Fourier Transform Spectroscopy on the ν_1 Band of OCSe

Kazuo SUEOKA, Toichi KONNO, Yoshiaki HAMADA, and Hiromichi UEHARA Department of Chemistry, Faculty of Science, Josai University, Keyakidai, Sakado, Saitama 350-02

[†]Faculty of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

The ν_1 fundamental band of OCSe in natural abundance was observed near 2000 cm⁻¹ with a resolution of 0.005 cm⁻¹. Results of the analysis are given for $^{16}\mathrm{O}^{12}\mathrm{C}^{80}\mathrm{Se}$ and $^{16}\mathrm{O}^{12}\mathrm{C}^{78}\mathrm{Se}$.

So far, only one paper by Maki et al. 1) has been reported on the high-resolution infrared spectrum of carbon oxide selenide (OCSe). They observed, with a resolution of 0.025 cm⁻¹, the ν_1 band and its hot bands for $^{16}\text{O}^{12}\text{C}^{80}\text{Se}$, $^{18}\text{O}^{12}\text{C}^{80}\text{Se}$ and $^{16}\text{O}^{13}\text{C}^{80}\text{Se}$ near 2000 cm⁻¹ and also the $\nu_1+\nu_3$ band for $^{16}\text{O}^{13}\text{C}^{80}\text{Se}$ near 2600 cm⁻¹. We synthesized OCSe using a heat pipe reactor and observed thirteen infrared bands between 400 and 4000 cm⁻¹ for OCSe in natural abundance. 2) High-resolution spectra for all of the thirteen bands were recorded by FTIR spectrometers, BOMEM DA3.002 and BRUKER IFS 113v. The strongest band, ν_1 band, was recorded by BOMEM DA3.002 with a resolution of 0.005 cm⁻¹.

The spectrum of the ν_1 band shows the most complex features due to the hot bands in addition to the Se isotopes. However, the present high-resolution has led to the successful assignment of the spectral lines for each isotope species and the accurate determination of the molecular constants. In this letter, we report the high-resolution infrared spectra and the analysis of the ν_1 band confining our attention to the two most abundant species, $^{16}O^{12}C^{80}Se$ and $^{16}O^{12}C^{78}Se$.

A part of the recorder trace of the ν_1 band is shown in Fig. 1. Spectral lines assigned to the 10^00-00^0 0 transitions ($\Sigma-\Sigma$ band) for $^{16}O^{12}C^{80}$ Se and $^{16}O^{12}C^{78}$ Se are indicated by solid and broken lines, respectively. Some of the lines overlap and their intensities apparently increase. Figure 2 illustrates the intensities and positions for the spectral lines assigned to $^{16}O^{12}C^{80}$ Se. The locally-perturbed intensity distribution is clearly seen, which is due to the overlapping of the lines. Figure 2 also illustrates the values of obs-calc for each transition wavenumber.

The spectral lines assigned to the 10^00-00^00 transitions for $^{16}0^{12}c^{80}Se$ and $^{16}0^{12}c^{78}Se$ were analysed with a program system SALS³⁾ in least-squares fitting to energy levels given by¹⁾

 ${\rm E=G_{v}+B_{v}J(J+1)-D_{v}[J(J+1)]^{2}} \qquad \text{and} \qquad \nu_{0} = G_{v}' - G_{v}''.$ In the final fits, severely overlapped lines were excluded. The values of the observed transitions and obs-calc are listed in Table 1. The observed values

1516 Chemistry Letters, 1986

listed are just the output values of the DA3.002 spectrometer. The absolute and the relative uncertainties in the observed values are ± 0.001 cm⁻¹ and ± 0.0002 cm⁻¹, respectively. The spectral lines excluded from the final fits are marked by *.

Molecular parameters ν_0 , B", B', D", and $\Delta D(=D'-D")$ were accurately determined by the present fits. They are listed in Tables 2 and 3. Rotational constants for OCSe have extensively been given by microwave spectroscopy for various states of a number of isotopic species. Rotational and distortion constants in the present study are in good agreement with the microwave values. The present rotation-

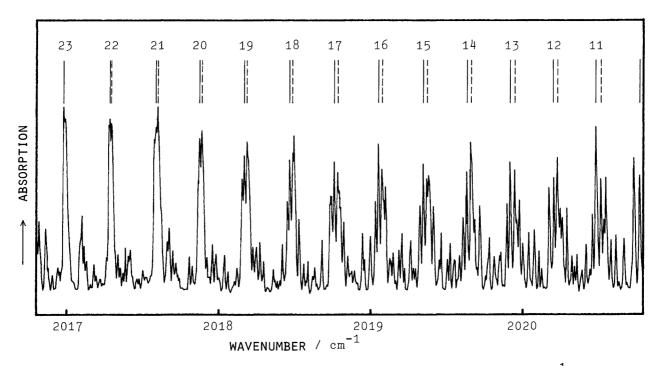


Fig. 1. Part of the high-resolution spectrum of OCSe near 2019 cm $^{-1}$. Numbers correspond to J values for the J-1+J (10^00-00^00) transitions. Solid lines: $^{16}O^{12}C^{80}Se$. Broken lines: $^{16}O^{12}C^{78}Se$.

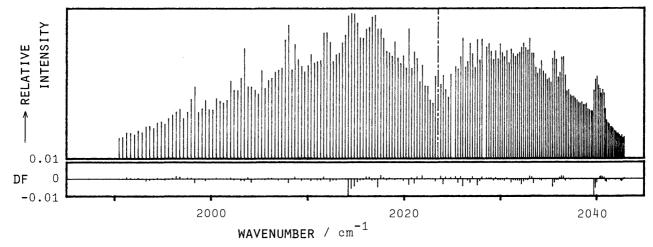


Fig. 2. Observed intensities and the values of (obsd-calcd) for the transition wavenumbers for $^{16}O^{12}C^{80}Se$. DF and ————indicate the values of (obsd-calcd) in cm⁻¹ and the position of the band center, respectively.

Table 1. Observed line positions (in cm $^{-1}$) in the 10 0 0-00 0 0 transitions for $^{16}{\rm O}^{12}{\rm C}^{80}{\rm Se}$ and $^{16}{\rm O}^{12}{\rm C}^{78}{\rm Se}$

	16 ₀ 12 _C 80 _{Se}			16 ₀ 12 _C 78 _{Se}					
J	P(J)		R(J)		J	P(J)		R(J)	
0 1	2023.25568 (-146)*	2023.79360 (2024.05348 (186)* -338)*	0	2023.29943 (-552)*	2023.84373 (2024.10662 (87) -299)*
2	2022.98816 (51)	2024.32188 (135)*	2	2023.01808 (-1573)*	2024.37545 (55)
3 4	2022.71717 (2022.44477 (45) 44)	2024.58293 (2024.84463 (19) [114)*	3	2022.76167 (2022.48632 (47) -81)	2024.63859 (2024.90079 (-14) -30)
5	2022.17042 (-7)			5	2022.21433 (274)*	2025.15752 (-446)*
6 7	2021.89744 (2021.61858 (224)* 13)	2025.36233 (2025.61460 (170)* [-241)*	6 7	2021.93392 (2021.65827 (-68) 213)*	2025.42274 (2025.68150 (134)* 214)*
В	2021.34170 (144)*	2025.87350 ((156)*	8	2021.37801 (178)*	2025.68150 (2025.93581 (-4)
9 10	2021.05791 (2020.78035 (-271)* 82)	2026.12058 (2026.37768 ((-482)* (27)	9 10	2021.09479 (2020.81035 (-6) -167)*	2026.19104 (2026.44228 (17) -214)*
11	2020.49328 (-371)*	2026.62732 (2026.87463 ((-64) (-242)*	11	2020.52489 (-284)* -272)*	2026.69610 (-41)
12 13	2020.21320 (2019.92669 (20) -88)	2027.12649 (182)*	12 13	2020.23926 (2019.95516 (38)	2026.94676 (2027.18823 (-36) -803)*
1 4 1 5	2019.64103 (2019.35267 (35) 31)	2027.37094 (2027.61157 ((10) (-397)*	14 15	2019.66849 (2019.37621 (238)* 21)	2027.44368 (2027.69010 (-25) -3)
16	2019.06241 (-17)	2027.85767 ((-112)*	16	2019.08581 (139)*	2027.93472 (-14)
17 18	2018.77147 (2018.47923 (10) 53)	2028.10175	(118)*	17 18	2018.79284 (2018.49919 (144)* 227)*	2028.17900 (2028.42027 (88) 37)
19	2018.18424 (-36)	2028.58040	(66)	19	2018.20376 (278)*	2028.65899 (-122)*
20 21	2017.88977 (2017.59458 (72) 252)*	2028.81789 (2029.05387 ((76) (81)	20 21	2017.90510 (2017.60708 (151)* 232)*	2028.89956 (2029.13419 (51) -222)*
22	2017.28829 ((-534)*	2029.28698	(-54)	22	2017.30770 (323)*	2029.37252 (22)
23 24	2016.99355 (2016:69175 ((-21) (-69)	2029.52145 (2029.75159 ((93) (-46)	23 24	2016.99355 (2016.69175 (-918)* -779)*	2029.60642 (2029.83975 (-30) 9)
25	2016.39085 (116)*	2029.98165	(-47)	25	2016.39085 (-405)*	2030.07050 (-62)
26 27	2016.08693 (2015 _. 77972 ((143)* (-15)	2030.21044	(-28) (-85)	26 27	2016.08693 (2015.77972 (-188)* -155)*	2030.30074 (2030.53047 (-37) 85)
28	2015.47229 ((-51)	2030.66417	(64)	28	2015.47229 (0)	2030.75634 (~31)
29 30	2015.16245 (2014.84956 ((-185)* (-480)*	2030.88771 2031.10837	(~2) (~209)*	29 30	2015.16245 (2014.84956 (59) -43)	2030.98117 (2031.20835 (-104)* 206)*
31 32	2014.53651	(-648)* (-1143)*	2031.33135 2031.55096	(-38) (-57)	31 32	2014.53651 (2014.21875 (-16) -315)*	2031.42809 2031.64976	(-81) -26)
33	2013.91632	(39)	2031.76887	(-99)*	33	2013.89818 (-752)*	2031.86763	(-204)*
34 35	2013.60073 (2013.28331 ((47) (16)	2031.98593 2032.19874	(-79) (-337)*	34 35	2013.58218 (2013.26556 (-587)* -340)*	2032.08703 (2032.30486 (-81) (33)
36	2012.96415	(-45)	2032.41460	(-144)*	36	2012.94316 (-526)*	2032.52235	261)*
37 38	2012.64417 (2012.32166 ((-46) (-157)*	2032.62827 2032.83896	(-22) (-52)	37 38		-1731)* -1721)*	2032.73581 2032.94606	234)* 34)
39	2012.00062	(22)	2033.05099	(200)*	39	2011.97974 (156)*	2033.15500	
40 41	2011.67754 (2011.35000 ((140)* (-45)	2033.25828 2033.46090	(125)* (-271)*	40 41	2011.65132 (2011.32405 (-57) -12)	2033.56639	(-719)*
42	2011.02282	(-52)	2033.66875	(4)	42	2010.99522 (22)	2033.78030	(39)
4 3 4 4	2010.69475 (2010.36382 ((-4) (-100)*	2033.87242 2034.07431	(8) (-18)	43 44	2010.66215 (2010.33235 (-225)* -2)	2033.98454 2034.18777	(-21) (-35)
45 46	2010.03335 2009.70043	(-8) (-19)	2034.27440	(-78) (-5)	45 46	2009.99943 (2009.66262 (53) ~137)*	2034.38983 2034.59034	(-17) (-6)
47	2009.36555	(-83)	2034.67190	(-23)	47	2009.32716 (-50)	2034.78940	(8)
48 49	2009.03075 2008.69499	(4) (136)*	2034.86850 2035.06344	(10) (24)	48 49	2008.99069 (2008.64792 (80) -277)*	2034.98637 2035.18254	(-38) (-16)
50	2008.35527	(14)	2035.25666	(14)	50	2008.31164 (157)*	2035.37712	(-5)
51 52	2008.01272 2007.67382	(-248)* (-4)	2035.44326 2035.63633	(-511)* (-241)*	5 1 5 2	2007.96823 (2007.62438 (22) -14)	2035.57066 . 2035.76120	(51) (-45)
53	2007.33094	(-16)	2035.82714	(-51)	53 54	2007.27917 (2006.93232 (-44)	2035.95171 2036.14042	(4)
5 4 5 5	2006.98635 2006.64129	(-57) (-3)	2036.01470 2036.20220	(-37) (117)*	55	2006.58580	-95) 30)	2036.32672	(22) (-53)
56	2006.29490	(59) (41)	2036.38766	(215)* (197)*	56 57	2006.23612 2005.88571	(-19) (1)	2036.51270 2036.69692	(-11) (3)
57 58	2005.94630 2005.59567	(-38)	2036.57048 2036.74926	(-78)	58	2005.53430	(64)	2036.87947	(-2)
59 60	2005.24480 2004.89212	(1)	2036.93032 2037.10904	(23) (37)	59 60	2005.17991 2004.82567	(-29) (35)	2037.06045 2037.24086	(-15) (64)
61	2004.53827	(22)	2037.28563	(-15)	61	2004.46537	(-365)*	2037.41779	(-57)
62 63	2004.18057 2003.82653	(-200)* (86)	2037.46139 2037.63566	(-1)	62 63	2004.10781 2003.75351	(-348)* (136)*	2037.59522 2037.77033	(21) (16)
64	2003.46627	(-109)*	2037.80832	(9)	64	2003.39231	(72)	2037.94405	(20)
65 66	2003.10699 2002.74678	(-66) (25)	2037.97963 2038.14922	(20) (7)	65 66	2003.02973 2002.66601	(11) (-22)	2038.11604 2038.28702	(-1) (27)
67	2002.38372	(-29)	2038.31755	(15)	67 68	2002.30150 2001.93513	(8) (-7)	2038.45603 2038.62374	(5)
68 69	2002.02074 2001.65491		2038.64947	(0)	69	2001.56737	(-20)	2038.78988	(8-
70 71	2001.28802 2000.91974	(1)	2038.81376 2038.97563	(47)	70 71	2001.19825 2000.82823		2038.95487 2039.11862	(14) (62)
72	2000.55078	(45)	2039.13670	(21)	72	2000.45459	(-161)*	2039.27992	(14)
73 74	2000.17943 1999.80693	(4)	2039.29605 2039.45416	(17) (37)	73 74	2000.08360 1999.70870	(67) (46)	2039.43223 2039.59381	(-785)* (-509)*
75	1999.43220	(-111)* (-20)	2039.61048	(25) (-1120)*	75	1999.33251	(36)	2039.75398	(-225)*
76 77	1999.05798 1998.68147	(-18)	2039.91288	(-578)*	76 77	1998.95411 1998.57715	(-55) (139)*	2039.91288 2040.06846	(81) (205)*
78 79	1998.30115 1997.92485	(-257)* (45)		(-220)* (8)	78 79	1998.19448 1997.81320	(-97) (-54)	2040.22126 2040.37166	(198)* (100)
80	1997.54405	(37)	2040.37166	(143)*	80	1997.42855	(-208)*	2040.51966	(88)
81 82	1997.16145 1996.77934	(-13) (126)*	2040.51966 2040.66530	(186)* (141)*	81 82	1997.04495 1996.66060	(-116)* (40)	2040.66530 2040.80944	(-365)* (-642)*
83	1996.39462	(163)*	2040.80944	(93)	83	1996.27275	(-14)	2040.95051	(-1078)*
84 85	1996.00723 1995.61905	(31) (-20)	2040.95051 2041.09152	(-113)* (-178)*	84 85	1995.88288 1995.49424	(-130)* (17)	2041.10533 2041.24762	(11)
86	1995.22950	(-70)	2041.23363	(15)	86 87	1995.10215	(-42)	2041.38868	(4)
87 88	1994.83963 1994.44837	(-13) (43)	2041.37198 2041.50956	(-20) (15)	88	1994.70917 1994.31578	(-50) (40)	2041.52799 2041.66627	(-12) (18)
89 90	1994.05436 1993.65934	(-37)	2041.64515 2041.77953	(-1) (10)	89 90	1993.91500 1993.52230	(-469)* (-32)	2041.80214 2041.93736	(-45) (-25)
91	1993.26270	(-147)*	2041.91203	(-19)	91	1993.12259	(-156)*	2042.07072	(-41)
92	1992.86664 1992.46843	(-18) (34)	2042.04320 2042.17344	(-33)	92 93	1992.72496 1992.32312		2042.17344	(-2972)*
9.1	1002 06773	(-25)	2042.30163	(-10)	94	1991.92023	(-19)		
93 94	1992.06773		2042						
94 95 96	1991.66689	(40)	2042.42853 2042.55308	(-8) (-94)	95 96	1991.51637	(-3)		
94 95	1991.66689		2042.55308 2042.67639			1991.51637			

1518 Chemistry Letters, 1986

vibration constants for $^{16}\text{O}^{12}\text{c}^{80}\text{Se}$ are also in good agreement with those given by Maki et al. However, the accuracy of the present result is higher than that of the former infrared study due to the higher resolution of the spectrometer.

In conclusion, spectroscopy of the ν_1 band of OCSe in natural abundance with a resolution of 0.005 cm⁻¹ successfully yielded accurate molecular constants for each Se isotopic species. Thus, accurate parameters would be obtained for each Se isotopic species for almost all of the thirteen bands.

Table 2.	Molecular	constants	for	the	ν1	band	of	16 ₀ 12 _C 80 _{Se}
----------	-----------	-----------	-----	-----	----	------	----	--

	This work	Maki et al. ¹⁾	Microwave
	2023.52516 (15) ^{a)} 0.13401487 (153)	2023.5270 (6) 0.13401438 ^b)	0.134015284)
	0.13401487 (153)	0.13328749 (83)	0.13401528
10 ⁸ D" (cm ⁻¹) 10 ⁹ ΔD (cm ⁻¹)	2.2326 (108) -0.250 (114)	2.233 ^{b)} -0.22 (22)	2.233 ⁵⁾

- a) Values in the parentheses correspond to 2σ in the last quoted digit.
- b) Fixed values.

Table 3. Molecular constants for the v_1 band of ${}^{16}\text{O}^{12}\text{C}^{78}\text{Se}$

	This work	Microwave ⁴⁾
	2023.57464 (17) ^{a)}	
	0.13484179 (174)	0.13484195
	0.13410987 (176)	
$10^8 D'' (cm^{-1})$	2.2646 (139)	
$10^9 \Delta D (cm^{-1})$	-0.251 (149)	

a) Values in the parentheses correspond to 2σ in the last quoted digit.

References

- 1) A.G.Maki, R.L.Sams, and R.Pearson, Jr., J. Mol. Spectrosc., 64, 452 (1977).
- 2) H.Suguro, T.Konno, Y.Hamada, and H.Uehara (to be published).
- 3) T.Nakagawa and Y.Oyanagi, "Program System for Statistical Analysis with Least-Squares Fitting, SALS(version II). User's Manual," The University of Tokyo Computer Center, Tokyo (1979).
- 4) Y.Morino and C.Matsumura, Bull. Chem. Soc. Jpn., <u>40</u>, 1101 (1967).
- 5) C.A.Burrus and W.Gordy, Phys. Rev., 101, 599 (1956).

(Received June 27, 1986)