribution 

of the HF pathway to the whole skin permeation of topically applied or exposed chemicals. 

Among the present results, only KL parameters were decreased by HF plugging, 

while the values of DL
-2

 were almost constant after the application of AMP solution at 

different pH levels, suggesting that the plugging method could enable evaluation of the 

contribution of the HF pathway to the total skin permeation of chemicals.  The fraction of 

HF in a diffusion area should be related to the partition parameter of chemicals when HF 

are its main permeation route
19)

.  Therefore, the present plugging method should be useful 

for calculating the contribution of HF to the permeation of topically applied or exposed 

chemicals.   

Figure 1.6 shows the relationship between the contribution of the HF pathway 

and the partition coefficient of chemicals.  The contribution of the HF pathway was also 

compared with other published data to verify our results.  Frum et al.
26)

 reported the 

influence of logKo/w on HF penetration by an in vitro sandwich method.  The percentage 

contribution by follicles decreased with an increase in the lipophilicity of topically applied 

or exposed compounds, and the levels of contribution (4%, 2%, 46%, 60%, 58%, 46% and 

34% for estradiol [logKo/w: 2.29], corticosterone [logKo/w: 1.94], hydrocortisone [logKo/w: 

1.60] and aldosterone [logKo/w: 1.08], respectively) were almost the same as our calculated 
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values.  On the other hand, a downward parabolic relationship was observed for the 

hydrophilic compounds (58, 48 and 34% for cimetidine [logKo/w: 0.40], deoxyadenosine 

[logKo/w: 0.40] and adenosine [logKo/w: -1.05], respectively).   

These data are very different from my calculated values.  Frum et al.
26)

 

calculated the HF contribution from a 28 or 48 h-skin permeation experiment.  Excess 

hydration of the stratum corneum may change the skin characteristics by causing swelling 

and the development of water pools in the intercellular lamellar region
45)

.  This might be a 

reason for the low contribution of the HF pathway for hydrophilic drugs compared with the 

present results.  Furthermore, the formulation of topically applied drugs would also affect 

the contribution of the HF pathway due to variation in the partitioning of chemicals in skin.  

Liu et al.
 25)

 reported that caffeine (logKo/w: –0.01) was absorbed through HF within 30 min 

after topical application in a binary solvent of 30% ethanol and 70% propylene glycol, and 

that 10.5% to 33.8% of the total amount was absorbed through the HF.   

This binary solvent could increase the skin permeation of chemicals by causing 

variation in the fluidity of the stratum corneum lipids.  However, a much higher 

contribution of HF (over 90%) was obtained from aqueous solution in the present study.  

Thus, differences in the formulation should be an important issue to determine the 

contribution of HF to the permeation of topically applied or exposed chemicals.   
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Fig.1.6. Relationship between the contribution of the HF pathway and the partition 

coefficient of the chemicals. : ionized form (acidic or basic) chemicals, : non-ionized 

form (acidic or basic) chemicals, : neutral chemicals. 

 

This report reveals that the contribution of the HF pathway to the total skin 

permeation of topically applied or exposed chemicals could be calculated by using their 

lipophilicity.  Molecular weight, lipophilicity, number of hydrogen donors or acceptors, 

electron affinity, charge densities, and atomic and molecular orbits (LUMO/HOMO) are 

also very important for the skin permeation of chemical compounds
3, 5, 7, 44, 45)

. More 

precise estimation might thus be possible by considering these parameters. 
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1.5.   Chapter conclusion 

This chaptershows that the contribution of the HF pathway to the total skin 

permeation of chemicals can be determined by using their lipophilicity.  Consideration of 

the HF pathway would be helpful to investigate the usefulness and safety of chemicals 

after their topical application because skin permeation and disposition would vary among 

different sites of skin due to the differences in the character and/or density of HF.   
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Chapter 2 

Evaluation of drug disposition in hair follicles after topical application 

 

2.1.  Introduction 

Drug concentration at target sites is very important to expect the 

pharmacological effect.  Therefore, optimization of drug formula and formulation design 

should be conducted to effectively deliver an adequate amount of drug to the target site.  In 

the 1st chapter, HF route showed higher contribution for hydrophilic drugs against the total 

skin permeation compared for lipophilic drugs.  Hydrophilic acne treatment agents such as 

clindamycin, gentamycin sulfate and tetracycline hydrochloride, therefore, could be 

delivered to HF.  The total skin permeation of hydrophilic drugs is normally lower than that 

of lipophilic ones, and the cumulative amount of drug permeated through skin was 

increased with an increase of lipophilicity.  In addition, drug concentration has a very close 

relation to its skin permeation. Sugibayashi et al.
32)

, reported that skin concentration of 

topically applied drugs could be calculated with permeation parameters such as partition 

coefficient and permeability coefficient obtained from drug permeation profiles thorough 

full-thickness and stripped skins.   

To develop the formulation and structure for topically applied drugs such as 

local anesthesia, painless and atopic dermatitis treatments, several method like suction 

blister
46-48)

, punch and shave biopsies
47,48)

, tape-stripping
49-51)

, heat-separation
52,53)

, 

autoradiography
54) 

methods have been used to determine drug concentration at target site in 

the skin.  On the other hand, few studies have published on the drug concentration profiles 
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in the HF after topical application, although pharmacokinetics at the target site is important 

for drug discovery and development,    

Thus, in the 2nd chapter, HF concentration after topical application of drugs with 

different physicochemical properties was considered to estimate the effect of lipophilicity 

of topically applied drugs on its steady-state concentration in HF and related 

pharmacokinetics.   

 

2.2.   Methods 

2.2.1.   Materials and methods 

Isosorbide-5-mononitrate (ISMN), butyl paraben (BP), clindamycin phosphate 

(CP) and sodium calcein (Cal-Na) were purchased from Tokyo Chemical Industry Co., Ltd. 

(Tokyo, Japan). Benzoic acid (BA) and diisopropyl fluorophosphates (DFP) were 

purchased from Wako Pure Chemical Industries, Ltd (Osaka, Japan). Lidocaine 

hydrochloride monohydrate (LC) was purchased from Sigma-Aldrich (St. Louis, MO). The 

other solvents and reagents were of HPLC grade and regent grade-purity.  All reagents 

were commercially available and used without further purification. Table 2.1 shows 

chemical structures, molecular weights (M.W.), n-octanol/water coefficients (logKo/w) and 

acid dissociation constant (pKa). In the present study, chemicals were classified into 

lipophilic and hydrophilic chemicals according to their logKo/w values; chemicals with 

logKo/w values greater than 0 are regarded as lipophilic drugs and those with logKo/w values 

less than 0 are considered hydrophilic drugs. 
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Table 2.1.  Chemical structures and physicochemical properties of model permeants. 

 

Drug Chemical structure  M.W. LogKo/w 
pKa 

 

Benzoic acid 

(BA) 
 

122.1 
1.90 (pH 3.0) 

a)
 

-0.41 (pH 7.4) 
c)

 
4.2 

f)
 

Isosorbide 

mononitrate 

(ISMN) 

 

191.1 -0.20 (pH 7.4) 
c)

 - 

Butyl paraben 

 (BP) 
 

194.2 3.50 (pH 7.4) 
c)

 8.3 
g)

 

Lidocaine 

(LC) 

 

234.3 
-0.90 (pH 5.0) 

b)
 

1.40 (pH 10.0) 
d)

 
7.9 

h)
 

Clindamycin  

phosphate 

(CP) 

 

505.0 -2.27 (pH 10.0) 
d)

 6.9 
i)
 

Sodium 

calcein  

(Cal-Na) 

 

644.5 -3.51 (pH 7.4) 
e)

 5.5 
j)
 

a) n-octanol/pH 3.0 citrate buffer logKo/w at 32ºC. 

b) n-octanol/pH 5.0 citrate buffer logKo/w at 32ºC. 

c) n-octanol/pH 7.4 phosphate buffer logKo/w at 32ºC. 

d) n-octanol/pH 10.0 carbonate buffer logKo/w at 32ºC. 

e) from Ref. 
55)

. 

f) from Ref. 
56)

. 

g) from Ref. 
57)

. 

h) from Ref. 
58)

. 

i ) from Ref. 
59)

. 
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j ) from Ref. 
60)

. 
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2.2.2.   Determination of n-octanol / buffer partition coefficient 

n-Octanol was saturated with various pH buffer solutions as follow: pH3.0 

citrate buffer, pH 5.0 citrate buffer, pH 7.4 phosphate buffered saline (PBS) or pH 10.0 

carbonate-bicarbonate buffer for at least 24 h before starting the experiment at 37 °C. Each 

drug was dissolved in n-octanol-saturated buffered solution. The obtained solution was 

mixed with an equal volume of buffer solution-saturated n-octanol at 37 °C for 24 h. Drug 

concentration in the aqueous phase was then analyzed with HPLC. Apparent n-octanol / 

buffer solution partition coefficients (Ko/w) were then determined.  

 

2.2.3.   Animals  

Frozen pig ear skin samples were purchased from the National Federation of 

Agricultural Cooperative Associations (Tokyo, Japan).  These skin samples were stored at -

30°C until the skin permeation experiments. All animal studies were carried out with the 

recommendations of the Institutional Board for Animal Studies, Josai University (Sakado, 

Saitama, Japan). 

 

2.2.4.   Preparation of skin membrane 

Purchased skin was maintained as frozen at -30°C prior to use. The skin was 

thawed at room temperature and excised from the outer surface of pig ear skin after being 

cleaned with the same buffered solution to be applied in skin permeation study. The 

excised skin was mounted on a Franz-type diffusion cell to conduct skin permeation study.  

The same buffered solutions used in the skin permeation study were applied for 1 h to the 
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hydrate stratum corneum. To avoid hydrolysis by esterase in skin, 2.7 mM diisopropyl 

fluorophosphates (DFP), a serine protease inhibitor, was included in the buffer solution for 

1 h.  No skin permeation changes were appeared for 1 h treatment with DFP 
61-63)

.  

 

2.2.5.   Preparation of applied solution  

30 mM ionized BA, 50 mM ISMN, 0.5 mM BP and 1 mM Cal-Na were prepared 

with 1/30 mM PBS (pH 7.4).  In addition, 10 mM non-ionized LC and 100 mM CP were 

prepared with 100 mM carbonate-bicarbonate buffer (pH10.0) and 100 mM ionized LC 

and non-ionized BA were prepared with 100 mM citrate buffer (pH5.0).   

 

2.2.6.   In vitro skin permeation study 

After the pre-hydration process, applied solution to the skin was completely 

removed from the diffusion cell and 1.0 mL of test chemical solution and 6 mL of pH-

adjusted solution were applied to the donor and receiver cells, respectively. A total of 0.54 

mol/mL DFP was added on the dermis side when ester compounds were applied on the 

stratum corneum. The permeation experiments were performed at 32°C, while the receiver 

solution was continuously stirred with a star-head-type magnetic stirrer. At predetermined 

times, an aliquot (0.5 mL) was withdrawn from the receiver solution and an identical 

volume of fresh solution was added to keep the volume constant. Each experiment was 

performed in 3 to 4 replicates. 
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2.2.7.   Estimationdrug concentration in hair follicles 

After in vitro skin permeation study, the skin was removed carefully from the 

diffusion cell after the applied solution containing drug was recovered. Then, the stratum 

corneum and dermis sides were washed 3 times, respectively, with 1.0 mL of the same pH-

adjusted solution used to skin permeation study. Thirty hairs were removed from the 

effective skin permeation area with forceps under a stereoscopic microscope observation. 

The removed hairs with follicle tissue were measured by weight and vortexed for 20 min in 

400 µL of pH-adjusted buffer solution. The solution was centrifuged (CT15RE
®
, Hitachi 

Koki Co., Ltd., Tokyo, Japan) at 15,000 rpm for 4 min at 4ºC, drug concentration in the 

obtained supernatant was measured with HPLC or spectrofluorophotometer. Apparent drug 

concentration inHF was calculated from the obtained drug amount with the hair removed 

from the drug-treated skin.  This apparent drug concentration (drug amount/hair weight%) 

was assumed to “that in HF” (see discussion in detail). 

 

2.2.8.   Determination of Cal using a spectrofluorophotometer 

The concentrations of Cal in the samples were analyzed using a 

spectrofluorophotometer (RF 5300PC; Shimadzu) at an excitation wavelength of 488 nm 

and at a fluorescent emission wavelength of 515 nm. 

 

2.2.9.   Determination of drugs  using an HPLC system 

Concentrations of drugs (LC, ISDN, BA, CP, BP and ISMN) in the samples were 

determined using an HPLC system (Prominence; Shimadzu, Kyoto, Japan) equipped with a 
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UV detector (SPD-M20A; Shimadzu). The drug samples (0.2 mL) were added to the same 

volume of acetonitrile for ISMN and CP or acetonitrile containing internal standard 

(methyl paraben for LC, butyl paraben for ISDN, BA for ethyl paraben, and propyl paraben 

for BP), and mixed with a vortex mixer. After centrifugation at 3600×g and 4°C for 5 min, 

20 µL of the supernatant was injected into the HPLC system.  Chromatographic separation 

was performed using an Inertsil-ODS-3 (5 µm, 150×4.6 mm i.d.; GL Science, Kyoto, 

Japan) at 40°C. The mobile phase was 0.1% phosphoric acid containing 5 mM sodium 1-

heptanesulfate/acetonitrile (70/30, v/v) for LC, water/acetonitrile (55/45, v/v) for ISDN, 

0.1% phosphoric acid/acetonitrile (55/45, v/v) for BA and BP and water/acetonitrile (90/10, 

v/v) for ISMN, 100 mM KH2PO4 (pH 2.5)/acetonitrile (80/20, v/v) for CP.  The flow rate 

was adjusted to 1.0 mL/min and detection was performed at UV 220 nm (ISMN and ISDN), 

230 nm (LC), 210 nm (CP), 260 nm (BP) or 254 nm (BA).  

 

2.2.10.   Calculation of skin permeation parameters 

The flux of skin permeation experiment was calculated from drug permeation 

profile through the skin. Then, permeability coefficient of drug was obtained from division 

of flux by applied drug concentration, Cv (equation 4).    

             
  

                                                                                            …..（4）

Drug concentration in HF was supposed to be values calculated by eq. 5 as follows: 
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        Drug concentration in HF (µmol/g)          

      
                 rug                   hair       ) 

                                                                   
  ……..（5） 

                                   

2.2.11.   Confocal Laser Scanning Microscope Observation  

After topical application of Cal-Na and rhodamin over 8 h, the donor solution 

was immediately removed from the skin surface and the skin section was prepared with a 

cryotome (CM3050S; Leica Microsystems Inc., Tokyo, Japan).  The cryostat skin section 

with the stratum corneum side up was examined using a confocal laser scanning 

microscope (CLSM, Fluoview FV1000; Olympus Corp., Tokyo, Japan).  Cal was excited 

using an argon laser at an excitation wavelength of 488 nm, whereas rhodamine was 

excited by 543 nm helium–neon laser. 
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2.3.   Results 

2.3.1.   In vitro skin permeation of drugs 

Table 2.2 shows relationships P values of topically applied drugs through intact 

and stripped pig ear skin, respectively.  P values of lipophilic chemicals (logKo/w ≥ 0), BP 

(pH7.4), BA (pH3.0) and LC (pH10.0), through intact skin were 21.8×10
-7

, 35.7×10
-7 

and 

13.6 ×10
-7

cm/s, respectively.  On the other hand, P values of those compounds through 

stripped skin were 16.1×10
-7

, 93.1×10
-7

 and 64.2 ×10
-7

 cm/s, respectively.  P values 

through stripped skin were not so higher than those through intact skin. Especially, P value 

of BP permeations through intact skin were a little higher than that through stripped skin.  

 

Table 2.2.  Permeability coefficient of drugs through pig ear full-thickness skin and 

stripped skin. Values are the mean ± S.D. (n = 3-5). 

 

Drug LogKo/w Applied dose/1.77 cm
2
 

P values in full-

thickness skin 

(×10
-7 

cm/s) 

P values in 

stripped skin 

(×10
-6 

cm/s) 

Cal-Na 

(pH 7.4) 
-3.50 5 nmol 0.18 ± 0.04 2.51 ± 0.49 

CP 

(pH 10.0) 
-2.27 100 nmol 0.30 ± 0.14 3.61 ± 0.27 

LC 

(pH 5.0) 
-0.90 100 nmol 0.34 ± 0.09 4.67 ± 1.17 

BA 

(pH 7.4) 
-0.41 30 nmol 1.53 ± 0.35 11.8 ±2.38 

ISMN 

(pH 7.4) 
-0.20 50 nmol 1.19 ± 0.35 5.10 ± 0.35 

LC 

(pH 10.0) 
1.40 100 nmol 13.6 ± 4.66 6.42 ± 1.63 

BA 

(pH 3.0) 
1.90 10 nmol 35.7 ± 4.67 9.31 ± 1.07 

BP 

(pH 7.4) 
3.50 0.5 nmol 21.8 ± 8.94 1.61 ± 0.37 
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In case of skin permeation of hydrophilic compounds (logKo/w < 0), on the other 

hand, P values of hydrophilic compounds, ISMN (pH 7.4), BA (pH 7.4), LC (pH5.0), CP 

(pH10.0) and Cal-Na (pH7.4), were 1.19×10
-7

, 1.53  ×10
-7

, 0.34×10
-7

, 0.30×10
-7

and 

0.18×10
-7

 cm/s, respectively. The P values of these hydrophilic chemicals through stripped 

skin was dramatically improved compared with full-thickness skin [ISMN (pH7.4); 

51.0×10
-7

, BA (pH 7.4); 118×10
-7

, LC (pH5.0); 46.7 ×10
-7

, CP (pH10.0); 36.7×10
-7 

and Ca-

Na (pH7.4); 25.1 ×10
-7

 cm/s, respectively].   

 

2.3.2.   Changes in flux of skin permeation and hair follicle concentration of lipophilic 

drugs 

Figure 2.1 shows changes in flux of skin permeation of lipophilic drugs through 

intact skin (closed circle) and drug concentrations in HF (open square).  Flux of lipophilic 

drugs (ISDN and BA) became that steady-state 4 h after topical application (Fig 1a, b).  

The supposed concentration profiles of drugs in HF were increased with an increase of 

time, and then each drug concentration showed the constant value as steady-state fluxes 

were observed for skin permeation (Fig 1a, b).  On the other hand, BP concentration of in 

HF markedly increased immediately after topical application (1c), but the steady-state flux 

of BP was not obtained in 10 h after application.  

  

2.3.3   Changes in flux of skin permeation and hair follicle concentration of hydrophilic 

drugs 

Figure 2.2 shows changes in flux of skin permeation of hydrophilic drugs 
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through intact skin and drug concentrations in HF.  Steady-state of fluxes were observed 

for ISMN, BA and LC, whereas they were not observed for CP and Cal-Na.  On the other 

hand, drug concentrations in HF were rapidly increased after topical application, and then 

steady-state concentrations in HF were achieved.   

 

 

    

  

 

 

 

 

 

 

 

 

 

 

Fig. 2.1.  Time courses of HF concentration and flux through pig ear skin of a) ISDN (pH 

7.4), b) BA (pH 3.0) and c) BP (pH 7.4) after topical application. Symbols: flux  ●), drug 

concentration in HF  □). Each point shows the means ± S.D. (n = 3-6).  

  

a)                                                                   b) 

c)                                                          
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Fig. 2.2. Time courses of HF concentration and flux through pig ear skin of a) ISMN (pH 

7.4), b) BA (pH 7.4), c) LC (pH 5.0), d) CP (pH 10.0) and e) Cal-Na (pH 7.4) after topical 

application. Symbols: the same in Fig. 2.1. Each point shows the means ± S.D. (n = 3-6).  

 

a)                                                                                 b) 

 

 

 

 

 

 

 

c)                                                                                   d) 

 

 

 

 

 

 

 

e) 
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2.3.4. Skin disposition of drugs  

Rhodamin or Cal-Na, a lipophilic or hydrophilic fluorescent maker, respectively, 

was topically applied to skin and the drug distribution was observed with a confocal laser 

scanning microscopy immediately after preparation of skin section.  Rhodamin was 

observed both into the stratum corneum and HF, whereas Cal was slightly distributed in the 

stratum corneum and was much observed in the shallower part of HF and the HF shaft, as 

shown in Fig. 2.3.  

 

 

  

 

 

 

 

 

 

 

  

c)                                                                     d) 

Fig. 2. 3. Conformal microscopic observation of Cal  (a and b) and rhodamin 

(c and d) in the skin.  a and c were merged with transmitted light and 

fluorescent images (b and d).  Abbreviation of HF is HF. 

 

Stratum corneum	


HF	


Stratum corneum	


HF	


a)                                                             b) 

c)                                                             d) 
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2.3.5.   Relationship between logKo/w and log (steady-state drug amount in hair follicles).

 Figure 2.4 shows a relationship between log Ko/w value of drugs and logarithm of 

steady-state drug amount in HF. The value of vertical axis was calculated from the division 

of steady-state drug amount in hair by the applied drug dose.  In the present study, half of 

hairs, 30 hairs, were removed from the effective diffusion area   (please see section 1.  60 

hairs in average exist in the area).  Thus, two-fold the amount of extracted drugs from 30 

hairs was used to calculate steady-state drug amount in HF.   Drug amount in HF were 

increased with an increase of their lipophilicity, suggesting that the assumed HF was not 

simple aqueous phase. This relationship means that high amount would be delivered for 

lipophilic drugs compared with hydrophilic ones.  

 

 

 

 

 

 

 

 

Fig. 2.4. Relationship between logKo/w and log (steady-state drug amount in HF).  
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2.4.   Discussion and chapter conclusion 

Dermatopharmacokinetics is used to evaluate bioequivalence of topically 

applied drugs by a tape-stripping method
49, 64)

. Furthermore, a few reports have recently 

published that in silico approach to estimate skin concentration of drug with different 

physicochemical properties in viable epidermis and dermis
65, 66)

. Considering skin as a 

homogeneous membrane, these researches supposed a direct relation between chemicals 

concentration and its effect.  It is an evidence that Hill equation could be applied to reveal 

the relationship between cell viability of topically applied chemicals and its concentration 

in skin 
67)

.   

Scheuplein reported that distribution of drugs into the HF would be occurred at 

the beginning process of skin permeation, although HF accounted only approximately 

0.1 % of are against the total skin surface
68)

.  In addition, cyanoacrylate biopsy method was 

used to evaluate effect and safety of topically applied or exposed chemicals by 

investigating their concentrations in HF.  However, in spite of the present measurements of 

drug concentration in stratum corneum and viable epidermis/dermis, few studies have been 

published on the drug concentration in the HF.    

In this chapter, drug amount extracted from a removal hair was supposed to be 

that in the HF.  Although this assumption is not fully right, we do not have any better or 

best determination method or tool for assessment of HF concentration of topically applied 

or exposed chemicals.  Development of the technique or tool for assessing the follicle 

concentration of chemicals must be a future issue in this or related topics. 

Delayed lag time of HF concentration for lipophilic drugs was observed 
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compared with those for hydrophilic ones.  The time to become steady-state concentration 

of hydrophilic drugs in HF was much faster than those for fluxes.  HF would be assumed to 

water-filled pore route 
19)

.  Therefore, comparatively rapid distribution of hydrophilic drugs 

into HF might be occurred compared with lipophilic ones.  On other hand, lipophilic drugs 

except for BP showed almost the same profiles between concentration in HF and skin 

permeation flux.  It might be related to high distribution of lipophilic drugs into the HF 

from viable epidermis and dermis.   

In the present experiment, drug distribution in HF was not observed after topical 

application of rhodamin and Cal-Na to HF-plugged skin. Thus, distribution profile of 

hydrophilic and lipophilic drugs could not be confirmed.  Concentration profile of 

lipophilic drugs in HF should be the same to hydrophilic ones, because partitioning is a 

physical phenomenon.  To reveal a relationship between physicochemical properties and 

HF concentration of drug in more detail, further experiments should be conducted.  

However, this chapter would markedly provide a new strategy for development of drug 

formulations having HF targeting ability.  
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General conclusions 

 The contribution of HF pathway on the skin permeation of chemicals was 

calculated from a difference between their permeability coefficients through skin with and 

without HF plugging using in vitro skin permeation experiment. The obtained results 

revealed that the contribution of HF pathway could be predicted by their lipophilicities.  In 

a hydrophilic region of chemicals (logKo/w < 0), a higher reduction ratio was observed by 

HF plugging compared with lipophilic chemicals (logKo/w ≥ 0).  In addition, the reduction 

ratio was decreased with an increase in the logKo/w.  This consideration on the HF pathway 

would be helpful to investigate usefulness and safety of chemicals after their topical 

application and exposure, because skin permeation and disposition must be changed at 

different sites of skin due to different sites and densities of HF.   

Furthermore, another study was conducted to evaluate the drug disposition in HF. 

HF concentration of drugs with different lipophilicities was investigated to evaluate the 

effect of physicochemical properties on their HF disposition, where drugs having logKo/w < 

0 and logKo/w ≥ 0 were assumed to be lipophilic and hydrophilic, respectively. Results 

showed that the lag time observed in the skin permeation before obtaining a steady-state 

profile for hydrophilic drugs was delayed compared with that for lipophilic 

drugs.  Hydrophilic drugs were found to be distributed through the HF as well as into the 

shallow part of stratum corneum, whereas lipophilic drugs distributed both into the stratum 

corneum and HF from a histological observation using fluorescent makers.  These results 

suggest that lipophilic drugs could be easily delivered both into the stratum corneum and 

HF, whereas hydrophilic drugs were mainly delivered through HF, but not for deep layer of 

the stratum corneum. 
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Generally, stratum corneum route is the main permeation pathway for lipophilic 

drugs and HF route is the main permeation pathway for hydrophilic drugs. However 

lipophilic drugs will a give higher amount of drugs deposited at HF. The amount of 

hydrophilic drugs was not so high in HF. Therefore suitable drug delivery systems to treat 

acne need to be considered in detail from now on.  Acne vulgaris is a very common skin 

disease, which causes a high degree of psychosocial suffering and has a detrimental effect 

on the quality of life for the patients irrespective of their age or gender.  

Treatment of acne is principally directed towards these known pathogenic 

factors. Clindamycin and erythromycin are of commonly prescribed topical antibiotics for 

acne vulgaris with anti-inflammatory properties, among which the efficacy of clindamycin 

has remained better over a period of time.  However, the effectiveness of acne treatments 

has been limited by their relative inability to penetrate into the pilosebaceous unit, the site 

of acne formation.  By understanding characteristics of drugs and vehicles through this 

research, an efficient delivery to HF would be feasible in the near feature.  In Appendix, I 

would like to show a possible formulation design for acne treatment. 
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Appendix  

Using nano-emulsion formulation approach to enhance the skin permeation of 

clindamycin and tetracycline as a new strategy for acne therapy. 

 

A.1.   Introduction  

Selective HF delivery of topically applied drugs has been investigated with size-

controlled particles.  Many reports have been published that size-controlled particles (less 

than 10 m) accumulated in the HF and the number of particles delivered to deeper area of 

HF was increased with a decrease of their particle size.  The same principal has been used 

for adapalene gel, one of the acne care drug in the market, by containing size-controlled 

tretinoin particles (3 to 10 m) in the formulation.  Formulation design has been performed 

for selective HF delivery for topical application drugs with nanoparticles and lipid nano-

vehicles.   

Contribution of hair follicular pathway of topically applied medication can be 

useful to formulate the topically applied medication and to treat the acne.  Development of 

nano-emulsion formulation to enhance skin permeation and HF concentration after topical 

application was investigated by Allec et al.
69)

.  In their study, the desirable particles (3 to 

10 μm in diameter) were fabricated for HF delivery as shown in Fig. A..1.  
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Fig. A..1.  Desirable particle size  3 to 10 μm in diameter) for HF delivery usig Differin 

(adapalene) Gel containing tretinoin.  

 

Anti-acne hydrophilic drugs, clindamycin phosphate, tetracycline HCl and 

gentamicin sulfate are not preferable for acne therapy due to difficult to deposition into HF, 

as shown in the 2nd chapter.  Efficient acne therapy could be obtained by development of 

novel lipophilic drugs for acne therapy or by design of formulations with lipophilic 

vehicles such as nano-emulsions.   

Nano-emulsions consist of fine oil-in-water or water-in-oil dispersions, having 

droplets covering the size range of 10-600 nm. Nano-emulsion can be used for 

pharmaceuticals and biomedical aids.  These vehicles especially show great promise for the 

future of cosmetics, diagnostics, drug therapies and biotechnologies.  

The aim of this work was to formulate the clindamycin and tetracycline nano-

emulsions by emulsion phase inversion method and olive oil as an oil phase to increase the 

effectiveness of acne treatment through the increase the penetration of the active 
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compounds inside the lipophilic environment of the pilosebaceous unit. 

 

A..2  Method  

A..2.1.   Materials 

Clindamycin phosphate and tetracycline were provided by Y.S.P. Industries (M) 

Sdn. Bhd., CIRIO
®
 olive oil from local supermarket, and polyethylene glycol sorbitan 

monooleate (Tween
®
80), sorbitan monolaurate (Span

®
20), methyl paraben and distilled 

water were obtained from the Management and Science University, Pharmacy Laboratory. 

 

A..2.2.   Apparatus 

Laser diffractometer Mastersizer 2000 with the Hydro 2000SM module 

(Malvern Instruments, UK) and Brookfield RS portable rheometer with Coxial CC3-14 

Spindle were used in this experiment. 

 

A..2.3.   Pre-formulation studies pseudo-ternary phase diagram 

All emulsions were prepared by according the emulsion phase inversion method, 

where the water and oil phases were separately heated at 75°C, the water phase was added 

into the oil phase (olive oil, clindamycin phosphate and mixture of surfactants) while 

stirred at 600 rpm, and the mixture was then cooled to 25°C while stirring. Figure A..2 

shows flow diagram of this preparation method. 

Surfactant (Tween
®
) and co-surfactant (Span

®
20) were mixed at fixed mass ratio 

(1:1) which was then labeled as mixture of surfactant (Smix).  For the phase diagram, oil, 
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distilled water and Smix at a specific ratio was mixed thoroughly at different mass ratios.  

Twenty one different combinations of oil, distilled water and Smix were made, so that the 

maximum ratios can be covered for this study. 

The physical state of the nano-emulsion was marked on a pseudo-three-

component phase diagram with one axis representing the aqueous phase, the second one 

representing oil and the third representing a mixture of surfactant and co-surfactant at a 

fixed mass ratio. Figures A..3 and A..4 are the pseudo-ternary phase diagram for 

clindamycin and tetracycline to develop nano-emulsion formulations.  
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Fig. A..2.  Preparation flow of nano-emulsion using emulsion phase inversion method. 
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Fig. A..3.       Pseudo ternary phase diagram of clindamycin emulsion with olive oil, water 

and mixture of surfactant (Tween® 80 and Span® 20).  Red region shows non-transparent 

emulsion, yellow region is transparent gel, and blue region shows viscous region. 

 

 

Fig. A..4. Pseudo ternary phase diagram of tetracycline emulsion.  Four different areas 

were observed. The pink area represents a clear one homogenous preparation, the blue area 

represents cloudy creamy preparation, the yellow represents cream preparation and the red 

area shows the phase separation area.  
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A..3.   Result  

A..3.1   Formulation. 

Three best formulations were selected to be candidates to proceed further 

experiments. Table A..1 shows the best 3 formulations with suitable of physical 

characteristics as nano-emulsions. 

 

 Table A..1.  Selected formula of nano-emulsions to be used to determine particle size.  

 

Ingredients F8 (%) F17 (%) 

 

F18 (%) 

 

Clindamycin phosphate or tetracycline  1 1 

 

1 

 

Methyl paraben 1 1 

 

1 

 

Olive oil 8 28 

 

8 

 

Mixture of surfactant (1:1) 20 60 

 

60 

 

Distilled water 70 10 

 

30 

 

 

These 3 formulations of clindamycin and tetracycline emulsions were selected to 

be the best formulations which produce the nano-sized droplets which can easily penetrate 

into HF after application on the skin surface.  
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A..3.2. Mean droplet size of clindamycin and tetracycline nano-emulsions 

In the three selected nano-emulsions shown in Table A..2, the particle size was 

analyzed by a laser diffractometer Mastersizer 2000 with the Hydro 2000SM module 

(Malvern Instruments, UK). 

 

Table A..2.  Particle size of the selected emulsions 

 

 

 

 

 

 

 

From the results, all the three formulations (F8, F17 and F18) showed the mean 

droplet size below 45 µm. The mean droplet size of the micro-emulsions was between 

0.920 µm to 44.695 µm. The average size of F8, F17 and F18 were 0.920 µm, 41.647 µm 

and 44.695 µm, respectively.   

The droplet size increased with increases in oil concentration and Smix 

concentration in the formulations. The droplet size of formulation F8, containing 10% of 

oil and 20% on Smix was 0.920 µm, which was lower as compared to other formulations. 

Only a marginal difference was observed in the mean droplet size of formulations F17 and 

F18, which may be due to the equal concentration of Smix (60%) in both the formulations.  

 

Formula Mean droplet size of 

clindamycin emulsion 

Mean droplet size of 

tetracycline emulsion 

Formula 8 0.9 micron 0.5 micron 

Formula 17 41.6 micron 5 micron 

Formula 18 44.6 micron 60 micron 
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 A.4. Discussion  

Clindamycin and tetracycline nano-emulsions were not obtained using the 

emulsion phase inversion method in this study. The emulsions that produced in this study 

were all in the micro-range. This result is in accordance with a report that the addition of 

surfactant to micro-emulsion systems caused the interfacial film to condense and stabilize, 

while the co-surfactant caused the film to expand 
22

. All the formulations in the present 

study had droplets in the micro range. 

 

 A.5. Appendix conclusion  

Clindamycin emulsion and tetracycline emulsion with suitable particle sizes 

were obtained using the emulsion phase inversion method for HF route delivery. Further 

studies to evaluate efficiency of nano-emulsion formulation as a vehicle to deliver 

hydrophilic drugs to HF, especially as drugs foracne treatment, or looking for the best 

formulation to deliver both hydrophilic and lipophilic drugs to treat acne will be needed.  



 - 59 - 

Acknowledgments 

The author isgratefully acknowledged to the School of Pharmacy, Management 

& Science University (MSU), Shah Alam, Selangor Darul Ehsan, Malaysia and the Faculty 

of Pharmaceutical Sciences, Josai University, Japan especially to Professor Dr.  Kenji 

Sugibayashi, Dr. Hiroaki Todo members of Faculty of Pharmaceutical Sciences Josai 

University Japan for providing the necessary facilities to carry out the research project 

successfully. Furthermore the author would like to extend their special thanks to 

Pharmaniaga Manufacturing Berhad and Pharmaniaga Lifescience Sdn. Bhd. Malaysia for 

their supports of supplying the raw materials during the research work. 

 

 

 

 

 

 

 

 

 

  



 - 60 - 

References 

1. Alvarez-Roman R., Naik A., Kalia Y. N., Guy R. H., Fessi H., Skin penetration and 

distribution of polymeric nanoparticles, J. Control. Release, 99, 53–62 (2004). 

2. Gawkrodger, D. J., Dermatology: an illustrated color text, 3
rd

 ed. (2002). 

3. Anderson B. D., Raykar P. V., Solute structure-permeability relationships in human 

stratum corneum, J. Invest. Dermatol., 93, 280–286 (1989). 

4. Błędzka D., Gryglik D., Miller J. S., Photodegradation of butylparaben in aqueous 

solutions by 254 nm irradiation, J. Photochem. Photobiol., A 203, 131–136 (2009). 

5. Buchwald P., Bodor N., A simple, predictive, structure-based skin permeability model, 

J. Pharm. Pharmacol., 53, 1087–1098 (2001). 

6. Cazares-Delgadillo J., Naik A., Kalia Y. N., Quintanar-Guerrero D., Ganem-Quintanar 

A., Skin permeation enhancement by sucrose esters: a pH dependent phenomenon, Int. 

J. Pharm., 297, 204–212 (2005). 

7. Jacobi U., Tassopoulos T., Surber C., Lademann J., Cutaneous distribution and 

localization of dyes affected by vehicles all with different lipophilicity, Arch Dermatol 

Res.,  297, 303–310 (2006). 

8. Cole L., Coleman J., Evans D., Hawes C., Internalisation of fluorescein isothiocyanate 

and fluorescein isothiocyanatedextran by suspension-cultured plant cells, Journal of 

Cell Sci., 96, 721–730 (1990). 

9. Crank J., The Mathematics of Diffusion, Oxford University Press (1979). 

10. Domanska U., Pobudkowska A., pKa and solubility of drugs in water, ethanol, and 1-

octanol, J. Phys. Chem. B., 113, 8941–8947 (2009). 



 - 61 - 

11. Essa E. A., Bonner M. C., Barry B. W., Human skin sandwich for assessing shunt route 

penetration during passive and iontophoretic drug and liposome delivery, J. Pharm. 

Pharmacol., 54, 1481–1490 (2002). 

12. Frldman R. J., Maibach H. I., Regional variation in percutaneous penetration of 14 C 

cortisol in man, Regional variation in percutaneous penetration of 14 C cortisol in man, 

J. Invest. Dermatol., 48, 181–183 (1967). 

13. Naik A., Kalia Y., Guy R., Transdermal drug delivery: overcoming the skin's barrier 

function, Pharm. Sci. Technol. Today., 3, 318–326 (2000). 

14. Pappas A., Epidermal surface lipids, Dermatoendocrinol, 1, 72–76 (2009). 

15. Mizutani Y., Mitsutake S., Tsuji K., Kihara A., Igarashi Y., Ceramide biosynthesis in 

keratinocyte and its role in skin function, Biochimie, 91, 784–790 (2009). 

16. Scheuplein R.J., Mechanism of percutaneous absorption. II. Transient diffusion and the 

relative importance of various routes of skin penetration, J. Invest. Dermatol., 48, 79–

88. (1967). 

17. Mitragotri S., Modeling skin permeability to hydrophilic and hydrophobic solutes 

based on four permeation pathways, J. Control. Release, 86, 69–92 (2003). 

18. Wosicka H., Cal K., Targeting to the hair follicles: Current status and potential, J. 

Dermatol. Sci., 57, 83–89 (2010). 

19. Todo H., Kimura E., Yasuno H., Tokudome Y., Hashimoto F., Ikarashi Y., Sugibayashi 

K., Permeation pathway of macromolecules and nanospheres through skin, Biol. Pharm. 

Bull., 33, 1394–1399 (2010). 

20. Maibach H. I., Feldman R. J., Milby T. H., Serat W. F., Regional variation in 



 - 62 - 

percutaneous penetration in man. Pesticides, Arch. Environ. Health, 23, 208–211 

(1971). 

21. Hueber F., Wepierre J., Schaefer H., Role of transepidermal and transfollicular routes 

in percutaneous absorption of hydrocortisone and testosterone: in vivo study in the 

hairless rat, Skin Pharmacol., 5, 99–107 (1992). 

22. J. E. Grice, S. Ciotti, N. Weiner, P. lockwood, S. E. Cross, M. S. Roberts, Relative 

uptake of minoxidil into appendages and stratum corneum and permeation through 

human skin in vitro, J. Pharm. Sci., 99, 712-8 (2010). 

23. Ogiso T., Shiraki T., Okajima K., Tanino T., Iwaki M., Wada T., Transfollicular drug 

delivery: penetration of drugs through human scalp skin and comparison of penetration 

between scalp and abdominal skins in vitro, J. Drug Target., 10, 369–378 (2002). 

24. Lieb L. M., Liimatta A. P., Bryan R. N., Brown B. D., Krueger G. G., Description of 

the intrafollicular delivery of large molecular weight molecules to follicles of human 

scalp skin in vitro, J. Pharm. Sci., 86, 1022–1029 (1997). 

25. Liu X., Grice J. E., Lademann J., Otberg N., Trauer S., Patzelt A., Roberts M. S., Hair 

follicles contribute significantly to penetration through human skin only at times soon 

after application as a solvent deposited solid in man, B. J. Clin. Pharmacol., 72, 768–

774 (2011). 

26. Frum Y., Bonner M. C., Eccleston G. M., Meidan V. M., The influence of drug 

partition coefficient on follicular penetration: in vitro human skin studies, Eur. J. 

Pharm. Sci., 30, 280–287 (2007). 

27. Horita D., Yoshimoto M., Todo H., Sugibayashi K., Analysis of hair follicle 



 - 63 - 

penetration of lidocaine and fluorescein isothiocyanate-dextran 4 kDa using hair 

follicle-plugging method, Drug Dev. Ind. Pharm., 40, 345–351 (2014). 

28. Otberg N., Patzelt A., Rasulev U., Hagemeister T., Linscheid M., Sinkgraven R., Sterry 

W., Lademann J., The role of hair follicles in the percutaneous absorption of caffeine, 

B. J. C. Pharmacol., 65, 488–492 (2008). 

29. Trauer S., Patzelt A., Otberg N., Knorr F., Rozycki C., Balizs G., Buttemeyer R., 

Linscheid M., Liebsch M., Lademann J., Permeation of topically applied caffeine 

through human skin; a comparison of in vivo and in vitro data, Br. J. Clin. Pharmacol., 

68, 181–186 (2009). 

30. Takeuchi H., Takeuchi H., Ishida M., Ishida M., Furuya A., Furuya A., Todo H., Urano 

H., Sugibayashi K., Influence of skin thickness on the in vitro permeabilities of drugs 

through Sprague-Dawley rat or Yucatan micropig skin, Biol. Pharm. Bull., 35, 192–

202 (2011). 

31. Yamada K., Yamashita J., Todo H., Miyamoto K., Hashimoto S., Tokudome Y., 

Hashimoto F., Sugibayashi K., Preparation and evaluation of liquid-crystal 

formulations with skin-permeation-enhancing abilities for entrapped drugs, J. Oleo. 

Sci., 60, 31–40 (2010). 

32. Sugibayashi K., Todo H., Oshizaka T., Owada Y., Mathematical model to predict skin 

concentration of drugs: toward utilization of silicone membrane to predict skin 

concentration of drugs as an animal testing alternative, Pharm. Res., 27, 134-142 

(2010). 

33. Heger M., Salles I. I., van Vuure W., Deckmyn H., Beek J. F., Fluorescent labeling of 



 - 64 - 

platelets with polyanionic fluorescein derivatives, Anal. Quant. Cytol. Histol., 31, 227–

232 (2009). 

34. Kolthoff I. M., Stenger V. A., Volumetric Analysis, vol. 1, Interscience Publishers, 

New York (1942). 

35. Tamura M., Sueishi T., Sugibayashi K., Morimoto Y., Juni K., Hasegawa T., 

Kawaguchi T., Metabolism of testosterone and its ester derivatives in organotypic 

coculture of human dermal fibroblasts with differentiated epidermis, Int. J. Pharm., 

131, 263–271. (1995). 

36. Ahmed S., Imai T., Otagiri M., Evaluation of stereo selective transdermal transport and 

concurrent cutaneous hydrolysis of several ester prodrugs of propranolol: Mechanism 

of stereoselective permeation. Pharm. Res., 13, 1524–1529 (1996). 

37. Sugibayashi K., Hayashi T., Matsumoto K., Hasegawa T., Utility of a three 

dimensional cultured human skin model as a tool to evaluate the simultaneous diffusion 

and metabolism of ethyl nicotinate in skin, Drug Metab. Pharmacokinet., 19, 352–362 

(2004). 

38. Hashida M., Okamoto H., Sezaki H., Analysis of drug penetration through skin 

considering donor concentration decrease, J. Pharmacobio.-Dyn., 11, 636–644 (1988). 

39. Okamoto, H., Hashida, M., Sezaki, H., Structure-activity relationship of 1-alkyl- or 1-

alkenylazacycloalkanone derivatives as percutaneous penetration enhancers, J. Pharm. 

Sci., 77, 418–424. (1988). 

40. Sato K., Oda T., Sugibayashi K., Morimoto Y., Estimation of blood concentration of 

drugs after topical application from in vitro skin permeation data. I. Prediction by 



 - 65 - 

convolution and confirmation by deconvolution, Chem. Pharm. Bull., 36, 2232–2238. 

(1988). 

41. Guy R. H., Hadgraft J., Pharmacokinetic interpretation of the plasma levels of 

clonidine following transdermal delivery, J. Pharm. Sci., 74, 1016–1018 (1985). 

42. Yamashita F., Bando H., Koyama Y., Kitagawa S., Takakura Y., Hashida M., In vivo 

and in vitro analysis of skin penetration enhancement based on a two-layer diffusion 

model with polar and nonpolar routes in the stratum corneum, Pharm. Res., 11, 185–

191 (1994). 

43. Patzelt A., Richter H., Buettemeyer R., Huber H. J. R., Blume-Peytavi U., Sterry W., 

Lademann J., Differential stripping demonstrates a significant reduction of the hair 

follicle reservoir in vitro compared to in vivo, Eur. J. Pharm. Biopharm., 70, 234–238 

(2008). 

44. Raber A.S., Mittal A., Schafer, J., Bakowsky U., Reichrath J., Vogt T., Schaefer U. F., 

Hansen S., Lehr C. M., Quantification of nanoparticle uptake into hair follicles in pig 

ear and human forearm, J. Control. Release, 179, 25–32. (2014). 

45. Warner R. R., Stone K. J., Boissy Y. L., Hydration disrupts human stratum corneum 

ultrastructure, J. Invest. Dermatol., 120, 275–284 (2003). 

46. Kiistala U., Suction blister device for separation of viable epidermis from dermis, J. 

Invest. Dermatol., 50, 129-137 (1968). 

47. Surber C., Wilhelm K. P., Bermann D., Maibach H. I., In vivo skin penetration of 

acitretin in volunteers using three sampling techniques, Pharm. Res., 10, 1291-1294 

(1993). 



 - 66 - 

48.  Laugier J. P., Surber C., Bun H., Geiger J. M., Wilhelm K. P., Durand A., Maibach 

H.I., Determination of acitretin in the skin, in the suction blister, and in plasma of 

human volunteers after multiple oral dosing, J. Pharm. Sci., 83, 623-628 (1994). 

49. N'Dri-Stempfer B., Navidi W. C., Guy R. H., Bunge A. L., Improved bioequivalence 

assessment of topical dermatological drug products using dermatopharmacokinetics, 

Pharm. Res., 26, 316-328 (2009). 

50. Kalia Y. N., Pirot F., Guy R. H., Homogeneous transport in a heterogeneous 

membrane: water diffusion across human stratum corneum, in vivo, Biophys. J., 71, 

2692-2700 (1996). 

51.  Rougier A., Dupuis D., Lotte C., Roguet R., Schaefer H., In vivo correlation between 

stratum corneum reservoir function and percutaneous absorption, J. Invest. Dermatol., 

81, 275-278 (1983). 

52. Surber C., Wilhelm K. P., Hori M., Maibach H. I., Guy R. H., Optimization of topical 

therapy: partitioning of drugs into stratum corneum, Pharm. Res., 7, 1320-1324 (1990). 

53. Kassis V., Sondergaard J., Heat-separation of normal human skin for epidermal and 

dermal prostaglandin analysis, Arch. Dermatol. Res., 273, 301-306 (1982). 

54. Bidmon H. J., Pitts J. D., Solomon H. F., Bondi J. V., Stumpf W. E., Estradiol 

distribution and penetration in rat skin after topical application, studied by high 

resolution autoradiography, Histochem., 95, 43-54 (1990). 

55. Yamada K., Yamashita J., Todo H., Miyamoto K., Hashimoto S., Tokudome Y., 

Hashimoto F., Sugibayashi K., Preparation and evaluation of liquid-crystal 

formulations with skin permeation-enhancing abilities for entrapped drugs, J. Oleo Sci., 



 - 67 - 

60, 31-40 (2010). 

56. Mori K., Hasegawa T., Sato S., Sugibayashi K., Effect of electric field on the enhanced 

skin permeation of drugs by electroporation, J. Control Release, 90, 171-179 (2003). 

57. Dorota B., Dorota G., Jacek S. M., Photodegradation of butylparaben in aqueous 

solutions by 254 nm irradiation, J. Photochem. Photobiol A: Chemistry, 203, 131-136 

(2009). 

58. Cazares-Delgadillo J., Naik A., Kalia Y. N., Quintanar-Guerrero D., Ganem-Quintanar 

A., Skin permeation enhancement by sucrose esters: a pH-dependent phenomenon, Int. 

J. Pharm., 297, 204-212 (2005). 

59. Connors K. A., Connors K. A., Amidon G. L., Stella V. J., Chemical Stability of 

Pharmaceuticals: A Handbook for Pharmacists, John Wiley & Sons, 1986. 

60. Heger M., Salles I. I., Van V. W., Deckmyn H., Beek J. F., Fluorescent labeling of 

platelets with polyanionic fluorescein derivatives, Anal. Quant. Cytol. Histol., 31, 227-

232 (2009). 

61. Tamura M., Sueishi T., Sugibayashi K., Morimoto Y., Juni K., Hasegawa T., 

Kawaguchi T., Metabolism of testosterone and its ester derivatives in organotypic 

coculture of human dermal fibroblasts with differentiated epidermis, Int. J. Pharm., 

131, 263–271 (1996). 

62. Ahmed S., Imai T., Otagiri M., Evaluation of stereoselective transdermal transport and 

concurrent cutaneous hydrolysis of several ester prodrugs of propranolol: mechanism 

of stereoselective permeation, Pharm Res., 13, 1524-1529 (1996). 

63. Sugibayashi K., Hayashi T., Matsumoto K., Hasegawa T., Utility of a three 



 - 68 - 

dimensional cultured human skin model as a tool to evaluate the simultaneous diffusion 

and metabolism of ethyl nicotinate in skin, Drug Metabol. Phamacokin., 19, 352-362 

(2004). 

64. Herkenne C., Naik A., Kalia Y. N., Hadgraft J., Guy R. H., Pig ear skin ex vivo as a 

model for in vivo dermatopharmacokinetic studies in man, Pharm. Res., 23, 1850-1856 

(2006). 

65. Polak S., Ghobadi C., Mishra H., Ahamadi M., Patel N., Jamei M., Rostami-Hodjegan 

A., Prediction of concentration-time profile and its inter-individual variability 

following the dermal drug absorption, J. Pharm. Sci. 101, 2584–2595 (2012). 

66. Chen L., Han L., Saib O., Lian G., In silico prediction of percutaneous absorption and 

disposition kinetics of chemicals, Pharm. Res., 32, 1779–1793 (2015). 

67. Kano S., Sugibayashi K., Kinetic analysis on the skin disposition of cytotoxicity as an 

index of skin irritation produced by cetylpyridinium chloride: comparison of in vitro 

data using a three-dimensional cultured human skin model with in vivo results in 

hairless mice, Pharm. Res., 23, 329–335 (2006). 

68. Scheuplein R. J., Mechanism of percutaneous absorption. II. Transient diffusion and 

the relative importance of various routes of skin penetration, J. Invest. Dermatol., 48, 

79–88 (1967). 

69. Allec J., Chatelus A., Wagner N., Skin distribution and pharmaceutical aspects of 

adapalene gel, J. Am. Acad. Dermatol., 36,119-25, (1997). 


