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Abstract  

Menopausal women are at greater risk of developing metabolic syndrome with reduced endothelial 

nitric oxide synthase (eNOS) activity. Hormone replacement therapy increases eNOS activity and 

normalizes some characteristics of metabolic syndrome. We hypothesized that nitric oxide (NO) 

supplementation should have a therapeutic effect in this syndrome. We examined the effect of dietary 

nitrite on a mouse model with postmenopausal metabolic syndrome induced by ovariectomy (OVX) 

with a high-fat (HF) diet. C57BL/6 female mice were divided into five groups: sham+normal-fat 

(NF) diet, sham+HF, and OVX+HF without or with sodium nitrite (50 mg and 150 mg/L) in drinking 

water. Daily food intake and weekly body weight were monitored for 18 weeks. The OVX and HF 

groups showed significantly reduced plasma levels of nitrate/nitrite (NOx) and developed obesity 

with visceral hypertrophic adipocytes, and increased transcriptional levels of monocyte 

chemoattractant protein-1 (MCP-1), tumor necrotizing factor-α (TNF-α) and interleukin-6 (IL-6) in 

visceral fat tissues. The proinflammatory state in the adipocytes provoked severe hepatosteatosis and 

insulin resistance in the OVX+HF group compared with the sham+NF group. However, dietary 

nitrite significantly suppressed adipocyte hypertrophy and transcription of proinflammatory cytokine 

in visceral fat in a dose-dependent manner. The improvement of the visceral inflammatory state 

consequently reversed the hepatosteatosis and insulin resistance observed in the OVX+HF mice. 

These results suggest that an endogenous NO defect might underlie postmenopausal metabolic 

syndrome, and dietary nitrite provides an alternative source of NO, subsequently compensating for 

metabolic impairments associated with this syndrome.  
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Introduction   

Recent studies show that nitric oxide (NO) deficiency might be a common underlying mechanism 

responsible for the development of metabolic syndrome (Monti LD 2003, Fernandez ML 2004, Cook 

S 2003, Huang PL 2009, Duplain H 2001), and that dietary nitrate and nitrite supplementations in 

animal models with this syndrome are effective in the treatment of dyslipidemia and insulin 

resistance (Jiang H 2014, Gilchrist M 2013, Stokes KY 2009). Carlström demonstrated that eNOS 

(endothelial nitric oxide synthase)-deficient mice treated with dietary nitrate had decreased visceral 

fat compared to untreated control mice, and that features of metabolic syndrome were reversed, 

suggesting that a central event in metabolic syndrome might be a decrease in NO bioavailability, and 

also that visceral hypertrophic adipocytes may be a potential target for actions of nitrate- and 

nitrite-derived NO (Carlström M, 2010).  

On the other hand, the effect of NO supplementation on the development of metabolic syndrome 

in the postmenopausal state has not been studied. Menopausal women are at greater risk of 

developing metabolic syndrome in which estrogen deficiency predisposes them to cardiovascular 

diseases due to the increase in low-density lipoprotein cholesterol (Knopp RH 1994), and the 

decrease in vascular eNOS activity. This is likely due to reduced estrogen levels in menopause 

because hormone replacement therapy increases eNOS activity and normalizes some characteristics 

of metabolic syndrome (Cicinelli 1999, Majmudar NG 2000). Therefore, NO supplementation should 

have a therapeutic effect in this syndrome.  

In the present study, we developed ovariectomized (OVX) mice fed with a high-fat (HF) diet, then 

characterized inflammatory and metabolic profiles of this model and also investigated the therapeutic 

effects of dietary nitrite supplementation on the development of the experimental postmenopausal 

metabolic syndrome model of mice.  

 

 

Materials and Methods 

Experimental procedures 

Specific pathogen-free female C57BL/6J mice, 10 week of age from CLEA Japan, Inc. (Tokyo, 

Japan) were allowed food (CE-2, CLEA Japan) and reverse osmosis (RO) water ad libitum, and were 

kept on a 12/12 h light/dark cycle with at least 7 days of local vivarium acclimatization before 

experimental use. All the protocols were approved by the Institutional Animal Care and Use 

Committee at the University of Josai Life Science Center (H23014) and were consistent with the 

Guide for the Care and Use of Laboratory Animals published by the NIH. In order to examine if 

mice with or without ovariectomy were fed either a normal-fat (NF, 10%) or high-fat (HF, 60% fat 

from lard) diet (Table 1), at 11 wk of age, animals were anesthetized with intraperitoneal injection of 

pentobarbital (60 mg/kg) under aseptic conditions and underwent ovariectomy (OVX) or sham 

surgery. Vaginal smears were examined for cytology twice during the experiment (2 and 18 weeks 

after OVX) to confirm that all mice were being killed at the same stage of the estrous cycle 

(Ludgero-Correia A 2012). After a one week resting period, mice were matched for body 

composition (n = 8 per group) and rerandomized into five groups: 1) Sham mice fed with NF diet 

(sham+NF), 2) Sham mice fed with HF diet (sham+HF), 3) OVX mice fed with HF diet (OVX+HF), 

4) OVX mice fed with HF diet and 50 mg/L nitrite in drinking water (OVX+HF+N50), and 5) OVX 

mice fed with HF diet and 150 mg/L nitrite in drinking water (OVX+HF+N150). Both NF and HF 

diets were produced by Oriental Yeast Co. Ltd. (Tokyo, Japan), in accordance with AIN-93M 

recommendations (Reeves 1993). The diets' compositions are detailed in Table 1.  

The mice were housed in individual cages in a temperature and humidity controlled room. Obesity 

was confirmed by checking body weight (once a week) for 18-week experimental period 

(Ludgero-Correia 2012). At 30 weeks of age, the animals were anesthetized with an intraperitoneal 

injection of pentobarbital (60 mg/kg) following a 16 hour fasting period. To determine the 

homeostasis model assessment as an index of insulin resistance (HOMA-IR), blood samples (about 



 

 

0.5 ml) were collected from the abdominal aorta and transferred into plastic tubes containing sodium 

EDTA. Blood glucose levels were determined with GlucocardTM (GT-1661, Arkray, Inc., Kyoto, 

Japan). Plasma insulin concentrations were determined with Mouse Insulin ELISA kit (Shibayagi, 

Gunma, Japan). HOMA-IR was calculated as fasting plasma glucose [mmol/l] × fasting plasma 

insulin [mU/l] / 22.5 (Liu 2010). Thereafter, visceral adipose tissues (ovarian fat mass) and liver 

were then excised from animals and frozen immediately at -80°C until use or fixed in 10% (w/v) 

neutral buffered formalin solution. Uterine mass was also measured after euthanasia to ensure the 

success of the ovariectomy. 

 

RT-PCR 

Tissue samples (adipose and liver) stored at −80°C were extracted using RNeasy Lipid Tissue 

Mini kit (QIAGEN) according to the manufacturer's instructions. Total RNA concentrations were 

quantified by NanoDrop system (Thermo Fisher ScientificTM). RT-PCR was performed with 1 g of 

total RNA by use of Gene RED PCR Mix (NIPPON GENE) according to the manufacturer's 

instructions: 1 cycle at 42°C for 40 min, 95°C for 5 min, and 4°C for 5 min for reverse transcription; 

and 23-36 cycles at 94°C for 30 s, 60°C for 30 s, and 72°C for 1 min for PCR. PCR was performed 

with a RoboCycler 96 gradient temperature cycler (Stratagene). The oligonucleotides used as primers 

were synthesized by FASMAC (Kanagawa, Japan). The primer pairs were designed as follows, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH): forward primer, 5 ′

-agaacatcatccctgcatcc′,reverse primer, 5′-tccaccaccctgttgctgta-3′ (367 bp, 25 cycle), TNF-: 

forward primer, 5 ′ -ggcaggtctactttggagtcattgc-3 ′ , reverse primer, 5 ′

-acattcgaggctccagtgaattcgg-3 ′  (300 bp, 35 cycle), MCP-1: forward primer, 5 ′

-actgaagccagctctctcttcctc′, reverse primer, 5′-ttccttcttggggtcagcacagac-3′ (274 bp, 31 cycle), 

IL-6: forward primer, 5′-acttccatccagttgccttct-3′, reverse primer, 5′-gaattgccattgcacaactct-3′ 

(199 bp, 36 cycle), Adiponectin: forward primer, 5′-gggtgagacaggagatgttggaatg-3′, reverse primer, 

5′-gccagtaaatgtagagtcgttgacg-3′ (478 bp, 23 cycle), 3-Adrenergic Receptor: forward primer, 

5′-tgcgcccatcatgagccagtggtg-3′, reverse primer, 5′-gcgaaagtccgggctgcggcagta-3′ (300 bp, 27 

cycle), uncoupling protein-1 (UCP-1): forward primer, 5′-gggcccttgtaaacaacaa-3′, reverse primer, 

5′ -gaagccacaaaccctttga-3′  (223 bp, 32 cycle), peroxisome proliferator-activated receptor- 

(PPAR-): forward primer, 5 ′ -cgtgatggaagaccactcgc-3 ′ , reverse primer, 5 ′

-aacctgatggcattgtgaga-3′  (477 bp, 27 cycle), CCAAT/enhancer-binding protein- (C/EBP-): 

forward primer, 5′-cggtggacaagaacagcaac-3′, reverse primer, 5′-cggaatctcctagtcctggc-3′ (365 

bp, 33 cycle), sterol regulatory element binding protein-1c (SREBP-1c): forward primer, 5′

-tgcacacaaaagcaaatcactgaag-3′, reverse primer, 5′-attagagccatctctgctctc-3′ (436 bp, 33 cycle), 

acetyl-CoA carboxylase (ACC): forward primer, 5′-aatgcatgcgatctatccgtc-3′, reverse primer, 5′

-tcttgccaatccactcgaaga-3′ (418 bp, 30 cycle), acyl CoA oxidase (ACO): forward primer, 5′

-cttgttcgcgcaagtgagg-3′ , reverse primer, 5′ -caggatccgactgtttacc-3′  (213 bp, 25 cycle), 

middle-chain acyl-CoA dehydrogenase (MCAD): forward primer, 5′- tggagacattgccaatcagc-3′, 

reverse primer, 5′- accatagagctgaagacagg-3′ (355 bp, 25 cycle), G6Pase: forward primer, 5′

-aggcatgcagagtctttggt-3′ , reverse primer, 5′ -accgcaagagcattctcagt-3′  (302 bp, 25 cycle), 

phosphoenolpyruvate carboxykinase (PEPCK): forward primer, 5′- tctatgaagccctcagctgg-3′ , 

reverse primer, 5′- tctgtgctactcaactgact -3′ (691 bp, 25 cycle). Target mRNA expressions were 

quantified relative to the expression of GAPDH. A portion of each PCR mixture was electrophoresed 

in 2% agarose gel in TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM EDTA, pH 8.3), and the gel 

was visualized by ethidium bromide staining. The intensity of the PCR products was measured using 

a Gene Genius Bioimaging System (Syngene). 

 



 

 

Histological analysis 

Adipose tissues and liver were fixed in 10% neutral buffered formalin solution and embedded in 

paraffin. Sections (8 μm) were stained with hematoxylin and eosin (HE) for light microscopic 

observation at ×200 magnification. The mean area of adipocyte in ovarian fat was calculated by 

measuring the area of 500 individual adipocytes per 20 randomly chosen fields per ovarian fat 

section in each experimental group (n=8/group) using the Image J software program (Okuno 1998). 

The ratio of the fat area to the total area of the specimen cross-section of liver was determined by 

measuring the microscopic area of fat vacuole and the total area of vision from 10 different fields per 

liver section in each experimental group (n=8/group) using the Image J software program (Lim 2013). 

Digital images were obtained from a high-resolution digital camera system (Penguin 150CL, Pixera, 

Los Gatos, CA, USA) linked to a microscope (BX41, Olympus, Tokyo, Japan) and desktop computer 

(Pentium 4, 2.0 GHz). 

                         

Nitrite and nitrate concentrations in the plasma 

Nitrite and nitrate concentrations in the plasma were measured using a dedicated HPLC system 

(ENO-20; EiCom, Kyoto, Japan) (Ohtake 2007, Ohtake 2010). This method is based on the 

separation of nitrite and nitrate by ion chromatography, followed by on-line reduction of nitrate to 

nitrite, postcolumn derivatization with Griess reagent, and detection at 540 nm. Proteins in each 

sample were removed by centrifugation at 10,000g for 5 min following methanol precipitation 

(plasma:methanol = 1:1 volume /volume, 4 °C). 

 

Statistical analysis 

All values are expressed as means ± SE. Data were analyzed by one or two-way ANOVA, and then 

differences among means were analyzed using the Tukey-Kramer multiple comparison test. A level 

of P < 0.05 was considered significant. 

 

 

Results 

Surgery-induced menopause 

To confirm successful surgically induced menopause in this mouse model, vaginal cytology and  

uterine mass were analyzed. The vaginal smears showed the predominance of leukocytes 

characteristic of the diestro stage of the rodent’s estrous cycle. Because uterine weight of OVX 

female mice is well correlated with the plasma levels of estradiol (Wang Y 2015), uterine weight is 

often used as a surrogate measure of biologically active estrogen (Elliot SJ et al. 2003). Uterine mass 

of OVX groups was significantly decreased compared to that of the sham groups irrespective of 

whether or not the mice were fed an HF diet and dietary nitrite, indicating that uterus atrophy and 

postmenopausal status are successfully induced by OVX (Fig. 1A).  

 

Effect of dietary fat and nitrite on body mass  

  Figure 1B shows the time course of body mass change in the sham and OVX mice treated with or 

without an HF diet and dietrary nitrite. The sham+HF group showed a higher body mass than the 

sham+NF group, with significant differences (p<0.05) from 4 weeks to 18 weeks. The OVX+HF 

groups (both with and without nitrite) showed a higher body mass than the sham groups (both NF 

and HF), with significant differences (p<0.05) from 1 week to 18 weeks. Regardless of whether or 

not the mice were fed dietary nitrite, there was no difference among the OVX+HF groups, 

suggesting that dietary nitrite had no impact on body mass in the OVX+HF groups.  

 

Effect of HF diet and dietary nitrite on morphometry of visceral adipocytes 

Figure 2A shows the ratio of ovarian fat mass to whole body mass in the 5 groups. The HF diet 

increased this ratio in the sham+HF and OVX+HF groups compared to the sham+NF group. On the 



 

 

other hand, nitrite supplementation in the OVX+HF group dose-dependently decreased this ratio. In 

the microscopic examination, among the 5 groups, the HF diet increased the size of ovarian 

adipocytes, which were more augmented with the addition of OVX (Fig. 2B). Crown-like structures 

indicative of a necrotic adipocyte surrounded by macrophages are frequently observed in OVX+HF 

groups (arrow in Fig. 2C) (Murano I, 2008). Consistent with the changes of ratio of ovarian fat mass 

to whole body mass (Fig. 2A), nitrite supplementation in the OVX+HF group significantly decreased 

the size of adipocytes (Fig. 2B and 2C).  

 

Transcriptional levels of cytokines in ovarian adipose tissue 

Based on the evidence that the visceral hypertrophic adipocytes play a causative role in the 

development of metabolic syndrome by releasing inflammatory cytokines to the portal and systemic 

circulation (Franklin RM, 2009), we measured the transcriptional levels of inflammatory cytokines 

(TNF-α, IL-6, and MCP-1) (Fig. 3A) and adipocyte-related biomarkers (adiponectin, β2-adrenagic 

receptor, UCP-1, PPAR-γ and C/EBP-α) (Fig. 3B) in ovarian fat tissue. The mRNA levels of TNF-α, 

IL-6, and MCP-1 increased in the HF diet group compared to the sham+NF, and higher increases 

were observed in the OVX+HF group than in the sham groups (sham+NF and sham+HF), whereas 

these were significantly suppressed by dietary nitrite (in OVX+HF+N50, and +N150) (Fig. 3A). On 

the other hand, there was no significant difference in mRNA levels of adiponectin, energy 

consumption-related (β2-adrenagic receptor and UCP-1) and adipocyte differentiation-related factors 

(PPAR-γ and C/EBP-α) among the 5 groups (Fig. 3B). 

 

Effect of dietary nitrite on OVX and HF diet-induced fatty liver  

Because portal delivery of proinflammatory cytokines and FFAs from visceral adipocytes induces 

fatty liver in obesity-induced metabolic syndrome (Shoelson SE, 2006), we examined liver 

histomorphology. As shown in Figure 4A, there were many more lipid droplets in the hepatocytes of 

the sham+HF group than the sham+NF group, and the most lipid droplets were observed in the 

OVX+HF group, whereas dietary nitrite apparently reduced the number of lipid droplets in the 

hepatocytes of the OVX+HF+N50 and +N150 groups in a dose-dependent manner. The suppressive 

effect of dietary nitrite on OVX and HF diet-induced fatty liver is also qualitatively presented in 

Figure 4B (the ratio of the total fat vacuole area). We also measured hepatic mRNA levels of the 

regulating factors closely related to hepatic lipid metabolism, such as SREBP-1c and ACC for 

lipogenesis, ACO and MCAD for fatty acid β-oxidation, G6Pase and PAPCK for glycogenesis (Fig. 

5). OVX and HF diet significantly increased SREBP-1c, and this was dose-dependently reversed by 

the addition of dietary nitrite. This was also observed in ACC transcription but was not significant. 

This suggests that at least lipogenesis due to enhanced SREBP-1c expression might be one of the 

contributors to the development of fatty liver in this model. However, OVX, HF diet and dietary 

nitrite had no impact on the other hepatic transcriptional levels in this model (Fig. 5).  

  

Effect of dietary nitrite on glucose metabolism and insulin sensitivity 

  Figure 6 shows significant increases in the levels of fasting blood glucose (Fig. 6A) and plasma 

insulin (Fig. 6B) in the OVX+HF group compared to the sham+NF group. Although dietary nitrite 

did not affect blood glucose levels, plasma insulin levels decreased dose-dependently with dietary 

nitrite. To assess fasting insulin sensitivity, HOMA-IR was calculated, which exhibited an increased 

insulin resistance in the OVX+HF group, and dietary nitrite dose-dependently improved insulin 

sensitivity (Fig. 6C).  

 

Plasma levels of nitrate/nitrite 

  We measured plasma levels of nitrate/nitrite (NOx) as a measure for endogenous NO production in 

fasting (Fig. 7). Plasma NOx levels significantly decreased in the OVX+HF group compared to the 

sham groups. Although the difference did not reach statistical significance, plasma NOx levels 



 

 

tended to increase with nitrite supplementation, possibly reflecting the compensation for the lack of 

NO in the OVX+HF mice. 

 

 

Discussion 

  The present study showed that dietary nitrite improved several features observed in the OVX+HF 

mice model of postmenopausal metabolic syndrome. It is well-accepted that dietary nitrate and nitrite 

act as a substrate for systemic NO generation, serving as a physiological alternative source of 

NO-based signaling when endogenous NOS-derived NO is lacking (Bryan NS 2005). Recent 

accumulating evidence has suggested that polymorphism in the eNOS gene is associated with the 

development of metabolic syndrome in humans (Fernandez ML 2004, Monti LD 2003), and 

eNOS-deficient mice display a number of features of metabolic syndrome, such as hypertension, 

dyslipidemia, and insulin resistance (Gonzalez-Sánchez 2007), thereby indicating that loss of NO 

bioavailability might be an important underlying molecular mechanism for the development of 

metabolic syndrome (Carlström 2010). Consistent with these reports, the present study also showed a 

significant decrease in plasma NOx levels in OVX+HF postmenopausal metabolic mice compared to 

sham+NF control mice. Although statistical significance of plasma NOx levels could not be observed 

in the OVX+HF group between cases with and without dietary nitrite, there was an apparent 

tendency for increased plasma NOx levels following nitrite supplementation (Fig. 7), which 

accordingly improved the metabolic and histological features of the experimental postmenopausal 

syndrome. NO plays suppressive roles in the development of metabolic syndrome at various levels of 

this process, including regulation of microvascular blood flow (Wang 2013), mitochondrial function 

(Larsen 2011), insulin secretion (Nystrom 2012), glucose uptake (Khoo 2014), and modulation of 

inflammation (Rizzo 2010). In the present study, we believe the inhibition of visceral 

proinflammatory cytokine expression with dietary nitrite might be the central event in the subsequent 

curing process of this syndrome. Recent studies suggest that long-chain saturated FFAs derived from 

excess adiposity induce inflammatory mediators by toll-like receptor-4 (TLR4)-mediated NF-κβ 

activation (de Luca 2008, Dasu 2011), and inactivation of NF-κβ by nitrosative modification of IκκB 

could suppress TLR4-mediated signal propagation of the proinflammatory cytokines (Hess DT 2005). 

Although further investigations will be required to answer this in more detail, focusing on a more 

definite signaling mechanism of phosphorylation and nitrosation for this process, the present study 

showed that dietary nitrite suppressed the inflammatory cytokine transcription in the visceral 

adipocytes, possibly inhibiting subsequent systemic inflammatory responses, including hepatic 

steatosis and insulin resistance in skeletal muscles (Shoelson 2006 ,Yuan M 2001).  

 

On the other hand, the effect of NO supplementation on metabolic syndrome in the 

postmenopausal state has not been well studied so far. In this study, although we did not measure 

plasma estrogen levels, uterine mass, which is often used as a surrogate measure of biologically 

active estrogen (Wang Y 2015), was significantly decreased in the OVX groups compared to the 

sham groups, indicating that uterus atrophy mimics the postmenopausal state. The effect of gender 

differences in the prevalence of cardiovascular disease and its increasing risk in postmenopausal 

women are well-known (Cicinelli 1999). Furthermore, recent reports suggested that menopause in 

women reduces eNOS activity and estrogen replacement therapy increases the plasma NOx levels 

and improves endothelium-dependent vascular functions through estrogen receptor-mediated 

activation of eNOS (Cicinelli E 1999, Chen Z 1999). As reported in a previous study 

(Ludgero-Correia 2012), here we showed the apparently accelerating development of metabolic 

syndrome in the menopausal state with the additional treatment of OVX mice with an HF diet, and 

this was consequently improved by dietary nitrite in a dose-dependent manner. These results suggest 

that dietary nitrite supplementation in postmenopausal metabolic syndrome might restore NO 

bioavailability and compensate for the metabolic consequences of estrogen deficiency.  



 

 

 

  Next, we investigated the detailed effects of dietary nitrite on fat and glucose metabolism in this 

model. Either OVX+HF diet or dietary nitrite had little impact on the hepatic transcriptional level of 

ACC (a regulating factor for lipogenesis), whereas SREBP-1c, another major transcriptional 

regulator for lipogenic genes increased with the HF diet and increased even more with additional 

OVX treatment, resulting in hepatosteatosis in an OVX+HF group (Murase 2001). Endo et al. 

reported that TNF-α induces hepatosteatosis in mice by enhancing gene expression of SREBP-1c 

(Endo 2007); therefore, increased hepatic lipogenesis by SREBP-1c is likely to be suppressed by 

dietary nitrite via reduction of proinflammatory cytokines in visceral and hepatic adipocytes. On the 

other hand, among all 5 groups there was no change in hepatic transcriptional levels of ACO, MCAD, 

G6Pase and PAPCK, suggesting that, rather than fatty acid β oxidation and glycogenesis, lipogenic 

regulation might be responsible for the development of fatty liver in this postmenopausal mouse 

model. In contrast to the present result, previous reports demonstrated a causative relation of G6Pase 

to hepatosteatosis (Konopelska 2011). However, because lipid metabolism in the liver is highly 

nutritionally and hormonally regulated at the transcriptional level (Yamamoto 2004), and is often 

reported discrepantly (Gregoire 2002, Kim 2004), further studies will be needed to clarify this 

complicated and multifactorially balanced lipid homeostasis in particular focusing on different 

conditions, such as fed, fasted, and refed, as well as gender, ageing and menopause. 

 

  Next we examined alterations of glucose homeostasis following the treatments of OVX and/or HF 

diet and also examined the therapeutic effect of dietary nitrite on the impaired glucose tolerance. 

Significant increases in fasting plasma levels of glucose and insulin were observed in the OVX+HF 

group compared to the sham+NF group, and these were dose-dependently reversed with dietary 

nitrite (Fig. 6A, B). HOMA-IR also revealed an increased insulin resistance in the OVX+HF group 

and this was also improved with dietary nitrite (Fig. C). Based on the previous evidence that 

insulin-related signal transduction is impaired by enhanced inflammatory cytokines and reactive 

oxygen species (Guiherme 2008), here we try to discuss the effect of dietary nitrite on the insulin 

signaling process in OVX+HF mice. Elevated FFAs inhibit insulin signaling through the activation 

of TLR4-mediated NF-κβ and NADPH oxidase, which are followed by the stimulation of 

inflammatory mediators (TNF-a, IL1B, IL-6, and PKC) and serine phosphorylation of insulin 

receptor substrate-1 (IRS-1), thereby leading to insulin resistance (Guiherme 2008). As mentioned 

above, it might be possible that dietary nitrite-mediated nitrosative modification and inhibition of 

IκκB/NF-κβ signaling axis are the start of the reversal in glucose homeostasis and insulin 

resistance[LSC1] (Hess 2005). In addition, Jiang recently reported that dietary nitrite improves insulin 

resistance through a glucose transporter 4 (GLUT4)-mediated mechanism, in which NO-dependent 

nitrosation of GLUT4 facilitates GLUT4 translocation to the membrane for glucose uptake and 

thereby improves insulin resistance (Jiang 2014). Further work is still needed. Nitrosative 

modification of the signal-related proteins could be involved in the impaired glucose tolerance 

underlying postmenopausal metabolic syndrome.[LSC2]  

 

When considering an application of this treatment to clinical practice, there are a couple of issues 

to be considered. First, there is the question of how dietary nitrite exerts NO activity in vivo. In 

general, while most dietary nitrate and nitrite (mostly from fruit, vegetables, and water[LSC3]), 

including oxidation products of endogenous NO, is excreted into the urine, 25% of dietary nitrate is 

recycled to saliva through the enterosalivary pathway, followed by bacterial reduction to nitrite in the 

oral cavity, is then acid-catalyzed in the stomach for the formation of NO and S-nitrosated proteins 

(S-nitrosoglutathione, S-nitrosocysteine). Although NO, a short-lived gaseous molecule, plays an 

important role in local defense in the gastric mucosa, S-nitrosated proteins and nitrite, which are 

more stable NO donors, are absorbed in the upper gastrointestinal tract and are delivered 

systemically, subsequently serving as transnitrosation agents and/or on-demand NO donors. We 



 

 

applied dietary nitrite instead of dietary nitrate, because rodents such as rats and mice do not actively 

concentrate circulating nitrate in saliva (enterosalivary route) (Djekoun-Bensoltane G 2007, 

Cockburn A 2013, Montenegro MF 2016). Therefore, the present study was thus designed to 

simulate the human-like enterosalivary cycle by applying dietary nitrite. 

The second issue is whether the dose of dietary nitrite is consistent with that of human diets. The 

amounts of nitrite used in the present study totaled approximately 0.1 and 0.3 mg/day for mice 

drinking the lower and higher doses of nitrite, respectively (based on drinking 2 ml of water per day) 

and these increased steady-state plasma NOx levels. These doses of nitrite are orally achievable 

through increasing consumption of nitrate/nitrite-rich foods and vegetables (Bryan 2007), providing 

a possible therapeutic strategy for patients with postmenopausal metabolic syndrome.  

Another issue to discuss is safety of the dose of dietary nitrite used in this mice model. It was 

reported that elevated nitrate doses in well water were associated with infantile methemoglobinemia 

and low blood pressure (Comly HH 1945, Knobeloch L 2000). However, because no gross fetal 

pathology was observed in the present mice model, we did not measure methemoglobin levels and 

blood pressure. We previously reported a mouse model for experimental colitis treated with 25 

mmol/L sodium nitrite in drinking water (approximately 35- and 12-fold concentrated nitrite levels 

compared to those of the present study); however, even at that dose, no measurable effects on 

methemoglobin levels and blood pressure were observed (Ohtake 2010).  

Regarding the relation of dietary nitrate and nitrite to nitrosamine formation and cancer 

development, although it is outside the scope for this research work, so far there has been no 

evidence supporting the role of fruit and vegetables in cancer development. Although more detailed 

reviews are available (Bradbury KE 2014), dietary nitrate and nitrite, at least from plant-based foods, 

have obviously inhibitory effects on cancer and even cardiovascular risk by playing some synergistic 

role with other nutrients, such as vitamins C and E, and polyphenols in these foods, rather than 

forming N-nitroso-compounds including nitrosamine (Kobayashi J 2015).  

In conclusion, these results suggest that an endogenous NO defect might underlie postmenopausal 

metabolic syndrome; therefore, dietary nitrite provides an alternative source of NO, and subsequently 

compensates for metabolic impairments associated with this syndrome. 
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LEGENDS 

Figure 1 

Effect of dietary fat and nitrite on body mass 

(A) The effects of dietary high fat and nitrite on the uterine mass of mice treated with or without 

OVX. Significant difference between sham (NF and HF) and OVX+HF groups (0, 50, and 150 mg 

nitrite) from 1 week to 17 weeks, p<0.05. Sham+NF vs. sham+HF, significant from 4 week to 17 

weeks, p<0.05. No significant differences among OVX+HF groups.  

(B) Time course of body weight change of sham or OVX mice treated with or without dietary high 

fat and nitrite. ap<0.05 vs. sham+NF, bp<0.05 vs. sham+HF, Mean±SE. 

NF: normal fat, HF: high fat, OVX: ovariectomized, N50: nitrite 50mg/L, N150: nitrite 150mg/L 

○: sham+NF, △: sham+HF, □: OVX+HF, ●: OVX+HF+N50,▲: OVX+HF+N150. The results 

are shown as the means ± SE (n=8). 

 

Figure 2 
Effect of HF diet and dietary nitrite on morphometry of visceral adipocytes 

(A) The ratio of ovarian fat mass to whole body mass (g/kg body weight) in the 5 groups.  

(B) Light micrographs showing adipocytes in the visceral fat pad (×200). Arrow indicates the 

presence of inflammatory infiltrate in OVX+HF group (crown-like structure).  

(C) The size of ovarian adipocyte (μm2/cell) in the 5 groups. 

NF: normal fat, HF: high fat, OVX: ovariectomized, N50: nitrite 50 mg/L, N150: nitrite 150 mg/L 
ap<0.05 vs. sham+NF, bp<0.05 vs. sham+HF, cp<0.05 vs. OVX+HF. The results are shown as the 

means ± SE (n=8). 

 

Figure 3 

Transcriptional levels of the biomarkers in ovarian adipose tissue 

(A) The mRNA levels of TNF-α, IL-6, and MCP-1 in the 5 groups. 

(B) The mRNA levels of adiponectin, β3-adrenergic receptor, UCP-1, PPAR-γ, C/EBP-α in the 5 

groups. The mRNA levels are standardized by GAPDH mRNA 

IL-6: interleukin-6, TNF-α: tumor necrosis factor-α, MCP-1: monocyte chemoattractant protein-1, 

GAPDH: glyceraldehyde-3-phosphate dehydrogenase, UCP-1: uncoupling protein-1, PPAR-γ: 

peroxisome proliferator-activated receptor-, C/EBP-α: CCAAT/enhancer-binding protein-.  

NF: normal fat, HF: high fat, OVX: ovariectomized, N50: nitrite 50mg/L, N150: nitrite 150mg/L 
ap<0.05 vs. sham+NF, bp<0.05 vs. sham+HF, cp<0.05 vs. OVX+HF. The results are shown as the 

means ± SE (n=8). 

 



 

 

Figure 4 

Effect of dietary nitrite on OVX and HF diet-induced fatty liver.  

(A) Representative histomorphology of liver in the 5 groups.  

(B) The ratio of the total fat vacuole area in liver section (×200). 

NF: normal fat, HF: high fat, OVX: ovariectomized, N50: nitrite 50 mg/L, N150: nitrite 150 mg/L.  

 

Figure 5 Transcriptional levels of the metabolic factors in liver. 

The hepatic mRNA levels of SREBP-1c, ACC, ACO, MCAD, G6Pase, and PAPCK. 

SREBP-1c: sterol regulatory element binding protein-1c, ACC: acetyl-CoA carboxylase, ACO: 

acyl-CoA oxidase, MCAD: middle-chain acyl-CoA dehydrogenase, G6Pase: glucose-6-phosphatase, 

PEPCK: phosphoenolpyruvate carboxykinase, NF: normal fat, HF: high fat, OVX: ovariectomized, 

N50: nitrite 50 mg/L, N150: nitrite 150 mg/L 
ap<0.05 vs. sham+NF, bp<0.05 vs. sham+HF, cp<0.05 vs. OVX+HF. The results are shown as the 

means ± SE (n=8). 

  

Figure 6 

Effect of dietary nitrite on glucose metabolism and insulin sensitivity 

Fasting plasma levels of glucose (A), insulin (B) and HOMA-IR(C) in the 5 groups. 

HOMA-IR : the homeostasis model assessment as an index of insulin resistance. 

NF: normal fat, HF: high fat, OVX: ovariectomized, N50: nitrite 50 mg/L, N150: nitrite 150 mg/L 
ap<0.05 vs. sham+NF, bp<0.05 vs. sham+HF, cp<0.05 vs. OVX+HF. The results are shown as the 

means ± SE (n=8). 

 

Figure 7 

Plasma levels of nitrate/nitrite 

NF: normal fat, HF: high fat, OVX: ovariectomized, N50: nitrite 50 mg/L, N150: nitrite 150 mg/L 
ap<0.05 vs. sham+NF. The results are shown as the means ± SE (n=8). 
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