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Abstract 

Galβ1-4Fuc is a key structural motif in Caenorhabditis elegans glycans and is 

responsible for interaction with C. elegans galectins. In animals of the clade 

Protostomia, this unit seems to have important roles in glycan–protein interactions and 

corresponds to the Galβ1-4GlcNAc unit in vertebrates. Therefore, we prepared an 

affinity adsorbent having immobilized Galβ1-4Fuc in order to capture 

carbohydrate-binding proteins of C. elegans, which interact with this disaccharide unit. 

Adsorbed C. elegans proteins were eluted with ethylenediaminetetraacetic acid (EDTA) 

and followed by lactose (Galβ1-4Glc), digested with trypsin, and were then subjected to 

proteomic analysis using LC-MS/MS. Three annexins, namely NEX-1, -2, and -3, were 

assigned in the EDTA-eluted fraction. Whereas, galectins, namely LEC-1, -2, -4, -6, -9, 

-10, and DC2.3a, were assigned in the lactose-eluted fraction. The affinity of annexins 

for Galβ1-4Fuc was further confirmed by adsorption of recombinant NEX-1, -2, and -3 

proteins to the Galβ1-4Fuc column in the presence of Ca2+. Furthermore, frontal affinity 

chromatography analysis using an immobilized NEX-1 column showed that NEX-1 has 

an affinity for Galβ1-4Fuc, but no affinity towards Galβ1-3Fuc and Galβ1-4GlcNAc. 

We would hypothesize that the recognition of the Galβ1-4Fuc disaccharide unit is 

involved in some biological processes in C. elegans and other species of the 
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Protostomia clade. 
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1. Introduction 

Galectins are a family of lectins distributed in animals and fungi and characterized by 

their conserved carbohydrate-recognition domain having affinity for β-galactosides.1–3 

In vertebrates, a Galβ1-4GlcNAc disaccharide unit in glycoconjugates was known to be 

the endogenous motif recognized by galectins. On the other hand, although galectins are 

also present in Caenorhabditis elegans, the presence of the Galβ1-4GlcNAc structure 

had not been confirmed in this species.4–6 This discrepancy was resolved by our recent 

finding that the motif recognized by LEC-6, a C. elegans galectin, is Galβ1-4Fuc, rather 

than Galβ1-4GlcNAc.7,8 Other C. elegans galectins, namely LEC-1 and LEC-10, were 

also found to have an affinity for Galβ1-4Fuc.8,9 These findings indicate that 

Galβ1-4Fuc is a principal disaccharide motif recognized by C. elegans galectins, taking 

the place of Galβ1-4GlcNAc in the vertebrate galectins. Furthermore, this raises the 

possibility that Galβ1-4Fuc serves as a recognition motif for other sugar-binding 

proteins in C. elegans. 

 In the genome of C. elegans, genes encoding various families of 

carbohydrate-binding proteins, such as galectins, C-type lectins, and annexins, have 

been assigned, and sugar-binding abilities of some of their products have been 

demonstrated10–15 : as for C. elegans annexin proteins, their binding abilities toward 
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heparan sulfate and chondroitin were analyzed, and NEX-1 and -3 were found to bound 

only to heparan sulfate, whereas NEX-2 bound to the both.14,15 However, 

Galβ1-4Fuc-binding ability of most of these proteins has not been reported. Therefore, 

we prepared an agarose derivative containing immobilized Galβ1-4Fuc, and tried to 

identify proteins bound by this adsorbent. We found that various galectins and annexins 

have an affinity for Galβ1-4Fuc. 

 

2. Results and discussion 

2.1. Preparation of an immobilized Galβ1-4Fuc column 

In order to capture proteins of C. elegans that interact with the Galβ1-4Fuc disaccharide 

unit, we prepared an adsorbent by immobilizing Galβ1-4Fuc on agarose gel via 

hydrophilic spacer modified with a free amino group (Fig. 1A). The quality of the 

adsorbent was assessed by applying purified wild-type (WT) LEC-6 protein and an 

extract of E. coli expressing the LEC-6 N73D mutant, which is known to have only 

weak affinity for the Galβ1-4GlcNAc disaccharide unit,8 to the column. After extensive 

washing, 0.1 M lactose solution was added to the column (Fig. 1B, C). Both the LEC-6 

WT and N73D proteins were recovered in the lactose eluate. This indicates their strong 

binding to the immobilized Galβ1-4Fuc. The immobilized Galβ1-4Fuc column proved 
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to be useful to capture carbohydrate-binding proteins that interact with this unique sugar 

structure. 

 

2.2. Capture and identification of C. elegans proteins interacting with the 

Galβ1-4Fuc motif 

Several families of carbohydrate-binding proteins are present in C. elegans, including 

galectins, C-type lectins, and annexins. Binding of galectins to β-galactosides is not 

dependent on the presence of Ca2+, while C-type lectins and annexins require Ca2+ for 

binding.16,17 Therefore, we applied an extract of C. elegans containing Ca2+ to the 

immobilized Galβ1-4Fuc column. After extensive washing with a buffer containing 

Ca2+, the column was treated with EDTA solution, and then with lactose solution (Fig. 

2A). SDS-PAGE showed the presence of a number of proteins in each eluate. Protein 

bands were excised and digested with trypsin, and the resultant peptides were subjected 

to LC-MS/MS analyses (Fig. 2B, C) for assignment of proteins.  

In the EDTA-eluted fraction (Fig. 2B), 3 proteins belonging to the annexin 

family, namely NEX-1, -2, and -3, were assigned.17 Annexins are a family of proteins 

found in multicellular organisms, and had been considered as Ca2+-dependent 

phospholipid-binding proteins. However, their interaction with sugars and proteins 
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including galectin has also been reported.17 In C. elegans, 4 annexin proteins, NEX-1, 

-2, -3, and -4, have been found, and their binding of phospholipids and 

glycosaminoglycans of vertebrate origin has been studied.14,15 Because their ability to 

bind endogenous glycans of C. elegans has not been studied so far, the present finding is 

remarkable because the Galβ1-4Fuc disaccharide unit is found on the N-glycans of C. 

elegans. 

 In the lactose-eluted fraction (Fig. 2C), we found several galectins, namely, 

LEC-1, -2, -4, -6, -9, -10, and and a galectin-like protein DC2.3a. Among them, LEC-1, 

-6, and -10 have already been reported to have affinity for Galβ1-4Fuc.7–9 On the other 

hand, binding of LEC-2, -4, -9, and DC2.3a to Galβ1-4Fuc was observed for the first 

time. Although LEC-9 was also found in the EDTA-eluted fraction, this was probably 

due to its relatively weak binding to the column. Of 12 putative galectin genes in the 

genome of C. elegans,12 products of at least 7 proved to have binding ability towards 

Galβ1-4Fuc. This suggests that the Galβ1-4Fuc disaccharide unit is an important motif 

in the endogenous counterpart glycans in C. elegans. We also identified NRA-1 in the 

EDTA-eluted fraction and UCR-2.1 and C41G7.9 in the lactose-eluted fraction. Though 

their sugar-binding abilities have not been reported so far, we focused on annexin 

proteins in the following experiment. 
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2.3. C. elegans annexins NEX-1, -2, and -3 interact with Galβ1-4Fuc in a Ca2+ 

ion-dependent manner 

For further studies on the binding of the 3 annexins to Galβ1-4Fuc, we prepared 

recombinant GST-tagged NEX-1, -2, and -3 proteins. Extracts of E. coli expressing 

these recombinant proteins were applied to an immobilized Galβ1-4Fuc column in the 

presence of Ca2+. After washing with a buffer containing Ca2+, the column was 

successively washed with solutions of lactose and EDTA (Fig. 3A).  

The recombinant annexin proteins, exhibiting an increased molecular weight due to the 

GST tag,15 were recovered in the EDTA-eluted fraction. This suggests their Ca2+ 

dependent interaction. Lactose failed to elute the proteins, probably because it was too 

weak as competitor. 

Interaction between annexin and Galβ1-4Fuc was also examined by frontal 

affinity chromatography (FAC) analysis. Retardation of fluorescent-labeled sugars 

through an immobilized recombinant GST-NEX-1 column was compared to the elution 

profile of PA-rhamnose, which we assume should not interact with NEX-1 (Fig. 3B, C). 

Distinct retardation of Galβ1-4Fuc-Man-ol-PA was observed, though 

Galβ1-3Fuc-Man-ol-PA and LNnT-PA, which contain the Galβ1-4GlcNAc disaccharide 
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unit, were not retarded at all. Therefore, the interaction of NEX-1 with Galβ1-4Fuc is 

specific. This may be due to the conformation of the hydroxyl groups of the reducing 

end monosaccharide, which participate in the formation of a glycoside bond. The 

hydroxyl group at position C4 of fucose is axial, while that at C3 is equatorial. In the 

cases of lactose and Galβ1-4GlcNAc, the hydroxyl group at C4 of the Glc or GlcNAc 

residues is also equatorial. Glycoside bonds, including the equatorial hydroxyl group of 

the reducing end sugar, seem to be unfavorable for the interaction with NEX-1. The 

binding ability of NEX-1 to an oligosaccharide of C. elegans origin that contains a 

Galβ1-4Fuc unit (E3, obtained as one of the endogenous ligand N-glycans of C. elegans 

galectin LEC-6) was also analyzed (Fig. 3B, C). No retardation of E3-PA through the 

column was observed. It is possible that moieties other than the Galβ1-4Fuc unit 

interfere with the interaction with NEX-1. 

 Besides galectins and annexins, other C. elegans sugar-binding proteins such as 

C-type lectins might interact with the Galβ1-4Fuc disaccharide unit in vivo. In the 

present investigation, neither C-type lectin nor any other sugar-binding protein was 

captured. This might be due to a very low expression level or to some technical reason, 

such as a failure in solubilization. The Galβ1-4Fuc disaccharide unit has been found 

only in Protostomia species, such as octopus, squid, keyhole limpet, and C. elegans.18–21 
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However, the galactosyl transferase genes responsible for the synthesis of the 

Galβ1-4Fuc unit are widely distributed in invertebrate species.22 This structural unit 

might have an important role as a fundamental motif recognized by a variety of 

sugar-binding proteins in invertebrate species. The sugar derivative used in the present 

study, such as Galβ1-4Fuc-NH2, and also Galβ1-4Fuc-Man-ol-PA,23 should serve as 

very useful tools for invertebrate glycobiology. 

 

3. Experimental 

3.1. Synthesis of a Galβ1-4Fuc derivative with a hydrophilic spacer modified with a 

free amino group (Galβ1-4Fuc-Man-ol-NH2)  

Galβ1-4Fuc-Man-ol-NH2 (Fig. 1A) was chemically synthesized by combining a 

Galβ1-4Fuc derivative with a trichloroacetimidate group at the C1 of the Fuc residue23 

with an azidated linker derived from mannitol under appropriate protection of the 

hydroxyl groups. The product was then deprotected, and the azide group of the linker 

was reduced. The structure of Galβ1-4Fuc-Man-ol-NH2 (Fig. 1A) obtained was 

confirmed by 1H-NMR analysis, and the fucose residue was confirmed to have closed 

ring structure. Details regarding the synthesis will be published elsewhere. 
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3.2. Preparation of an immobilized Galβ1-4Fuc column 

Chemically synthesized Galβ1-4Fuc-Man-ol-NH2 was dissolved in coupling buffer (0.1 

M NaHCO3, 0.5 M NaCl, pH 8.3) at a concentration of 4.0 mg (about 10 µmol)/mL. 

Then, 10 mL of the solution were mixed with 10 mL of NHS-activated Sepharose (GE 

Healthcare, Chalfont St. Giles, UK). The procedure was followed essentially according 

to the manufacturer’s instructions. The immobilized Galβ1-4Fuc adsorbent was packed 

in a disposable column (Bio-Rad, Hercules, CA), prior to use. 

 

3.3. Expression of recombinant proteins in Escherichia coli 

E. coli expression plasmids, pET-FLAG-LEC-6N73D,8 pGEX-3X-NEX-1, 

pGEX-6P-NEX-2, and pGEX-6P-NEX-314,15 were used in this study. Expression of 

recombinant proteins and preparation of E. coli extracts were performed as previously 

described,8 with the exception that TBS-CaCl2 (20 mM Tris-HCl, 150 mM NaCl, 5 mM 

CaCl2, pH 7.5) was used for preparation of extracts of E. coli expressing GST-tagged 

NEX-1, NEX-2, and NEX-3. In brief, Escherichia coli strain BL21 (DE3) transformed 

with expression plasmid was cultured overnight at 37°C in LBA medium (Luria-Bertani 

medium supplemented with ampicillin), transferred to a 25-fold volume of 2×YT 

medium containing ampicillin, and then incubated at 37°C for 3 h. After chilling, 
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isopropyl-1-thio-β-D-galactopyranoside was added to the culture at a final concentration 

of 0.2 mM and the culture was further incubated overnight at 20°C. The cells were then 

harvested and suspended in 10 mL TBS-CaCl2, and then lysed by sonication. After 

centrifugation, the resulting E. coli extract (about 10 mL) was subjected to affinity 

chromatography.  

 

3.4. Affinity chromatography of recombinant proteins on the immobilized 

Galβ1-4Fuc column 

Affinity purified FLAG-LEC-6 protein and extracts of E. coli expressing either 

FLAG-LEC-6N73D, GST-NEX-1, GST-NEX-2, or GST-NEX-3 were applied to the 

immobilized Galβ1-4Fuc column (bed vol., 10 mL). In the cases of FLAG-LEC-6 and 

FLAG-LEC-6N73D, after extensive washing with PBS-EDTA (8.1 mM Na2HPO4, 1.47 

mM KH2PO4, 137 mM NaCl, 2.68 mM KCl, pH 7.4, supplemented with 2 mM 

ethylenediaminetetraacetic acid [EDTA]), the bound materials were eluted with 

PBS-EDTA containing 0.1 M lactose. In the cases of GST-NEX-1, -2, and -3, after 

extensive washing with TBS-CaCl2, the bound materials were eluted with TBS-CaCl2 

containing 0.1 M lactose, then with TBS-EDTA (20 mM Tris-HCl, 150 mM NaCl, 2 

mM EDTA, pH 7.5). These procedures were performed at 4°C. Of each fraction, 6 mL 
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were collected. Each fraction was then subjected to SDS-PAGE using 15% 

polyacrylamide gels and stained with Bio-Safe™ Coomassie (Bio-Rad). 

 

3.5. Isolation and assignment of C. elegans proteins adsorbed to the immobilized 

Galβ1-4Fuc column 

Mixed stages of C. elegans N2 strain (8 g, wet weight), prepared as described 

previously,24 were suspended in ice-cold TBS-EDTA and then disrupted by sonication. 

After centrifugation, CaCl2 was added to the supernatant at a final concentration of 7 

mM, and the solution was applied to the immobilized Galβ1-4Fuc column (bed vol., 10 

mL). After extensive washing with TBS-CaCl2, adsorbed materials were eluted with 

TBS-EDTA and then with TBS-EDTA containing 0.1 M lactose. All procedures were 

performed at 4°C. Six milliliters of each fraction were collected. Portions of the 

fractions were concentrated by TCA precipitation, and the precipitates were subjected to 

SDS-PAGE, followed by staining of proteins with Bio-Safe™ Coomassie. For TCA 

precipitation, 100 (w/v) %TCA was added to the fractions at a final concentrations of 

10%. After chilling on ice, the mixtures were subjected to centrifugation. The 

precipitates thus prepared were washed twice with EtOH, and then were dried. They 

were re-suspended in SDS-PAGE sample buffer (1.0% SDS, 50 mM Tris-HCl, 10% 
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glycerol, 0.01% bromophenol blue, 2.0% 2-mercaptoethanol, pH6.8) and used for 

SDS-PAGE. The samples were concentrated about 100-fold by the TCA precipitation. 

Selected protein band were excised, washed first with 50% acetonitrile (ACN) 

in 25 mM NH4HCO3 and then 100% ACN, and vacuum-dried. The proteins were 

subjected to reduction with 10 mM dithiothreitol in 25 mM NH4HCO3 at 56°C for 1 h. 

The gel pieces were then washed with 25 mM NH4HCO3 and incubated with 55 mM 

iodoacetamide in 25 mM NH4HCO3 at room temperature for 45 min in the dark. The gel 

pieces containing S-carboxymethylated proteins were washed with 50% ACN in 25 mM 

NH4HCO3, and vacuum-dried. Then, 10 µg/mL of trypsin (Promega, Madison, WI) in 

50 mM NH4HCO3 was added, and the solution was incubated overnight at 37°C. The 

trypsinized peptides thus produced were extracted with 50% ACN containing 5% 

trifluoroacetic acid (TFA), and the peptide solutions were vacuum-dried. Then, the 

peptides were resuspended in 2% ACN with 0.1% TFA, and subjected to liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) analysis basically as 

described.25 

 

3.6. Frontal affinity chromatography (FAC) analysis 

Immobilization of recombinant GST-NEX-1 protein, which was purified by the 
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immobilized Galβ1-4Fuc column, on NHS-activated Sepharose (GE Healthcare) was 

performed according to the manufacturer’s instructions. We used 1.4 mg of GST-NEX1 

protein for immobilization and the amount of immobilized protein was calculated from 

concentration of the protein solution before and after the immobilization process. 

Protein concentration was determined by using BIO-RAD Protein Assay (Bio-Rad). 

FAC analysis was performed essentially as described previously,7,8 with the exception 

that TBS-CaCl2 was used. To an immobilized GST-NEX-1 column (1.9 mg GST-NEX-1 

protein/mL gel), solutions of fluorescent sugars were applied. Galβ1-4Fuc-Man-ol-PA 

and Galβ1-3Fuc-Man-ol-PA, sugars labeled with pyridylamine via a spacer derived 

from mannitol, were chemically synthesized.23 Lacto-N-neotetraose-PA (LNnT-PA; 

Galβ1-4GlcNAcβ1-3Galβ1-4Glc-PA), and PA-rhamnose were purchased from Takara 

Bio (Shiga, Japan). E3-PA, a PA derivative of natural N-glycan which contains the 

Galβ1-4Fuc unit isolated from C. elegans (structure shown in Fig. 3B), was prepared as 

reported previously.7 
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Figure Legends 

Fig. 1. Assessment of the capacity of the immobilized Galβ1-4Fuc column 

(A) Structure of the chemically synthesized ligand containing the Galβ1-4Fuc unit. Its 

conformation is based on a 1H-NMR spectrum. About 10 mg of purified FLAG-LEC-6 

protein (B) and extract of E. coli expressing over 30 mg of FLAG-LEC-6N73D protein 

(C) were applied to an immobilized Galβ1-4Fuc column. After extensive washing, the 

bound materials were eluted with 0.1 M lactose. Each fraction was subjected to 

SDS-PAGE, and proteins were stained with Coomassie brilliant blue. The numbers on 

the left of the panel are the molecular masses of standard proteins. Arrowheads indicate 

the positions of recombinant LEC-6 proteins. Arrows indicate lactose-eluted fractions. 

 

Fig. 2. Assignment of C. elegans proteins bound to the immobilized Galβ1-4Fuc 

column 

(A) Extract from a mixed stage preparation of C. elegans N2 strain was applied to the 

immobilized Galβ1-4Fuc column. After extensive washing, the bound materials were 

eluted with 2 mM EDTA, and then with 0.1 M lactose. Each fraction was subjected to 

TCA precipitation, followed by SDS-PAGE, and proteins were stained with Coomassie 

brilliant blue. (B) Fraction 21, and (C) Fraction 24, of the eluate from the Galβ1-4Fuc 
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column. Proteins assigned by LC-MS/MS analyses are indicated. The names of the 

proteins used are from the WormBase (http://www.wormbase.org/). Details on the 

assignment are shown in a supplementary table.. 

 

Fig. 3. C. elegans annexins NEX-1, -2, and -3 have affinity for Galβ1-4Fuc 

(A) An extract of E. coli, expressing either GST-tagged NEX-1, NEX-2, or NEX-3, was 

applied to the immobilized Galβ1-4Fuc column. After extensive washing, the bound 

materials were eluted with 0.1 M lactose, and then with 2 mM EDTA. Each fraction was 

subjected to SDS-PAGE, and the proteins were stained with Coomassie brilliant blue. 

The numbers on the left of the panel are the molecular masses of standard proteins. (B) 

Elution profiles of PA-sugars from an immobilized GST-NEX-1 column. The structure 

of each PA-sugar is depicted in each panel of the elution profile. Open circle with 

diagonal line, hexose; open circle, mannose; gray circle, glucose; filled circle, galactose; 

filled square, N-acetylglucosamine; open triangle, fucose. The elution profile of each 

PA-sugar (solid line) was superimposed on that of PA-rhamnose (broken line) which has 

no affinity for GST-NEX-1. (C) The Ka and Kd values for the interaction between 

GST-NEX-1 and PA-sugars were calculated. N.D. means not determined because of no 

retardation. 
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Figure 1. Takeuchi et al.
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Figure 2. Takeuchi et al.
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Figure 3. Takeuchi et al.
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Highlights  

1. Preparation of an immobilized Galβ1-4Fuc column 

2. C. elegans proteins bound to an immobilized Galβ1-4Fuc column were identified 

3. Multiple C. elegans galectins have affinities for Galβ1-4Fuc 

4. C. elegans annexins, NEX-1, -2, and -3, interact with Galβ1-4Fuc 

5. NEX-1 specifically recognizes Galβ1-4Fuc but not Galβ1-3Fuc or Galβ1-4GlcNAc 
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Supplementary table. C. elegans Galβ1-4Fuc binding proteins identified by nanoLC-MS/MS 
with a significant score. 
 

MainName Unique Peptides Theoretical MW (kDa) Coverage (%) Score 

C41G7.9 5 18.6 62.0 45 

DC2.3a 1 19.9 10.1 10 

LEC-1 14 31.8 65.2 340 

LEC-2 12 31.2 61.9 184 

LEC-4 4 32.4 22.6 17 

LEC-6 10 16.0 92.5 423 

LEC-9 12 15.5 83.6 153 

LEC-10 5 22.0 33.3 68 

NEX-1 13 35.7 46.0 167 

NEX-2 4 49.4 14.1 47 

NEX-3 6 36.1 22.7 47 

NRA-1 14 69.7 41.3 107 

UCR-2.1 7 42.7 39.0 47 
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