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I. INTRODUCTION

The Sunyaev-Zeldovich (SZ) effect[1], which arises
from the Compton scattering of the cosmic microwave
background (CMB) photons by hot electrons in clusters
of galaxies (CG), provides a useful method for stud-
ies of cosmology. For the reviews, for example, see
Birkinshaw[2] and Carlstrom, Holder, and Reese[3]. The
original SZ formula has been derived from the Kom-
paneets equation[4] in the nonrelativistic approxima-
tion. However, recent x-ray observations (for example,
Schmidt et al.[5] and Allen et al.[6]) have revealed the
existence of high-temperature CG such as kBTe ≃20keV.
For such high-temperature CG, the relativistic correc-
tions to the SZ effect will become extremely important.

On the other hand, it has been known theoretically
for some time that the relativistic corrections become
significant at the short wave length region λ < 1mm. In
particular, the recent report[7] on the first detection of
the SZ effect at λ < 650µm by Herschel Survey seems to
confirm the relativistic corrections[8]. Therefore, reliable
theoretical studies on the relativistic SZ effect at short
wave length region will become extremely important for
both existing and future observation projects.

The relativistic SZ effect has been studied theoret-
ically in several different approaches. Wright[9] and
Rephaeli[10] calculated the photon frequency redistribu-
tion function in the electron rest frame using the scat-
tering probability derived by Chandrasekhar[11], which
is called as the radiative transfer method. The sec-
ond approach is the relativistic generalization of the
Kompaneets equation[4], where the relativistically co-
variant Boltzmann collisional equation is solved for the
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photon distribution function. This approach was used
by Challinor and Lasenby[12] and Itoh, Kohyama, and
Nozawa[13], which is called the covariant formalism. Al-
though the two are very different approaches, the ob-
tained results for the SZ effect agreed extremely well.
This has been a longstanding puzzle in the field of the rel-
ativistic study of the SZ effect for the last ten years. Very
recently, however, Nozawa and Kohyama[14] showed that
the two formalisms were indeed mathematically equiva-
lent in the Thomson approximation. This explained the
reason why the two different approaches produced same
results for the SZ effect even in the relativistic energies
for electrons.

On the other hand, there is yet another covariant
formalism which also starts with the relativistic kinetic
equation for photons[15, 16]. Although the starting equa-
tions are same for the two covariant formalisms, the final
expressions for the SZ effect differ significantly from each
other. In the present paper, we explore the two covariant
formalisms for the thermal SZ effect in detail. We will
show that the two formalisms are indeed mathematically
equivalent in the Thomson limit, which is fully valid for
the CMB photon energies. It is also found that the two
formalisms give the same expression for the kinematical
SZ effect in the Thomson limit. This will conclude that
the existing formalisms[9, 14, 16] for the SZ effects for the
CG are equivalent in the Thomson approximation. The
present finding will establish a theoretical foundation for
the analysis of the SZ effects for the CG.

The present paper is organized as follows: In Sec. II, we
derive analytic expressions of the redistribution functions
for the SZ effects with the covariant formalism of Nozawa,
Kohyama, and Itoh[14, 17]. In Sec. III, we then rewrite
the redistribution functions of Poutanen and Vurm[16]
formalism in the Thomson approximation. We will show
that the redistribution functions in the two formalisms
are identical. The isotropic photon scattering approx-
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imation is also presented. Finally, concluding remarks
are given in Sec. IV.

II. COVARIANT FORMALISM OF NOZAWA,

KOHYAMA, AND ITOH

A. Rate equations in the Thomson approximation

Recently, the present authors have published a series
of papers[14, 17, 19, 20] on the Compton scattering of the
CMB photons. In the present subsection, we summarize
the formalism (denoted NKI formalism hereafter) for the
SZ effects of the CG.

In Nozawa and Kohyama[14], it was shown that the
covariant formalism[13] and radiative transfer method[9]
were mathematically equivalent in the following (Thom-
son) approximation:

γ
ω

m
≪ 1 , (1)

γ =
1

√

1 − β2
, (2)

where ω is the photon energy, γ is the Lorentz factor, and
β and m are the velocity and rest mass of the electron,
respectively. Throughout this paper, we use the natural
unit ~ = c = 1, unless otherwise stated explicitly. For
the CMB photons, Eq. (1) is fully valid from nonrela-
tivistic electrons to extreme-relativistic electrons of the
order of TeV region. The kinematics in the present pa-
per are defined as follows: The CG is moving with a bulk

velocity ~βC (=~vC/c) with respect to the CMB frame. As
a reference system, we choose the system that is fixed
to the CMB. The z axis is fixed to a line connecting the
observer and the center of mass of the CG. (We assume
that the observer is fixed to the CMB frame.) We choose
the positive direction of the z axis as the direction from
the observer to the CG.

The rate equation for the photon distribution function
n(x) was derived by the present authors[14, 17] under
the assumption of Eq. (1). Here, x = ω/kBTCMB is the
photon energy in units of the thermal energy of the CMB,
and s is the frequency shift defined by es = x′/x. We
recall the results here to make the present paper more
self-contained. They are given as follows[14, 17]:

∂n(x)

∂τ
=

∫ ∞

−∞

dsP1(s, βC,z) [n(esx) − n(x)] , (3)

P1(s, βC,z) = P1(s) + βC,zP1,K(s) , (4)

dτ = neσT dt , (5)

where βC,z is the bulk velocity of the CG parallel to
the z-axis, ne is the electron number density, and σT

is the Thomson scattering cross section. It should be
noted that O(β2

C) and higher-order contributions were
neglected in deriving Eq. (4), because βC ≪ 1 is satisfied
for most of the CG.

In Eq. (4), P1(s) is the frequency redistribution func-
tion, and P1,K(s) is the term which appears in the case
of non-zero bulk motions. They are defined by

P1(s) =

∫ 1

βmin

dββ2γ5pe(γ)P (s, β) , (6)

P1,K(s) =

∫ 1

βmin

dββ2γ5pe(γ)PK(s, β) , (7)

where

P (s, β) =
es

2βγ4

∫ µ2(s)

µ1(s)

dµ0
1

(1 − βµ0)2
f (µ0, µ

′
0) , (8)

PK(s, β) = δ(β)
[

P̃K(s, β) − P (s, β)
]

, (9)

P̃K(s, β) =
es

2βγ6

∫ µ2(s)

µ1(s)

dµ0
1

(1 − βµ0)3
f (µ0, µ

′
0) , (10)

f(µ0, µ
′
0) =

3

8

[

1 + µ2
0µ

′2
0 +

1

2
(1 − µ2

0)(1 − µ′2
0 )

]

. (11)

In Eq. (9), δ(β) is a factor related to the electron dis-
tribution function, which is, in general, a function of β.
The explicit forms are given by Nozawa and Kohyama[14]
for three different electron distribution functions. In the
present paper, for simplicity, we use the thermal electron
distribution for pe(γ), which implies

δ(β) =
γ

θe
, (12)

where θe = kBTe/mc2 is the electron thermal energy of
the CG in units of the electron rest energy. The electron
thermal distribution function is

pe(γ) =
1

θeK2(1/θe)
exp(−γ/θe) , (13)

where K2(z) is the modified Bessel function of the second
kind. Variables appearing in Eqs. (6) – (11) are summa-
rized as follows:

βmin = (1 − e−|s|)/(1 + e−|s|) , (14)

µ′
0 = [1 − es(1 − βµ0)]/β , (15)

µ1(s) =

{

−1 for s ≤ 0
[1 − e−s(1 + β)]/β for s > 0

, (16)

µ2(s) =

{

[1 − e−s(1 − β)]/β for s < 0
1 for s ≥ 0

. (17)

For most of CG , τ ≪ 1 is satisfied. Then one obtains
the following solution for Eq. (3):

∆n(x) = n(x) − n0(x)

≡ ∆nt(x) + βC,z∆nk(x) , (18)

∆nt(x) = τ

[
∫ ∞

−∞

dsP1(s)n0(e
sx) − n0(x)

]

, (19)

∆nk(x) = τ

[
∫ ∞

−∞

dsP1,K(s)n0(e
sx) − n0(x)

]

, (20)
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where

n0(x) =
1

ex − 1
(21)

is the initial Planckian photon distribution function.
Equations (19) and (20) correspond to the thermal SZ
effect and kinematical SZ effect, respectively.

B. Analytic expressions for P (s, β) and PK(s, β)

First, we show the analytic expression for the redistri-
bution function P (s, β) in the NKI formalism. In Eq. (8),
the integral of µ0 can be done analytically. The explicit
form was derived by Enßlin and Biermann[18] and also
given by Eqs. (18) and (19) in Ref.[19]. In the present
paper, we rewrite the expression into the following form:

P (s, β) = e3s/2Q(s, β) , (22)

Q(s, β) =
3

16β2γ4

[

4

β3

{

3 + γ2β4 +
β2 − 3

2β
ln

1 + β

1 − β

}

cosh
s

2

−
1

β4

{

1

γ2
sinh

3|s|

2
+ 2(β2 − 3)|s| cosh

s

2

+
(

9 − β2 + 4γ2β4
)

sinh
|s|

2

}]

. (23)

Note that Q(s, β) is an even function on s, namely
Q(s, β) = Q(−s, β). Thus, the non-symmetric structure
of the redistribution function P1(s) is due to the function
e3s/2 in Eq. (22), because βmin in Eq. (6) is also an even
function on s.

Similarly, we show the analytic expression for the re-
distribution function PK(s, β) in the NKI formalism. The

explicit form for P̃K(s, β) was given by Eqs. (25) and (26)
in Ref.[20]. In the present paper, we rewrite the expres-
sion into the following form:

P̃K(s, β) = e2sQ̃K(s, β) , (24)

Q̃K(s, β) =
3

16β2γ4

[

4

β3

{

−3 + 2β2 +
3

2βγ2
ln

1 + β

1 − β

}

+
2

β3

{

−3 + 3β2 + 2γ2β4 +
3 − β2

2βγ2
ln

1 + β

1 − β

}

cosh s

−
1

β4

{

6

γ2
|s| +

3 − β2

γ2
|s| cosh s

−
(

9 − 10β2 − β4 − 4γ2β6
)

sinh |s|

}]

. (25)

Note that Q̃K(s, β) is also an even function on s. In-
serting Eqs. (22) and (24) into Eq. (9), one obtains the
analylic expression for PK(s, β). Thus, the full analytic

expressions for P (s, β) and PK(s, β) have been derived in
the NKI formalism.

Before closing the present section, it is worth to men-
tion the following. The thermal SZ effect (Eq. (19)) and
kinematical SZ effect (Eq. (20)) are obtained by the dou-
ble integrals over the variables s and β, because the an-
alytic forms for P (s, β) and PK(s, β) are given in terms
of Eqs. (22) and (24). This makes the numerical calcula-
tions of the SZ effects extremely fast, which will be quite
useful for the analysis of the observation data. The nu-
merical programs are available upon request from one of
the present authors (S. N.).

III. EQUVALENCE BETWEEN TWO

FORMALISMS IN THE THOMSON

APPROXIMATION

A. Thermal SZ effect in the Thomson

approximation

In the present subsection, we show that the formalism
shown by Poutanen and Vurm[16] (denoted PV hereafter)
for the thermal SZ effect (βC = 0 case) is equivalent in
the Thomson approximation to the NKI formalism. Be-
fore to proceed the calculation, it should be remarked the
following. In the present paper, the photon energies are
expressed in units of the thermal energy of the CMB. On
the other hand, all energy variables in the PV paper are
in units of the electron rest energy. In order to make the
present paper self-consistent, we introduce new variables
xPV and x′

PV which correspond to x and x1 in the PV
paper as follows:

xPV =
ω

mc2
= xθCMB , (26)

x′
PV =

ω′

mc2
= x′θCMB , (27)

where θCMB = kBTCMB/mc2.
The source function is defined by Eq. (174) of the PV

paper. We rewrite the expression with variables defined
in the present paper as follows:

SPV(x) = τ

∫ ∞

−∞

ds P1,PV(s)n0(e
sx) , (28)

P1,PV(s) =

∫ 1

βmin

dββ2γ5pe(γ)PPV(s, β) , (29)

PPV(s, β) =
3

16βγ2
xPVe2s

∫ µmax

µmin

dµR0 , (30)

where µmin and µmax are the minimum and maximum
values of the cosine of the scattering angle, and the
function R0 is given by Eq. (E2) of the PV paper. It
should be noted that the angular integrals in Eq. (30)
were performed by Brinkmann[21] and also by Nagirner
and Poutanen[22]. The source function is related to the
change of the photon occupation number by

∆nt,PV(x) = SPV(x) − τn0(x) , (31)
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which corresponds to Eq. (19).
In the Thomson approximation (x′

PV ≪ 1), one finds

µmin = −1 , (32)

µmax = 1 −
e−s(es − 1)2

2β2γ2
. (33)

The leading-order terms (1/xPV terms) of R0 can be
rewritten in the Thomson approximation by

R0 ≈
2

Q
−

2

q

d

a3
+

d

2q2a5

(

5
d2

a2
− 3Q2

)

. (34)

Note that a± ≈ a and d± ≈ d were used in deriving
Eq. (34). The variables appearing in Eq. (34) are ex-
pressed by:

Q = xPV

√

1 + e2s − 2esµ , (35)

d = xPVγ(es + 1) , (36)

a =
√

γ2 + r , (37)

q = x2
PVes(1 − µ) , (38)

r =
1 + µ

1 − µ
. (39)

Inserting Eq. (34) into Eq. (30) and expressing in terms
of the variables of Eqs. (35)–(39), one can write the re-
distribution function as follows:

PPV(s, β) =
3

32β2γ4

[

4βγ2e2sI1 − 4βγ3es(es + 1)I2

+βγ5(es + 1)3I3 − βγ3(es − 1)2(es + 1)I4

−2βγ3es(es + 1)I5

]

, (40)

where I1, . . . , I5 are the integrals defined by

I1 =

∫ µmax

−1

dµ
1

(1 + e2s − 2esµ)1/2
, (41)

I2 =

∫ µmax

−1

dµ
1

(1 − µ)(γ2 + r)3/2
, (42)

I3 = 5

∫ µmax

−1

dµ
1

(1 − µ)2(γ2 + r)7/2
, (43)

I4 = 3

∫ µmax

−1

dµ
1

(1 − µ)2(γ2 + r)5/2
, (44)

I5 = 3

∫ µmax

−1

dµ
1

(1 − µ)(γ2 + r)5/2
. (45)

Their elementary integrals can be performed. One has as
follows:

I1 =
e−s

β
[(es + 1)β − |es − 1|] , (46)

I2 = I21 + I22 , (47)

I21 =
2

γ
−

1

2β3γ3

e−s(es − 1)2|es − 1|

(es + 1)
, (48)

I22 = −
2

β2γ
+

1

2β3γ3
e−s(es + 1)|es − 1|

+
1

β3γ3
(λβ − |s|) , (49)

I3 =
1

γ5
−

1

β5γ5

(es − 1)4|es − 1|

(es + 1)5
, (50)

I4 =
1

γ3
−

1

β3γ3

(es − 1)2|es − 1|

(es + 1)3
, (51)

I5 = I51 + I52 , (52)

I51 =
2

γ3
−

1

2β5γ5

e−s(es − 1)4|es − 1|

(es + 1)3
, (53)

I52 = −
2

β4γ3
(3 − 2β2) +

4

β5γ5

|es − 1|

es + 1

+
1

2β5γ5
e−s(es + 1)|es − 1|

+
3

β5γ5
(λβ − |s|) , (54)

where

λβ = ln
1 + β

1 − β
. (55)

Inserting Eqs. (46)–(54) into Eq. (40), and performing
a straightforward calculation, one finds that PPV(s, β)
coincides with P (s, β) given by Eqs. (22) and (23). Thus,
the PV formalism is equivalent to the NKI formalism in
the Thomson approximation for the thermal SZ effect. It
should be remarked that I3, I4 and I51 terms in Eq. (40)
have cancelled out completely in deriving PPV(s, β).

Before closing the present subsection, it should re-
marked that the equivalence of the two formalisms is
valid not only for electrons in the thermal distribution
but also in other distributions such as power-laws.

B. Kinematical SZ effect in the Thomson

approximation

In the present subsection, we show that the PV
formalism[16] for the kinematical SZ effect (βC 6= 0 case)
is also equivalent to the NKI formalism. In the PV paper,
O(βC) and O(β2

C) terms are calculated for the kinemat-
ical SZ effect. On the other hand, as discussed in the
previous section, βC ≪ 1 is satisfied for most of the CG.
In Nozawa, Itoh, and Kohyama[23], it was shown that
O(β2

C) contribution can be safely neglected. Therefore,
we restrict ourselves to the O(βC) terms.

The source function of O(βC) in Eq. (174) of the PV
paper is expressed by

SK,PV(x) = βC,zτ

∫ ∞

−∞

dsP1,KPV(s)n0(e
sx) , (56)

P1,KPV(s) =

∫ 1

βmin

dββ2γ5pe(γ)PK,PV(s, β) , (57)

PK,PV(s, β) =
γ

θe

[

P̃K,PV(s, β) − PPV(s, β)
]

, (58)

P̃K,PV(s, β) =
3

32βγ3
x2

PVe3s

∫ µmax

µmin

dµ(1 − µ)RΣ , (59)
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where PPV(s, β) is given by Eq. (30), and the function
RΣ is given by Eq. (E3) of the PV paper. It should be
remarked that βC,z = −ηβb was used in deriving Eq. (56),
where η is the cosine of the polar angle of the initial
photon and βb = βC . The source function is related to
the photon occupation number by

βC,z∆nk,PV(x) = SK,PV(x) − βC,zτn0(x) , (60)

which corresponds to Eq. (20).
The leading-order terms (1/x2

PV terms) of RΣ can be
rewritten in the Thomson approximation by

RΣ ≈
4d

Q3
−

4

qa
+

3d2

q2a5
−

Q2

q2a3
. (61)

Inserting Eq. (61) into Eq. (59) and expressing in terms
of the variables of Eqs. (35)–(39), one can write the re-
distribution function as follows:

P̃K,PV(s, β) =
3es

32β2γ4

[

4βγ2e2s(es + 1)K1 − 4βγesK2

+βγ3(es + 1)2K3 − βγ(es − 1)2K4

−2βγesK5

]

, (62)

where K1, . . . , K5 are the integrals defined by

K1 =

∫ µmax

−1

dµ
1 − µ

(1 + e2s − 2esµ)3/2
, (63)

K2 =

∫ µmax

−1

dµ
1

(γ2 + r)1/2
, (64)

K3 = 3

∫ µmax

−1

dµ
1

(1 − µ)(γ2 + r)5/2
, (65)

K4 =

∫ µmax

−1

dµ
1

(1 − µ)(γ2 + r)3/2
, (66)

K5 =

∫ µmax

−1

dµ
1

(γ2 + r)3/2
. (67)

Their elementary integrals can be performed. One has
as follows:

K1 =
e−2s

2βγ2

[

(1 − 2γ2)|es − 1| + 2βγ2 e2s + 1

es + 1

]

, (68)

K2 = −I22 , (69)

K3 = I5 , (70)

K4 = I2 , (71)

K5 = −I52 . (72)

Inserting Eqs. (68)–(72) into Eq. (62), and performing a

straightforward calculation, one finds that P̃K,PV(s, β)

coincides with P̃K(s, β) given by Eqs. (24) and (25).
Therefore

PK(s, β) = PK,PV(s, β) . (73)

Thus, the PV formalism is also equivalent to the NKI
formalism in the Thomson approximation for the kine-
matical SZ effect.

C. Redistribution functions in the isotropic

scattering approximation

The isotropic scattering (ISO) approximation for pho-
tons has been studied, for example, in Rephaeli[10] for
the thermal SZ effect. In the NKI formalism, the ISO
approximation can be imposed by averaging over the ini-
tial photon solid angle, namely

1

4π

∫

dΩkf(µ0, µ
′
0) =

1

2
, (74)

where f(µ0, µ
′
0) is defined by Eq. (11). Thus, the ISO

approximation in the NKI formalism is obtained by re-
placing

f(µ0, µ
′
0) −→

1

2
. (75)

Inserting Eq. (75) into Eqs. (8) and (10), one obtains
the redistribution functions in the ISO approximation as
follows:

Piso(s, β) =
e3s/2

2β2γ2

[

β cosh
s

2
− sinh

|s|

2

]

, (76)

P̃K,iso(s, β) =
e2s

4β2γ2

[

2β cosh s −
(

1 + β2
)

sinh |s|
]

, (77)

PK,iso(s, β) =
γ

θe

[

P̃K,iso(s, β) − Piso(s, β)
]

. (78)

On the other hand, the expressions of the ISO approx-
imation in the PV formalism are given by Eqs. (145) and
(146) of the PV paper. In the Thomson approximation,
they can be rewritten by

R0 =
4

3Q
, (79)

RΣ =
8d

3Q3
. (80)

Inserting Eqs. (79) and (80) into Eq. (30) and (59) and
repeating the same straightforward calculations done in
the previous subsections, one finally obtains the same
expressions as Eqs. (76) and (77).

Finally, we study the accuracy of the ISO approxima-
tion compared with the full calculation. We define the
change of the spectral intensity function ∆I(x) by

∆I(x) = ∆It(x) + βC,z∆Ik(x) , (81)

∆It(x) = I0x
3∆nt(x) , (82)

∆Ik(x) = I0x
3∆nk(x) , (83)

where I0 = (kBTCMB)3/2π2, and ∆nt(x) and ∆nk(x) are
given by Eqs. (19) and (20), respectively.

In Fig. 1, we plot ∆It(x) and ∆Ik(x) for a typical
electron temperature kBTe=15keV of the CG. In Fig. 1a,
the solid curve is the full calculation with Eq. (22) for
P (s, β), and the dashed curve is the ISO approximation
with Eq. (76) for P (s, β). In Fig. 1b, the solid curve is
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FIG. 1: Dependences of ∆It(x) and ∆Ik(x) for kBTe = 15keV
as a function of x. Figs. 1a and 1b are ∆It(x) and ∆Ik(x),
respectively. The solid curve is the full calculation, and the
dashed curve is the ISO approximation.

the full calculation with Eq. (24) for P̃K(s, β), and the
dashed curve is the ISO approximation with Eq. (77) for

P̃K(s, β). It can be seen that the ISO approximation is an
excellent approximation for the SZ effects of the CG. Our
finding confirms the results of the PV paper on the ISO
approximation. The errors of the ISO approximation are

1% at the peak positions.

IV. CONCLUDING REMARKS

We studied the covariant formalism for the SZ effects
developed by the present authors (NKI). We obtained
the analytic expressions for the redistribution functions
P (s, β) and PK(s, β) of the thermal and kinematical SZ
effects for the CG, respectively. In the NKI formalism,
the change of the photon occupation number ∆n(x) and
the spectral intensity function ∆I(x) can be expressed
by the double integral forms. Thus, their numerical cal-
culations became extremely fast compared with previous
numerical calculations. The numerical programs will be
quite useful for the analysis of existing and future obser-
vation data of the SZ effects. They are available upon
request from one of the present authors (S. N.).

We also studied another covariant formalism for the
SZ effects recently developed by Poutanen and Vurm.
We showed that the two formalisms were mathematically
identical in the Thomson approximation, which is fully
valid for the CMB photon energies. This has concluded
that the existing formalisms[9, 14, 16] of the SZ effects
for the CG are equivalent in the Thomson approxima-
tion. Thus, the present finding establishes a theoretical
foundation for the analysis of the SZ effects for the CG.

Finally, we calculated the SZ effects in the isotropic
photon scattering (ISO) approximation. The change of
the spectral intensity function ∆I(x) was calculated both
in the full expression and in the ISO approximation. It
was shown that the ISO approximation was an excellent
approximation compared with the full calculation. The
errors were 1% for ∆It(x) and ∆Ik(x) at the peak posi-
tions.
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