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Abstract
Objective: High Mobility Group Box 1 (HMGB1) released 
extracellularly from necrotic cells evokes delayed inflammatory 
processes via interaction with the Receptor for Advanced Glycation 
End Products (RAGE) or Toll-like Receptors (TLR) in postischemic 
brain. The diabetic state (DM) aggravated cerebral ischemic injury 
following the stroke in rats. Therefore, we examined the behavior 
of HMGB1 and the expression of RAGE in  non-DM and DM rat 
brain after middle cerebral artery occlusion followed by reperfusion 
(MCAO/Re).

Methods: Diabetes was induced by a single injection of 
streptozotocin in male Sprague Dawley rats (DM group). MCAO/
Re was performed in non-DM and DM rats (ischemic groups) using 
a standard intraluminal procedure, and postischemic neurological 
deficits. Both brain infarction and edema were evaluated at various 
times after reperfusion. Control non-DM and DM rats underwent 
sham operation using the same manipulation, but without insertion 
of the occlusion filament. The behavior of HMGB1 and the 
expression of its receptors in the rat brain were examined using 
immunohistochemical and western blot analyses.

Results: In sham-operated DM rat brain, immunoreactivity of 
HMGB1, which was localized in the neuronal nuclei of the cortex, 
was markedly increased compared with that in non-DM sham-
operated rat brain. In the ischemic groups, the DM state aggravated 
MCAO/Re-induced neurological deficits and cerebral injury 
assessed by the infarction volume. Enhancement of translocation 
of HMGB1 from the nucleus to the cytoplasm induced by MCAO/
Re was markedly accelerated in the penumbral region of DM rat 
cortex. Immunoblot analysis revealed that the ischemia-induced 
increase in the release of HMGB1 into the cerebrospinal fluid and 
plasma was also enhanced in DM rats. Moreover, the expression 
of RAGE was upregulated in the brains of DM ischemic and control 
rats.

Conclusions: The early release of HMGB1 and the expression of 
its receptors may be involved in the aggravation of neuronal damage 
caused by transient cerebral ischemia in DM rats. Therefore, it is 
important to inhibit the HMGB1 released in response to ischemia 
during the treatment of postischemic injury in diabetic patients.
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Introduction
Diabetes mellitus (DM), which causes chronic hyperglycemia 

and increases physiological oxidative stress, is a major risk factor 
for atherosclerotic diseases such as acute brain ischemia [1,2]. 
World Health Organization data show that about 386 million people 
worldwide are currently suffering from diabetes. Diabetic patients 
have a higher risk of stroke compared with nondiabetic patients, and 
they are more likely to have a poor prognosis and increased mortality 
after stroke [3,4]. Therefore, it is medically and socially important to 
reduce the complications of both diabetes and stroke. Previous studies 
have demonstrated that diabetes also increases oxidative stress in the 
brain and aggravates cerebral ischemic injury in the animal models 
[5-7]. In particular, hyperglycemia in the diabetic state increases the 
formation of reactive oxygen species (ROS) after reperfusion of the 
blood flow [8,9]. Furthermore, enhanced oxidative stress in the brain 
induced by diabetic hyperglycemia contributes to the exacerbation of 
the brain injury caused by transient ischemia [10,11].

High-mobility group box 1 (HMGB1) was first identified as a 
nonhistone chromosomal protein involved in DNA binding [12]. 
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A few years later, it was isolated as a heparin-binding protein that 
promotes neurite outgrowth in rat brain and was called amphoterin 
[13,14]. In 1999, HMGB1 was recognized as a proinflammatory 
cytokine that mediates endotoxin lethality in mice [15]. HMGB1 is 
highly conserved through evolution, and has 99% identity among 
all the mammals. Out of its 215 amino acids, only two residues are 
substituted in rodent and human versions [16]. HMGB1, a ubiquitous 
protein present in the nuclei of nearly all the cell types, can be actively 
secreted by different cell types, including activated monocytes and 
macrophages [15,17], mature dendritic cells [18], and endothelial 
cells [19]. Necrotic cells also release HMGB1 into the extracellular 
milieu, where it induces the expression of several genes related 
to inflammation, including tumor necrosis factor-α (TNF-α) and 
interleukin-1β (IL-1β), and leads to cell death [16,20]. In addition, 
this nuclear protein is endowed with extracellular signaling functions 
by interacting with different receptors such as the receptor for 
advanced glycation end products (RAGE) or toll-like receptor (TLR) 
2 and TLR4 on the plasma membrane of various cell types [16,20].

RAGE, a transmembrane protein and a member of the 
immunoglobulin superfamily, is present on neurons, glia, and 
endothelial cells in the brain [21-24]. It interacts with various ligands, 
including HMGB1, advanced glycation end products (AGEs), 
β-amyloids, and S100 proteins [25]. In the cultured embryonic rat 
neurons, radiolabeled ligand binding studies with [125I] HMGB1 
revealed that the binding affinity of HMGB1 to RAGE is seven-fold 
higher than HMGB1 to AGE, which was the first identified ligand 
for RAGE [26]. Interaction between RAGE and HMGB1 causes 
phosphorylation of mitogen-activated protein kinases (MAPKs; 
e.g., p38 and p42/44 kinases, stress-activated protein kinase/c-Jun 
N-terminal kinase, ERK1/2) and activation of the NF-кB signaling 
pathway in cultured macrophages, neutrophils, and Caco-2 epithelial 
cells [27,28]. This signaling is potentially linked to the receptor 
activation and is known to promote transcription of cytokines, such 
as TNF-α. Qiu et al. [29] found that HMGB1 treatment markedly 
increased the expression of the inflammatory mediators TNF-α, 
inducible nitric oxide synthase (iNOS) and intercellular adhesion 
molecule 1 (ICAM1) in the cultured glia and endothelial cells. They 
also reported the important participation of HMGB1 as a potential 
candidate in a specific upstream pathway promoting inflammation 
after brain ischemia [29]. Currently, the mechanism of interaction 
between HMGB1 and RAGE in the diabetic state is not well 
understood.

In the present study, we examined the relationship between the 
aggravation of cerebral ischemic injury following the stroke and 
the behavior of HMGB1 and its receptor, RAGE, in the diabetic rat 
brain after middle cerebral artery occlusion (MCAO) followed by 
reperfusion (MCAO/Re).

Materials and Methods
Experimental diabetic animals

Male Sprague Dawley rats (4 weeks old, weight 120–140 g; Sankyo 
Labo Service Co., Ltd., Tokyo, Japan) were housed two to a cage in 
a temperature-controlled environment (23 ± 0.5°C) with a 12-h 
light-dark cycle. The rats were given a standard rodent chow (CE-
2; CLEA Japan, Inc., Tokyo, Japan) and water ad libitum. Animal 
care and surgical procedures were performed in accordance with the 
guidelines approved by the National Institutes of Health and the Josai 
University Animal Investigation Committee. A diabetic state was 
induced in the diabetic group (DM) rats by a single intraperitoneal 
injection of streptozotocin (STZ; 50 mg/kg) dissolved in 0.1 mM 
sodium citrate (pH 4.5), while rats in the nondiabetic group (non-
DM) were injected with buffer only [5]. Seven days after the STZ 
injection, a blood sample was collected by tail vein paracentesis and 
plasma glucose was determined using a glucose analyzer (Ascensia; 
Bayer Medical Co., Ltd., Land Nordrhein-Westfalen, Germany). 
Diabetes was defined as a blood glucose level >300 mg/dl. The DM 
and non-DM groups were each divided into two groups (ischemic 
and control) and were housed for an additional 6 weeks until stroke 

was induced by MCAO (ischemic groups) or a sham operation was 
performed (control groups).

Middle cerebral artery occlusion and reperfusion

In the ischemic groups, MCAO was performed using a standard 
intraluminal procedure as previously described [5,30]. The rats were 
anesthetized with halothane (induction: 4%, maintenance: 1.5%) in 
30% oxygen, using a face mask. Rectal temperature was maintained 
at 37°C with a heat lamp and a heating pad during the operation. A 
midline incision was made in the neck and the right common carotid 
artery was exfoliated under an operating microscope. All the branches 
of external carotid artery were ligated and isolated. The tips of 4-0 
surgical nylon monofilaments were rounded by flame heating, and 
the rounded tips were inserted up through the internal carotid artery. 
Insertion was stopped when a small resistance was felt. Successful 
occlusion of the right middle carotid artery was confirmed when the 
left forelimb became paretic after the nylon filament was introduced. 
The distance from bifurcation of the common carotid artery to the tip 
of the suture was approximately 20 mm in all the rats. After occlusion 
for 2 h, the filament was withdrawn to allow for reperfusion. Cerebral 
blood flow was measured using Laser Doppler Flowmetry (ATBF-
LC1; Unique Medical, Tokyo, Japan). There was an approximately 
50% reduction in the baseline cerebral blood flow following MCAO. 
The animals were permitted to recover from the anesthesia at room 
temperature. The rats were sacrificed at 0.25, 0.5, 1, 3, 6, 12, 24, 48, 
and 72 h after reperfusion and the samples of brain and plasma were 
collected. The control groups underwent a sham operation with the 
same manipulation but without introduction of the monofilament.

Neurological evaluation

Postischemic neurological deficits were evaluated 2 h after 
MCAO, and 24 h after reperfusion using a 5-point scale as follows: 
grade 0, no deficit; grade 1, failure to extend right forepaw fully; grade 
2, spontaneous circling or walking to the contralateral side; grade 3, 
walking only when stimulated; grade 4, unresponsive to stimulation 
and a depressed level of consciousness; and grade 5, death [5]. The 
rats that did not show neurological deficits were excluded from the 
study.

Infarct and edema assessment

At 0.25, 0.5, 1, 3, 6, 12, 24, 48, and 72 h after reperfusion, the rats 
were deeply anesthetized with halothane and decapitated. The brain 
was removed and cut into four 2mm coronal sections using a rat brain 
matrix, and was stained with 2% 2,3,5-triphenyltetrazolium chloride 
(TTC; Wako Pure Chemical Industries, Ltd., Osaka, Japan) at 37°C 
for 15 min. The coronal slices were fixed in 10% formaldehyde for 
photography. Infarct areas were determined using an image analysis 
system (Scion Image 1.62; Scion Corporation, Frederick, MD, USA), 
and were integrated to obtain the infarct volumes per brain. The 
total infarct volume was calculated by adding all cross-sectional 
areas multiplied by 2 mm (thickness of the sections). Correction 
of the infarct volume for edema was achieved using the following 
equation: corrected infarct volume (%) = [left hemisphere volume 
− (right hemisphere volume − the infarct volume)]/left hemisphere 
volume × 100. Edema in the ischemic hemisphere was also calculated: 
edema (%) = (right hemisphere volume − the infarct volume)/left 
hemisphere volume × 100 [5].

Evaluation of HMGB1 mRNA expression by real-time RT-
PCR analysis

The rats subjected to MCAO were sacrificed at 1, 3, 6, 12, 24, 48, or 
72 h after reperfusion. Brains were quickly removed, placed in RNA 
later (QIAGEN, Hilden, Germany) and stored at −80°C until further 
processing. A total RNA sample was obtained from the ischemic 
penumbral cortex of each rat. Analysis of the gene expression 
of HMGB1 was conducted using quantitative real-time reverse 
transcriptase polymerase chain reaction (RT-PCR) as previously 
described [10,11,31]. In brief, the total RNA was extracted from the 
ipsilateral cortex with an RNeasy Mini Kit (QIAGEN) according 
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to the manufacturer’s instructions. Total RNA (0.5 μg) from each 
sample was reverse-transcribed with oligo (dT) and random hexamer 
primers using reverse transcriptase (PrimeScriptTM RT Enzyme Mix 
I, Takara RNA PCR Kit; Takara Biomedicals, Shiga, Japan). Real-time 
PCR was performed with 10 ng of cDNA and a pair of target gene 
specific primers (Takara Biomedicals) added to the SYBR Premix EX 
Taq (Takara Biomedicals) and subjected to PCR amplification in an 
iCycler iQ Real-Time Detection System (Bio-Rad Laboratories, Inc., 
Hercules, CA, USA; 1 cycle at 95°C for 10 s, and 50 cycles at 95°C for 5 
s, and 60°C for 34 s). The expression of β-actin was used to normalize 
cDNA levels. The PCR products were analyzed by a melting curve to 
ascertain the specificity of amplification. The Primer sets were as follows: 
Hmgb1 (forward: GGAAATTAAAGCAGGAGGTTCTTGTTGG 
and reverse: CTGCATCAGAGACAACTGAAGATGG), β-actin 
(forward: GGAGATTACTGCCCTGGCTCCTA and reverse: 
GACTCATCGTACTCCTGCTTGCTG). The ratios of HMGB1 
normalized to β-actin were considered as the expression of HMGB1 
gene. All groups were compared to a nondiabetic-sham value of 1.

Immunohistochemistry

Immunohistochemical staining was performed as previously 
described [29,32]. In brief, the rats were sacrificed at the indicated 
time points and transcardially perfused with cold saline. Brains were 
fixed with 4% phosphate-buffered paraformaldehyde. Coronal brain 
sections (8 μm thick) were incubated sequentially with 3% hydrogen 
peroxide at room temperature for 40 min to inhibit endogenous 
peroxidase, followed by incubation with blocking buffer (4% Block 
Ace; Dainippon Sumitomo Pharma Co. Ltd., Osaka, Japan) for 2 
h. The slides were incubated with polyclonal rabbit anti-HMGB1 
antibody (1:500, ab18256; Abcam Biotechnology, Cambridge, UK), 
polyclonal goat anti-RAGE antibody (1:200, sc-8230; Santa Cruz 
Biotechnology, CA, USA), monoclonal mouse anti-Neuronal nuclei 
(NeuN) antibody (1:500, MAB377; Chemicon, Temecula, CA, USA), 
monoclonal mouse anti-ionized calcium-binding adaptor molecule 
1 (Iba1) antibody (1:500, ab15690; Abcam), or monoclonal mouse 
anti-glial fibrillary acidic protein (GFAP) antibody (1:500, 556327; 
BD Pharmingen, Franklin Lakes, NJ, USA) in 0.01 mol/l phosphate-
buffered saline (PBS) at 4°C overnight. After washing with PBS, the 
slides were incubated with Cy3-conjugated donkey anti-rabbit IgG 
antibody (1:100, AP182C; Chemicon), Cy3-conjugated donkey 
anti-goat IgG antibody (1:100, AP180C; Chemicon) and FITC-
conjugated goat anti-mouse IgG antibody (1:100, 81-6511; Zymed 
Laboratories, San Francisco, CA, USA) at room temperature for 2 
h. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI; 
Invitrogen, Carlsbad, CA, USA) at room temperature for 15 min, 
washed, and mounted using mounting medium with 80% glycerol. 
Immunofluorescence was visualized using a Laser Scanning Confocal 
Microscope (Olympus Co. Ltd., FV10-ASW, Tokyo, Japan). Analysis 
was performed on nine photographs, three photographs for each 
experiment.

Western blot

Brain tissues, cerebrospinal fluid (CSF), and plasma were 
homogenized in SDS sample buffer [125 mM Tris (pH 6.8), 4% SDS, 
10% sucrose, 0.01% bromophenol blue, and 10% 2-mercaptoethanol] 
and boiled for 1 min. Protein concentration was quantified using the 
Bradford method (Protein Assay Reagent Kit; Bio-Rad Laboratories). 
The samples (40 μg of protein from brain tissue and 10 μl of CSF or 
plasma) were separated by SDS-polyacrylamide gel electrophoresis, 
transferred onto nitrocellulose membranes (Amersham Biosciences, 
Buckinghamshire, UK) through a semidry-type blotter (Bio-Rad 
Laboratories), blocked by 5% nonfat dry milk in PBS with Tween-20 
(PBS-T; 137 mM NaCl, 8.10 mM Na2HPO4, 2.68 mM KCl, 1.47 mM 
KH2PO4, and 0.1% Tween-20), and incubated with appropriate 
antibodies as described below. The filters were incubated with each 
primary antibody at 4°C overnight and with the corresponding 
horseradish peroxidase (HRP)-conjugated secondary antibody in 5% 
nonfat dry milk/PBS-T at room temperature for 1 h. Finally, the target 
molecules were visualized through an enhanced chemiluminescence 
western blotting detection system (Amersham Biosciences) on X-ray 

film (Amersham Biosciences). Primary and secondary antibodies 
used in this study were polyclonal rabbit anti-HMGB1 (1:1,000, 
ab18256; Abcam), polyclonal goat anti-RAGE antibody (1:2,000, sc-
8230; Santa Cruz), monoclonal mouse anti-β-actin (1:500, A2228; 
Sigma-Aldrich, St. Louis, MO, USA), HRP-conjugated goat anti-
rabbit IgG antibody (1:5,000, NA934; Amersham Biosciences), 
HRP-conjugated donkey anti-goat IgG antibody (1:5,000, sc-2020; 
Santa Cruz), and HRP-conjugated sheep anti-mouse IgG antibody 
(1:10,000, NA931; Amersham Biosciences). Immunoblotted bands 
were quantified using Image Gauge software (Fujifilm, Tokyo, Japan) 
after densitometric scanning of the films.

Statistical analysis

Data are presented as means ± S.D. Statistical analyses of mRNA 
levels and the area of cerebral damage were performed using a two-
way ANOVA and post hoc Tukey’s multiple comparison tests. 
Neurological deficit scores were analyzed using the Kruskal–Wallis 
test followed by the Mann–Whitney U test. In all the cases, a P value 
of < 0.05 was taken as the level of significance.

Results
Postischemic neurological deficits were evaluated 2 h after 

MCAO and at various time points after reperfusion. There was no 
significant difference between non-DM (1.06 ± 0.23) and DM (0.96 
± 0.68) groups in the neurological deficit score 2 h after MCAO. 
However, after reperfusion, DM ischemic rats had significantly 
higher neurological deficit scores compared with those of non-DM 
ischemic rats. Death as a result of severe ischemic damage occurred 
in DM rats 48 h after reperfusion (Figure 1). There was no significant 
difference in regional cerebral blood flow among DM and non-DM 
ischemic groups and DM and non-DM controls (data not shown).

Representative coronal brain sections of non-DM and DM 
ischemic rats at various time points after MCAO/Re were stained 
with TTC. Intact areas of the tissue stain with deep red originating 
from mitochondrial activity of the living cells, while infarcted 
tissue stains pale pink. The brain injury induced by MCAO/Re was 
considerably exacerbated by the diabetic state. In DM ischemic rats, 
the cerebral infarcts were produced within 30 min of reperfusion 
and the infarct regions extended to the whole thalamus during 12 h 
after reperfusion. In non-DM ischemic rats, only the small striatal 
infarcts were observed 12 h after reperfusion. The infarct volume in 
DM ischemic rats 6 h after reperfusion was significantly larger (about 
10.8-fold) compared with that in non-DM ischemic rats (Figure 
2A,2B). Brain edema was also exacerbated by the diabetic state; 
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Figure 1: Neurological deficits induced by MCAO/Re in non-DM and DM rats

Postischemic neurological deficits were evaluated 2 h after MCAO (Pre) and 
at various time points after reperfusion using a 5-point scale. The broken 
line represents death of DM rats caused by severe ischemic damage 48 h 
after reperfusion. Data are presented as means ± SD (n=5–8 per time point). 
*p<0.01 vs. corresponding values for non-DM rats.
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Figure 2: Brain infarct and edema in non-DM and DM ischemic rats detected by TTC staining

(A) Images of representative coronal brain sections from non-DM and DM rats stained by TTC at various time points after MCAO/Re showing viable (red) and 
dead (pale pink) tissues. Scale bar=5 mm. (B) Infarct volume (C) Edema in the ischemic hemispheres of non-DM and DM rats after MCAO/Re assessed by TTC 
staining. Data are presented as means ± SD (n=3–5 per time point). *p<0.01 vs. corresponding values for non-DM rats.
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Figure 3: Expression of HMGB1 mRNA in the penumbral cortex of non-DM and DM ischemic rats following MCAO/Re, relative to expression in sham-operated 
non-DM rats

The expression level of HMGB1 mRNA was determined by real-time PCR analysis in the penumbral cortex after MCAO/Re. Sham operation involved the same 
manipulation but without insertion of the occlusive filament, as described in Materials and Methods. Data are presented as means ± SD (n=3–4 per time point).



• Page 5 of 9 •Iwata et al. Int J Diabetes Clin Res 2015, 2:1 ISSN: 2377-3634

However, the difference between non-DM and DM ischemic rats was 
not significant (Figure 2A,2C).

The level of HMGB1 mRNA in the total RNA from ischemic 
penumbral cortices was determined by real-time PCR. No apparent 
differences in the temporal expression pattern of HMGB1 were 
observed between non-DM and DM ischemic rats. HMGB1 gene 
expression was not affected by the cerebral ischemia during the 24 h 
after reperfusion, and was gradually reduced 48 h after reperfusion in 
the non-DM ischemic rats (Figure 3).

Localization of HMGB1 in sham-operated (control) non-DM and 
DM rat cortical neurons was determined by immunohistochemical 
staining and confocal imaging. To determine whether neurons, 
microglia, and/or astrocytes express HMGB1, colocalization 

experiments with specific neuronal, microglial, and astrocytic 
markers were performed. HMGB1 (red) was widely expressed 
throughout the brain. Nuclear localization of HMGB1 was confirmed 
by counterstaining with DAPI (blue) and colocalized with NeuN 
(green). However, neither of the control groups showed colocalization 
with GFAP (green) or IBA1 (green). Translocation of HMGB1 from 
the nucleus to the cytoplasm was observed in DM but not in non-DM 
control rats (Figure 4A,4B). Therefore, we focused on the localization 
of HMGB1 in the nerve cells.

Translocation of HMGB1 from the nucleus to the cytoplasm in 
the neuronal cells induced by MCAO/Re in non-DM ischemic rats 
was detected during 6 or 12 h after reperfusion. A large amount of 
HMGB1 was observed in the cytoplasm even in sham-operated DM 
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Figure 4: Immunohistochemical staining of HMGB1 in the penumbral cortex of sham-operated and ischemic non-DM and DM rats

Localization of HMGB1 was assessed using immunohistochemical staining of the penumbral cortex of (A) non-DM and (B) DM rats, 24 h after MCAO/Re. 
Immunohistochemical staining of HMGB1 (red) was merged with DAPI (blue), NeuN (green), GFAP (green), and IBA1 (green). Sham-operation involved the same 
manipulation but without the insertion of the occlusive filament, as described in Materials and Methods. Scale bar=20 μm
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Figure 5: Translocation of HMGB1 in the penumbral cortex of sham-operated and ischemic non-DM and DM rats

Localization of HMGB1 was assessed using immunohistochemical staining of the penumbral cortex of non-DM and DM rats at various times after MCAO/Re. 
Immunohistochemical staining of HMGB1 (red) was merged with (A) NeuN (green) or (B) DAPI (blue). Insets are higher magnification micrographs of the cells 
indicated by arrowheads. Sham-operation involved the same manipulation but without insertion of the occlusive filament, as described in Materials and Methods. 
Scale bar=20 μm
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Figure 6: The early release of HMGB1 induced by MCAO/Re in DM ischemic rats

Localization of HMGB1 was assessed using immunohistochemical staining of the penumbral cortex of non-DM and DM ischemic rats 1 h after MCAO/Re. 
Immunohistochemical staining of HMGB1 (red) was merged with DAPI (blue). The broken lines indicate the border between the core ischemic area (right side) 
and the penumbra (left side). Sham-operation involved the same manipulation but without insertion of the occlusive filament, as described in Materials and 
Methods. Scale bar=50 μm

rats, and in DM ischemic rats. MCAO/Re accelerated the translocation 
of HMGB1 from the nucleus to the cytoplasm in the majority of the 
neurons from 3 h after reperfusion (Figure 5).

Immunohistochemical investigation showed a distinct border 

corresponding to the cortical peri-infarct region 1 h after MCAO/Re in 
DM ischemic rats. Immunoreactivity of HMGB1 disappeared in the core 
of the ischemic lesion after MCAO/Re in DM ischemic rats (Figure 6).

HMGB1 levels in CSF and plasma after MCAO/Re were 
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HMGB1 in (A) CSF and (B) plasma was detected by western blotting at various times after MCAO/Re in non-DM and DM rats. Sham-operation involved the same 
manipulation but without insertion of the occlusive filament, as described in Materials and Methods.
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Figure 8: Levels of RAGE in the penumbral cortex after MCAO/Re or sham operation in non-DM and DM rats

(A) RAGE was assessed using immunohistochemical staining of the cortex of non-DM and DM rats at various times after MCAO/Re. (B) Quantitative analysis of 
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determined by the western blot analysis. No difference in the 
expression of HMGB1 was observed between the sham-operated 
non-DM and DM rats. The amount of HMGB1 in the CSF of non-
DM ischemic rats increased gradually during 12 h after reperfusion. 
In contrast, HMGB1 in the CSF of DM ischemic rats was significantly 
increased approximately 3-fold 1 h after reperfusion, compared 
with after 12 h of reperfusion in non-DM ischemic rats (Figure 
7A). Furthermore, HMGB1 levels in the plasma of DM ischemic 
rats showed a biphasic increase during 24 h after reperfusion. In 
the DM ischemic rats, plasma HMGB1 initially increased 1 h after 
reperfusion, by about 10-fold compared with non-DM ischemic rats. 
A second increase occurred up to 24 h after reperfusion, by about 
3-fold compared with non-DM ischemic rats. The plasma HMGB1 
in non-DM ischemic rats increased gradually during 24 h after 
reperfusion (Figure 7B).

The expression of RAGE in the rat brain was determined 
by immunohistochemical and western blot analyses. The 
immunoreactivity of RAGE gradually increased in the penumbral 
cortex of non-DM ischemic rats after MCAO/Re. RAGE expression 
was upregulated in sham-operated DM rats and increased up to 12 
h after reperfusion in DM ischemic rats. Similar changes were also 
observed in the western blot analysis (Figure 8A-8C).

Discussion
The importance of inflammatory response in the pathophysiology 

of ischemic stroke is generally recognized. HMGB1 has been identified 
as an early mediator of hemorrhage after acute lung injury [33] and 
hepatic injury after liver ischemia/reperfusion [34]. Recent evidence 
suggests that the inflammatory cytokine HMGB1 is an active mediator 
of ischemic brain injury [29]. Moreover, elevated levels of HMGB1 in 
the serum of human patients with cerebral infarction have also been 
reported [35]. Therefore, HMGB1 has been attracting attention as a 
potential diagnostic marker [36,37].

HMGB1 was identified as a ubiquitously expressed, abundant 
nonhistone DNA-binding protein, which stabilizes the nucleosome 
formation and facilitates gene transcription. HMGB1 protein can 
be actively released into the extracellular space by macrophages 
and monocytes [16,20]. It is also passively released by necrotic cells, 
although not by apoptotic cells, and it triggers inflammation [38]. 
Extracellular HMGB1 interacts with different receptors, such as 
RAGE or TLR2/4 receptors, and promotes inflammatory responses 
leading to NF-кB activation [16,39]. Furthermore, HMGB1 has been 
reported to show delayed and sustained induction in the postischemic 
brain [40]. Previously, we revealed that the STZ-induced diabetic 
state aggravates cerebral ischemic injury following transient cerebral 
ischemia in the rats [5,10,11]. However, the mechanisms exacerbating 
the ischemic injury of the diabetic brain have not been elucidated. 
Therefore, in the present study, we examined the relationship between 
the aggravation of cerebral ischemic injury following the stroke in the 
diabetic state and the behavior of HMGB1 and its receptor, RAGE, in 
the rat brain after MCAO/Re.

The diabetic state aggravated MCAO/Re-induced neurological 
deficits and cerebral injury, as assessed by infarction volume. In the 
present study, the diabetic model had a significantly greater lesion 
volume and edema caused by MCAO/Re than previously reported 
[10,11]. Furthermore, we revealed that the infarct volume increases 
as early as 0.5 to 1 h after reperfusion in DM rats. HMGB1 gene 
expression was not affected by the cerebral ischemia in DM or 
non-DM rats. Immunohistochemical studies revealed that HMGB1 
localized in the nuclei of the neuronal cells in sham-operated non-DM 
rat cortex, and was translocated from the nucleus to the cytoplasm 
of the neuronal cells during 6 or 12 h after reperfusion following 
MCAO in non-DM ischemic rats. We show that neurons are the 
principal sources of HMGB1 release in the early stages of ischemic 
injury. However, the translocation of HMGB1 was observed even in 
the sham-operated DM rat cortex. Furthermore, during MCAO/Re 
in DM rats, HMGB1 rapidly disappeared from all the cells within the 
cortex ischemic core from 1 h after reperfusion. Immunoreactivity 

against HMGB1 disappeared in the ischemic core and increased in 
CSF during 1 h after reperfusion in DM rat, suggesting earlier release 
of HMGB1 from necrotic neurons in the diabetic state.

Temporal changes in HMGB1 levels in CSF and plasma, an index 
of HMGB1 release, were also determined by immunoblot analysis. 
No difference in the amount of HMGB1 in CSF was observed between 
the sham-operated non-DM and DM rats. HMGB1 in the CSF of DM 
ischemic rats was considerably increased during 1 h after reperfusion, 
whereas in non-DM ischemic rats, HMGB1 in the CSF increased 
gradually during 12 h after reperfusion. The levels of HMGB1 in 
the plasma paralleled levels in the CSF. These results suggest that 
HMGB1 is readily translocated from the nucleus to the cytoplasm of 
the neuronal cells and immediately released after transient cerebral 
ischemia in the diabetic state. It has been reported that recombinant 
HMGB1 treatment increases inflammatory mediator gene expression 
in the cultured cells [29]. Therefore, the data reported herein suggest 
that HMGB1 may participate as an early upstream initiator of 
inflammation.

The expression of RAGE was upregulated in sham-operated DM 
rats and stabilized within 12 h after reperfusion in DM ischemic 
rats. The hyperglycemic conditions found in diabetes contribute to 
enhanced generation of AGE. Therefore, increases in expression of 
RAGE may contribute to generation of AGE and induce free radical 
generation [41]. Interestingly, genetic RAGE deficiency and decoy 
receptor soluble RAGE are reported to be associated with reduced 
infarct size [42].

HMGB1 causes activation of nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase and increased reactive oxygen species 
production in the neutrophils [43]. It also increases the expression of 
matrix metalloproteinase 9 (MMP9) and participates in the failure 
of the blood–brain barrier [44]. Therefore, it may contribute to the 
increased edema that is associated with the increased mortality from 
stroke [45]. Conceivably, increased expression of HMGB1 receptors 
after ischemia could enhance the reactivity of signaling by HMGB1-
receptor interaction [31,46-48]. Therefore, it is important to inhibit 
the HMGB1 released in response to ischemia during the treatment of 
postischemic injury in the diabetic patients.

In conclusion, the diabetic state induces pro-inflammatory 
cytokines in the brain, conceivably via hyperglycemia and/or 
oxidative stress, accelerating intracellular translocation and the 
release of HMGB1 from the neuronal cells after ischemic injury. An 
increase in extracellular HMGB1 may further induce inflammatory 
responses and cellular necrosis in the ischemic penumbra, leading to 
aggravation of ischemic injury in the diabetic state.
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