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Abstract 

Topical formulations are not always suitable to deliver active ingredients to 

large areas of skin. Thus, in this study, we aimed to develop an oral formulation for skin 

tissue targeting with a high bioavailability using liquid crystals (LCs) dispersions 

comprising cubosomes of a mal-absorptive model compound, p-amino benzoic 

acid (PABA), which is an active element in cosmeceuticals, dietary supplements and 

skin disorder medicines. The bioavailability and skin concentration of PABA were 

investigated after oral administration in rats. The effect of the remaining amount of the 

LCs formulation in the stomach on the pharmacokinetic profiles of orally administered 

PABA was evaluated. The skin permeation and concentration of PABA were also 

investigated using an in vitro permeation experiment. As a result, the bioavailability of 

PABA was significantly improved by administration of PABA-LC formulations 

compared with PABA solution alone, although the effect was greatly influenced by the 

type of LC-forming lipids. The in vitro skin permeation study showed that the PABA 

concentration in skin when applied from the dermis side was higher than when applied 

from the epidermis side. These findings suggested that oral administration 

advantageously supports skin targeting, and oral LC formulations could be a promising 

material in cosmeceutical, dietary and clinical fields. 
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1. Introduction: 

Skin is utilized as an application site for many topical and transdermal drug 

delivery systems, and a variety of topical drug formulations have been developed to 

treat local indications. However, these formulations are not always suitable for treating 

broad areas of skin, especially in the case of UV protection agents, dietary and cosmetic 

skin supplements and several skin disorder medicines. Topical application for a broad 

area skin is often associated with certain drawbacks such as staining of clothes, 

sweating, pigmentation and skin irritation. Moreover, only a limited number of drugs 

are amenable to administration by topical application and it is not a practical route to 

cover large areas of skin on a daily basis [1, 2]. These limitations are associated with a 

number of drugs not only as medicines for skin disorders but also in dietary and 

cosmetic skin supplements.  

In this study, we aimed to improve the oral bioavailability and skin tissue 

targeting of p-amino benzoic acid (PABA) as a model compound with a formulation 

approach by utilizing liquid crystals (LCs). LCs are semisolids made of lipids with 

crystalline structures combining the properties of both crystal and liquid states. 

Molecules in crystal are highly ordered, while those in liquid are free to diffuse in a 

random way. Thus, molecules in LC phases diffuse like the molecules in liquid but 

contain some degree of order [3-6]. A generally used term is the mesophase for LC, 

indicating such a unique structure is between those of true liquid and solid crystals [7]. 

In general, LCs can be classified into two categories, i.e., thermotropic and lyotropic. 

Thermotropic LCs are formed by a change in temperature, whereas lyotropic phases are 

obtained when mixed with some solvent. Lyotropic LCs usually consist of amphiphilic 

substances like surfactants and solvents. Amphiphilic substances become micelle at a 
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low concentration, having cluster of molecules with their polar groups oriented in the 

water. This is a liquid isotropic phase, where isotropic means identical properties of the 

structure in all directions. More ordered structures such as hexagonal, lamellar and 

cubic phases are formed at higher concentrations. These structures are formed, due to 

insufficient water to fill up spaces between the spherical or elongated micelles [8, 9]. 

Depending on the solvent concentration and the polarity of solvated mesogen, these 

systems can undergo phase transitions and structure modifications. Thus, their 

consistencies and rheological properties can be systematically changed as required [7, 

10]. Lyotropic LCs formed with aqueous surfactants can absorb water from the 

environment, inducing spontaneous phase-transition and forming lamellar phase (L𝛼𝛼), 

cubic phase (V2) and hexagonal phase (H2) [11, 12]. Among them, cubic phase and 

hexagonal phase have received much attention due to their highly ordered internal 

structures, and can be used as a slow release matrix for active pharmaceutical 

ingredients with various molecular sizes and polarities [13, 14]. Cubic and hexagonal 

LCs are often spontaneously formed by addition of certain amphiphilic lipids in an 

aqueous environment [15]. When these LCs are dispersed into nanoparticles by addition 

of excess water with the stabilizers such as Pluronic copolymers and Myrj series [16], 

they form stable colloidal dispersions which are termed cubosomes and hexosomes, 

respectively [17-20]. 

PABA also known as vitamin Bx was selected as a model compound, which is 

widely found in foods as a cofactor of the vitamin B complex [21]. PABA is often used 

as an ingredient in sunscreen owing to its high absorbance in the UVB region, and it is 

protective against skin cancers. Protection against UV and free radical damage is related 

to the ability of PABA to scavenge reactive oxygen species [22]. It is also available as a 



5 
 

health supplement (vitamin B10) because of its antioxidant activity [23]. The potassium 

salt of PABA is used as a prescription drug in the USA for the treatment of skin 

disorders such as scleroderma, dermatomyositis and Peyronie’s disease [24-26]. Based 

on these findings, PABA is considered as an active element in cosmeceuticals, dietary 

supplements and skin disorder medicines. However, PABA suffers from a narrow 

absorption window in the gastrointestinal (GI) tract [27].  

During the last few decades, increasing attention has been paid to LC 

formulations including cubosomes and hexosomes because of their remarkable 

structural complexity and usefulness in diverse applications [28], but very few studies 

demonstrated their use in vivo or particularly for the investigation of their application in 

oral drug delivery and skin tissue targeting. The present work was undertaken with the 

intention of enhancing the oral delivery and skin tissue targeting of PABA using LC 

formulations and evaluating LCs as a drug delivery system. Oral LC formulations 

containing PABA were prepared using the following LC forming lipids: glyceryl 

monooleate (GMO), phytantriol (PHT), C17-monoglycerol ester (MGE) and 

C22-erythritol ester (ERT) (Fig. 1). 

Fig. 1 

The confirmation of LC phase structures in the presence of PABA was 

undertaken by small-angle X-ray scattering (SAXS). The physicochemical 

measurements of these formulations were performed using a viscometer and a Zetasizer. 

The in vitro release of PABA from LC formulations was determined using a dialysis 

release method. PABA solution or its dispersed LC formulations were administrated to 

rats, and the pharmacokinetic profile, stomach remaining contents and skin 

concentration of PABA were determined. Furthermore, the skin permeation and 
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concentration were investigated using in vitro skin permeation studies. 

 

 

2. Materials and methods 

2.1. Materials 

PABA was purchased from Kanto Chemical Co., Inc. (Tokyo, Japan). GMO 

with a normal purity of > 97% and MGE with a normal purity of > 99.56% were 

purchased from Farnex Co., Inc. (Yokohama, Japan). PHT with a normal purity of > 

95% and ERT with a normal purity of > 97% were purchased from Tokyo Chemical 

Industry Co., Ltd. (Tokyo, Japan). A surfactant, Pluronic® F127, was purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Other reagents and solvents were of special grade 

or HPLC grade and used without further purification. 

2.2. Preparation of PABA-LC formulations 

Table 1 shows the composition of dispersed PABA-LC formulations prepared 

in this study. These formulations were designed based on a 1:1 ratio of the active 

ingredient (PABA) solution and LC forming lipids. The mixture was dispersed using an 

ultrasonic homogenizer (USP-50; Shimadzu Corp., Kyoto, Japan) in a pulsing mode 

(5-s pulse interrupted by 1-s pauses) for 15 min. GMO was melted at 50°C before use, 

but ERT was hard to melt even at 100°C. Other LC forming lipids were dispersed with 

PABA solution without preheating. The dispersion for PABA-GMO, -PHT and -MGE 

formulations produced uniform opaque creamy mixtures. These formulations were able 

to be orally administered to rats via an oral zonde needle, although a non-uniform 

mixture with gel-like highly viscous aggregates was observed in case of the PABA-ERT 
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formulation. No further work was carried out using PABA-ERT formulation owing to 

high melting point of ERT. 

Table 1 

2.3. SAXS measurement 

SAXS measurement of dispersed PABA-GMO, -PHT and -MGE formulations 

was performed using a Nano-Viewer (Rigaku, Tokyo, Japan) with a Pilatus 100K/RL 

2D detector. The X-ray source was Cu Kα radiation with a wavelength of 1.54 Å and 

operating at 45 kV and 110 mA. The sample-to-detector distance was set at 375 mm. 

Each sample was placed into a vacuum-resistant glass capillary cell and exposed at 

25°C for 10 min. The obtained SAXS pattern was plotted against the scattering vector 

length, ( ) ( ),2/sin/4 θλπ=q where θ  is scattering angle. The lattice parameter (a) was 

obtained from the gradient of the plot of q as a function of (h2+k2+l2)1/2 using the 

following equation: ( ) 222/2 lkhaq ++π= , where h, k, and l are the Miller indices. 

The scattering intensity was normalized by decayed direct beam intensity. 

2.4. Measurement of particle size and viscosity 

The particle size of LC formulations with or without PABA was measured using 

a dynamic light scattering Nano-ZS ZEN3600 Zetasizer (Malvern Instruments Ltd., 

Worcestershire, UK) at 25°C and 37°C. Samples were diluted 10000-fold in water and 

shaken using a vortex mixer prior to measurement. In addition, the viscosity of LC 

forming lipids and PABA-LC formulations was measured at 25°C and 37°C using a 

viscometer (Toki Sangyo Co., Ltd., Tokyo, Japan) that allowed a sensitive 

determination of viscosity within a range of 0.3-10000 mPa·s with an accuracy of 1% 

relative error. 
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2.5. Analytical procedures 

The in vivo or in vitro study sample (50 µL) was mixed with the same volume of 

acetonitrile (to precipitate plasma proteins) containing methyl paraben (10 µg/mL) as an 

internal standard and centrifuged (5 min, 4°C). The obtained supernatant (20 µL) was 

injected into an HPLC system. The HPLC system (Shimadzu, Kyoto, Japan) consisted 

of a system controller (CBM-20A), pump (LC-20AD), auto-sampler (SIL-20AC), 

column oven (CTO-20A), a UV detector (SPD-M20A), and analysis software (LC 

Solution). The column was an Inertsil® ODS-3 (5 µm, 4.6 × 250 mm) (Nihon Waters 

K.K.; Tokyo, Japan), which was maintained at 40°C. The mobile phase was 

acetonitrile : 0.1% phosphoric acid = 8 : 52 (0-4 min), 35 : 65 (4-14 min) and 8 : 92 

(14-20 min). The flow rate was adjusted to 1.0 mL/min. PABA was detected at UV 280 

nm. In the case of skin samples, the skin piece (0.1 g) was minced with scissors and 

homogenized (5 min, 4°C) with water (0.9 mL) using a homogenizer (Polytron PT-MR 

3000; Kinematica Inc., Littau, Switzerland). The homogenate was mixed with 

acetonitrile : water = 1:1 (0.5 mL) and agitated for 15 min. After centrifugation (5 min, 

4°C), the supernatant (50 µL) was mixed with the same volume of acetonitrile 

containing methyl paraben (10 µg/mL) and centrifuged again (5 min, 4°C). The 

obtained supernatant (20 µL) was injected into an HPLC system, and the measurement 

was obtained with the same conditions as mentioned above. 

2.6. In vitro dialysis release study 

The in vitro release study was performed using dialysis bags (Eidia Co., Ltd., 

Tokyo, Japan). Prior to use, the dialysis bags were soaked in distilled water for 1 h. 

Phosphate-buffered saline (PBS) as a solvent with physiological pH (7.4) or 0.1 M HCl 
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to simulate gastric conditions (300 mL each) was used as a receiver medium and 

continuously stirred at 300 rpm in a beaker and warmed in a water bath at 37°C. A 

dialysis bag was then loaded with 1 mL of 20 mM PABA or PABA-LC formulation and 

placed in the beaker. An aliquot (0.5 mL) was withdrawn from the receiver beaker and 

the same volume of pH 7.4 PBS or 0.1 M HCl was added to the beaker to keep the 

volume constant. The concentration of released PABA was then determined using an 

HPLC in conditions as explained in Section 2.5. The cumulative % PABA release was 

plotted against the square root of time (Higuchi model) [29]. 

2.7. Animals 

Male Wistar rats (200-250 g) were purchased from Sankyo Labo Service Co., 

Inc. (Hamamatsu, Shizuoka, Japan). Male hairless rats were purchased either from Life 

Science Research Center, Josai University (Sakado, Saitama, Japan) or Ishikawa 

Experiment Animal Laboratories (Fukaya, Saitama, Japan). Animals were housed in 

temperature-controlled rooms (25 ± 2°C) with a 12 h light-dark cycle (7:00-19:00 h). 

The rats were allowed free access to food (Oriental Yeast Co., Tokyo, Japan) and tap 

water. The animal care protocol was approved by the Animal Care and Use Committee 

of Josai University (Sakado, Saitama, Japan). 

2.8. Pharmacokinetic studies and skin samples excising 

Intravenous (i.v.) and per oral (p.o.) administrations were performed in Wistar 

rats under anesthesia by intraperitoneal (i.p.) injection of urethane (1.0 g/kg) to 

determine the pharmacokinetic parameters of PABA. In case of i.v., PABA dissolved in 

physiological saline (PABA solution) was injected (10 µmol/kg) into the tail vein. 

Blood samples (0.2 mL) were collected from the jugular vein at predetermined intervals 
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up to 3 h, and the same volume of saline was injected via the tail vein to prevent severe 

changes the in volume of distribution. For p.o administration, PABA solution or its 

dispersed LC-formulation (20 µmol/kg) was administered to rats, and blood (0.2 mL) 

was sampled from the jugular vein at intervals up to 8 h and the same volume of saline 

was injected via tail vein. Blood samples placed into heparinized tubs were immediately 

separated by centrifugation to obtain plasma (5 min, 4°C). Skin samples were taken 

from the abdomen area at 0.5 or 3 h after p.o. administration. Plasma and skin samples 

were stored at -30°C until analysis. 

2.9. Determination of PABA concentration remaining in the stomach 

Rats were sacrificed at 3 and 8 h after p.o. administration of PABA solution or 

its dispersed LC formulation, and the stomach was removed and the internal lining was 

scraped with a scalpel blade to collect the stomach contents. The contents were mixed 

with acetonitrile : ethanol = 2:1 to dissolve the lipid phase and agitated for 15 min. The 

supernatant (50 µL) after centrifugation (5 min, 4°C) was mixed with the same volume 

of acetonitrile containing methyl paraben (10 µg/mL) and centrifuged (15,000 rpm, 5 

min, 4°C) [28]. The obtained supernatant was diluted 100-fold and injected (20 µL) into 

an HPLC system. The measurement was obtained as described in Section 2.5. 

2.10. In vitro skin permeation study 

Full-thickness hairless rat skin was excised from the abdomen under anesthesia 

by i.p. injection of pentobarbital (50 mg/kg). The excess fat was trimmed off and the 

skin samples were set in vertical-type diffusion cells (effective diffusion area: 1.77 cm2) 

with the epidermis side facing the donor compartment (epidermis to dermis) or facing 

the receiver compartment (dermis to epidermis). Skin permeation experiments were 
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conducted after hydration for 60 min with PBS pH 7.4 at 32°C. PABA solution (20 mM, 

1.0 mL) and PBS (6.0 mL) were added to the donor and receiver compartments, 

respectively, in all permeation experiments. The receiver solution was agitated using a 

stirrer bar and a magnetic stirrer throughout the experiments. An aliquot (0.5 mL) was 

withdrawn from the receiver chamber and the same volume of PBS was added to keep 

the volume constant. PABA concentration in the receiver was determined using an 

HPLC as described in Section 2.5. The donor solution was removed and the skin sample 

was washed with PBS after the permeation experiment. The permeation area of the skin 

(1.77 cm2) was then cut and stored at -15°C until analysis. The skin concentration was 

measured as described in Section 2.5. 

2.11. Determination of AUC 

The area under the plasma concentration-time curve (AUC) was calculated 

using the linear trapezoidal rule. The absolute bioavailability was determined as 

AUCpo/AUCiv, using the mean AUC values for p.o. and i.v. doses. Statistical analysis 

was performed using unpaired Student’s t-test (ANOVA), and P values less than 0.05 

were considered to be significant. 
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3. Results 

3.1. SAXS measurement 

The phase behavior of dispersed PABA-LC (PABA-GMO, -PHT and -MGE) 

formulations was evaluated by SAXS. Figure 2 shows the X-ray diffraction profiles and 

the lattice parameter (a) of the three PABA-LC formulations. Table 2 summarizes the 

peak position (q) and intensity of these formulations. These typical reflection patterns; 

for dispersed PABA-GMO formulation at nearly √2, √3, √4, √6, √8, √9 (a), PABA-PHT 

formulation at nearly √2, √3, √4, √6, √8, √9 (b) and PABA-MGE formulation at nearly 

√2, √3, √4, √6, √8, √9 (c), revealed the presence of inverse bicontinuous cubic (V2) 

Pn3m phase for the three formulations [30, 31]. 

Fig. 2 and Table 2 

3.2. Measurement of particle size and viscosity  

The particle sizes of LC formulations with or without PABA in Pluronic® F127 

solution was measured by a dynamic light scattering at 25°C and 37°C. Table 3 lists the 

obtained particle sizes. The particle size was nearly 200-400 nm for all formulations, 

suggesting that the presence of PABA and temperature changes did not affect the 

particle size of LC formulations. 

Table 3 
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Moreover, the viscosity of LC forming lipids and their PABA formulations was 

measured using a viscometer at 25°C and 37°C. Table 4 lists the obtained viscosity 

values. The viscosity grades of LC forming lipids and their PABA formulations were 

affected dramatically by changes in experimental temperature, except for the MGE-LC 

forming lipid and its PABA formulation, suggesting that MGE-LC forming lipid is 

more thermally stable compared with other LC forming lipids. 

Table 4 

3.3. In vitro dialysis release 

The in vitro release study was performed using dialysis bags. PBS as a solvent 

with physiological pH (7.4) or 0.1 M HCl for gastric conditions was used as the receiver 

medium. Figure 3 shows PABA release profiles from LC formulations into PBS pH 7.4 

(a) and 0.1 M HCl (b). The PABA release profile into 0.1 M HCl was similar to that 

when PBS was used as the receiver medium, indicating that changes in pH probably did 

not affect the release rate of PABA from its solution or its LC formulations. The PABA 

release profile from the LC formulations was a relatively slow and gradual till 60 min 

compared with that from PABA solution. The release profiles of PABA from its GMO 

and MGE formulations were similar each other. Higuchi’s square-root model analysis 

showed two phases of PABA release; a fast release phase (5-60 min), followed by a 

slow release phase (60-240 min) of PABA from the LC-matrix. The correlation 

coefficients of PABA-LC formulations were calculated in accordance with the release 

profiles obtained using square root Higuchi model as shown in Table 5. 

The amount of PABA released from GMO, PHT and MGE were 81 ± 3, 67 ± 2 

and 90 ± 4%, respectively, against the initial dosing. These results showed that the 
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release profile of PABA from the PHT formulation was slower than that from other 

PABA-LC formulations and could be related to its high viscosity at 37°C, which could 

lead to reduced mobility of PABA in this formulation compared with other PABA-LC 

formulations. 

Fig. 3 and Table 5  

3.4. Bioavailability of PABA after oral administration 

Figure 4 shows the time course of the plasma concentration of PABA after p.o. 

administration of its solution or LC formulations in male Wistar rats. Table 6 

summarizes the calculated AUC0-6 h, Tmax, Cmax and bioavailability of PABA after 

administration of PABA solution or its dispersed LC formulations. The Cmax after oral 

administration of dispersed PABA-MGE or -GMO formulations was significantly 

higher than with PABA solution. The Tmax for administration of dispersed PABA-MGE 

formulation was faster compared with PABA solution and other PABA-LC 

formulations. In addition, the bioavailability of PABA was significantly improved by 

administration of dispersed PABA-MGE or -GMO formulations compared with PABA 

solution. Although the PABA-PHT formulation resulted in a significant improvement in 

bioavailability, a relatively lower Cmax was obtained compared with the other 

formulations. No plasma concentration was observed 6 h after administration except for 

the PHT formulation, for which a very low concentration of PABA (3 ± 1 nmol/mL) 

was observed at 8 h (not shown in Fig. 4).  

Fig. 4 and Table 6 

3.5. Skin concentration of PABA 
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Figure 5a and b show the skin concentration of PABA 30 min and 3 h, 

respectively, after oral administration of PABA solution or its dispersed LC formulation. 

A significant improvement in the skin concentration at 30 min was observed with the 

GMO and MGE LC formulations compared with PABA solution, but no improvement 

was observed using the PHT formulation. No detection of PABA in skin was observed 

3 h after application of PABA solution. However, LC formulations sustained a low 

concentration of PABA in the skin even 3 h after administration. These results 

suggesting that GMO and MGE formulations were more efficient for enhancing the skin 

concentration of PABA than PABA solution and PHT formulation. 

Fig. 5 

3.6. Concentration of PABA remaining in the stomach 

In order to estimate the sustained release of PABA from LC formulations, the 

PABA concentration remaining in the stomach was determined 2 and 8 h after p.o. 

administration of its solution or LC formulation. LC dispersions were observed to 

accumulate in the pyloric region of the stomach, as shown in Fig. 6. Figure 7 shows 

nearly 40% of the total dose of PABA concentration from the PHT formulation 

remained in the stomach 2 h after administration, and nearly 20% remained from the 

GMO and MGE formulations (Fig. 7a). No PABA was detected 8 h after administration 

of PABA solution or GMO and PHT formulations, but nearly 12% of the total dose of 

PABA in the PHT formulation remained in the stomach 8 h after administration (Fig. 

7b). The high percentage of PABA remaining in the stomach for the PHT formulation 

must be consistent with its high viscosity, leading to a prolonged emulsification effect 

of the formulation in the stomach. 
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Figs. 6 and 7 

3.7. In vitro skin permeation study 

Figure 8 shows the accumulation time course of PABA that permeated through 

the skin of full-thickness hairless rat. Almost no change was observed in the skin 

permeation profile of PABA after application to the epidermis side or the dermis side. 

However, PABA skin concentration was significantly higher when applied on the 

dermis side compared with the epidermis-side application, as shown in Fig. 9. This 

indicated that the partition of PABA to skin tissue from the dermis side was higher than 

that from the epidermis side; and this supported for usefulness of p.o. administration, 

especially for targeting of PABA to the skin.  

Figs. 8 and 9 

4. Discussion 

The general concept of targeting the skin tissue is by topical application. Very 

limited studies have emphasized drug-skin tissue targeting via oral administration. The 

issue to be addressed in this study is that the skin is the largest organ in our body and it 

is not always suitable to distribute an active ingredient over the whole area of the skin 

especially for certain indications. Hence, it is necessary to develop oral-skin tissue 

targeting delivery systems that can effectively deliver a drug to a wide area of skin. 

Recent studies have shown successful developing of LC formulations that can be 

applicable for i.v. administration [32, 33]. A previous study has demonstrated that PHT 

dispersions could trigger complement activation, and the process may limit their use for 

i.v. administration as this may initiate infusion-related reactions in sensitive individuals. 

However, complement activation was significantly milder when PHT was replaced with 
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GMO [32]. These finding should be considered for the safety concerns of such materials. 

Minimal studies have been undertaken to investigate potential toxic effects of 

nanoparticle formulations made from LC forming lipids [34-36]. GMO was reported as 

a nontoxic, biodegradable and biocompatible material classified as GRAS (generally 

recognized as safe), and it is included in the FDA Inactive Ingredients Guide and in 

non-parenteral medicines licensed in the UK [37]. Its biodegradability comes from the 

fact that GMO is subject to lipolysis due to diverse kinds of esterase activity in different 

tissues [38-40]. In contrast, PHT comprises of a trihydroxy head group and a branched 

phytanyl tail without the presence of a labile (e.g. ester) functionality, which may confer 

more stable toward enzymatic degradation [41, 42]. A previous study has showed that 

the in vitro toxicity of PHT cubosomes is considerably greater than that of GMO 

cubosomes. The increased toxicity of PHT appears to result from its greater ability to 

disrupt the cellular membrane and oxidative stress [42]. No toxicity studies have been 

reported to investigate the toxic effect of MGE cubosomes. Further efforts are necessary 

to investigate the potential toxicity of such materials for therapeutic applications. 

In this study, we evaluated LC forming lipids formulations as an orally 

administered drug delivery system for skin tissue targeting. We initially prepared PABA 

oral formulations using different types of LC forming lipids. The phase behavior of 

these formulations was determined by SAXS measurement, based on international 

tables for crystallography [30, 31] obtained reflection patterns for dispersed 

PABA-GMO formulation at √2, √3, √4, √6, √8, √9 (Fig. 2a), PABA-PHT formulation at 

√2, √3, √4, √6, √8, √9 (Fig. 2b) and PABA-MGE formulation at √2, √3, √4, √6, √8, √9 

(Fig. 2c), thereby confirming the presence of inverse bicontinuous cubic (V2) Pn3m 

phase for the prepared formulations (Table 2). These results were consistent with 
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previous studies on GMO and PHT [43-45]. In addition, the obtained lattice parameters 

(a) of PABA-GMO formulation (Fig. 2a) and PABA-PHT formulation (Fig. 2b) were 

consistent with other studies on GMO and PHT [46, 47]. In case of MGE (Fig. 2c), no 

studies were reported on its formulations phase behavior.     

The particle sizes of the LC formulations with or without PABA were measured 

at 25°C and 37°C. The obtained data showed that the particle size was not affected by 

changes in temperature or the presence of PABA dispersion (Table 3). Although the 

particle size of the GMO formulation with or without PABA was smaller compared 

with other LC formulations, the details were unknown.  

The viscosity grade of LC forming lipids and their PABA formulations was 

dramatically decreased at physiological temperature (37°C) except for MGE and its 

PABA formulation, which showed almost similar grades at 25°C and 37°C (Table 4). 

The reason why the viscosity grade of GMO at 25°C was expressed as >10000 mPa.s 

was due to the viscometer allowing a sensitive determination of viscosity within a range 

of 0.3-10000 mPa·s. These results suggested that MGE is more thermally stable than 

GMO and PHT LC forming lipids. 

In vitro dialysis release studies showed that there were no changes in the release 

profiles of PABA in PBS pH 7.4 (Fig. 3a) and in 0.1 M HCl (Fig. 3b), suggesting that 

changes in the physiological GI tract pH do not affect the release behavior of PABA. 

The amount of PABA released from its GMO and MGE formulations was 81 ± 3 and 90 

± 4%, respectively, against a dose at 240 min. In case of PABA-PHT formulation, 

PABA release was slower than that from the PABA solution or other PABA-LC 

formulations, the amount of PABA released was 67 ± 2% at 240 min. These results 

suggested that the high viscosity of PHT at 37°C could affect the drug mobility in its 
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formulation and its release rate. High correlation coefficients were obtained for each 

formulation as shown in Table 5, which indicated that in vitro drug release profiles of 

PABA cubosomes were fitted well with the square root Higuchi model. The obtained 

two phases of PABA release suggested a proposed diffusion mechanism that PABA 

tends to be adsorbed at the surface of LC during the fast release phase (5-60 min), 

followed by a slow release phase (60-240 min) of PABA from the LC-matrix. In-depth 

investigations, the short time taken to achieve more than 50% release of PABA from its 

LC formulations justifies that these systems are a burst release delivery system where 

drug is released by diffusion from the cubic phase matrix. Other studies also showed 

that cubosomes should be classified as a burst release delivery system [8, 48]. 

In vivo pharmacokinetic studies have shown that the bioavailability of PABA 

was significantly improved by administration of PABA-LC formulations compared with 

PABA solution alone (Fig. 4 and Table 6). The Cmax after oral administration of 

dispersed PABA-MGE (36 ± 3.7 nmol/mL) or -GMO (27 ± 2.4 nmol/mL) formulation 

was significantly higher than PABA solution (13 ± 2.3 nmol/mL). The Tmax after 

administration of dispersed PABA-MGE (26 ± 9 min) formulation was relatively faster 

compared with PABA solution (33 ± 5 min) and the PABA-GMO (38 ± 5 min) and 

-PHT (30 ± 8 min) formulations. In addition, the bioavailability of PABA was 

significantly improved by administration of dispersed PABA-MGE (91 ± 13%) or 

-GMO (78 ± 3%) formulations compared with PABA solution (19 ± 2%). Although the 

PABA-PHT formulation exhibited significantly improved bioavailability (62 ± 10%), 

no significant improvement in Cmax was obtained compared with those for PABA 

solution and the other formulations. No plasma concentration was observed 6 h after 

administration except for the PHT formulation, in which a very low concentration of 
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PABA (3 ± 1 nmol/mL) was observed at 8 h (not showed in Fig. 4). These results 

suggested that the PABA-MGE formulation was the most efficient formulation for 

enhancing Cmax and the bioavailability of PABA. Although the PABA-PHT formulation 

managed to sustain PABA concentration even at 6 h after administration, the Cmax was 

not improved compared with the PABA solution only. In addition, the obtained results 

suggested that changes in the pharmacokinetic profiles can be observed dependent on 

the individual LC forming lipid used in the formulation (Fig. 4). Further investigations 

was done to examine the effect of the physiological temperature, viscosity and the 

emulsifying effect of the stomach on the pharmacokinetic of PABA. The PABA-PHT 

formulation showed the highest viscosity at 37°C compared with the other formulations, 

which was consistent with the high percentage of PABA remaining in the stomach with 

this formulation compared with the other PABA-LC formulations (Fig. 7). Because the 

emulsifying ability of the stomach is well known [45], the obtained results suggested 

that the high viscosity of PHT could delay the emulsifying rate of the PABA 

formulation in the stomach and consequently could prolong the absorption rate and 

stomach empting rate of the dispersed drug. This could be a reason why it managed to 

sustain the release of PABA for longer hours but with relatively low bioavailability and 

Cmax compared with the other formulations. 

The other LC forming lipids used in this study was GMO, which is one of the 

most widely studied LC forming lipids [49]. Our findings showed that the physical state 

of GMO can be easily affected with the changes in temperature and the viscosity of this 

LC forming lipid and its PABA formulation was dramatically decreased at 37°C. In 

addition, the amount of PABA remaining in the stomach using GMO was low compared 

with the PABA-PHT formulation. These results suggested that this formulation can be 
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emulsified by the stomach at a faster rate compared with PABA-PHT, and this might 

offer better drug mobility and influence the movement and absorption of the drug in the 

intestine. Therefore, it significantly improved bioavailability and Cmax compared with 

PABA solution. At the same time, the high viscosity of this LC forming lipid at 25°C 

makes it not easy to handle, not practical for drug loading and need to melt at 50°C 

before its use. 

In the case of MGE, no studies have utilized this for oral drug delivery. Our 

finding showed that MGE was more thermally stable compared with other LC forming 

lipids. The PABA-MGE formulation showed the highest bioavailability and Cmax and 

relatively short Tmax compared with PABA solution and other LC formulations. The low 

viscosity of MGE at 37°C might offer more drug mobility and drug absorption from the 

intestine, and this was consistent with the low amount of PABA remaining in the 

stomach compared with PABA-PHT the formulation (Fig. 7), at the same time its low 

viscosity at 25°C makes it easy to handle and more practical for drug loading.  

In consequence, a non-uniform mixture with gel-like high viscosity aggregates 

was observed in the preparation of the PABA-ERT formulation, which was related to 

the high melting point of ERT, making it impractical for designing an oral formulation; 

therefore, no further work was carried out using this lipid. 

Although a significant improvement in skin concentration was observed with 

the administration of dispersed PABA-GMO or -MGE LC formulations compared with 

PABA solution at 30 min, no significant enhancement in the skin concentration of 

PABA was observed using PABA-PHT formulation compared with PABA solution (Fig. 

5a). No detection of PABA in the skin was observed 3 h after PABA solution 

administration. However, dispersed PABA-LC formulations maintained a low 
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concentration of PABA in the skin even after 3 h (Fig. 5b). As a consequence, as shown 

in Fig. 4 and Table 6, the Cmax of PABA after p.o. administration of its solution or LC 

formulations was obtained within 40 min after administration, then the concentration 

profiles of PABA decreased after 40 min. In addition, the skin concentrations at 30 min 

were higher than those at 3 h after administration. These results suggested that the skin 

concentrations of PABA were closely related to its plasma level. 

Moreover, in vitro skin permeation results showed no changes in the skin 

permeation profiles of PABA after application of its solution on the epidermis side or on 

the dermis side (Fig. 8). However, PABA skin concentration was significantly higher 

after its application on the dermis side compared with its application on the epidermis 

side (Fig. 9), indicating that the affinity PABA for accumulation in the skin via systemic 

direction is higher than its delivery via the topical direction; and this could be due to the 

high barrier function of the stratum corneum. The results obtained in this study 

advantageously support the concept of targeting PABA to skin.  

In conclusion, our obtained data showed that LC formulations are a promising 

approach to improve the oral absorption and skin tissue targeting of PABA. The 

PABA-MGE formulation was the most efficient formulation for enhancing Cmax, 

bioavailability and skin tissue targeting of PABA compared with other formulations. 

The pharmacokinetic profiles can be modified based on the type of LC forming lipid 

used in the formulation design. Despite the changes in the pharmacokinetic profiles that 

the observed using different LC forming lipids, our main intention was to enhance the 

oral absorption and skin tissue targeting of PABA and to evaluate LC formulations for 

oral drug delivery. Further studies need to be conducted to investigate the mechanism of 

enhancing GI tract-drug absorption using LC formulations. Targeting the skin by orally 
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dispersed PABA-LC formulations could be a promising achievement in cosmeceutical, 

dietary and clinical fields.  
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Tables 

Table 1  
Composition of dispersed PABA-LC formulations 

Ingredients (%)  PABA-GMO  
20 mM 

PABA-PHT  
20 mM 

PABA-MGE 
20 mM 

PABA-ERT   
20 mM 

GMO 30 --- --- --- 
PHT --- 30 --- --- 
MGE --- --- 30 --- 
ERT --- --- --- 30 
PABA solution 30 30 30 30 
Purified water 
containing 5% 
Pluronic® F127  

 
40 

 
40 

 
40 

 
40 

Total % 100 100 100 100 

Abbreviations: PABA, p-amino benzoic acid; LC, liquid crystal; GMO, glyceryl 
monooleate; PHT, phytantriol; MGE, C17-monoglycerol ester; ERT, C22-erythritol ester. 
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Table 2 
Peak position (q) and intensity observed in Bragg reflection of PABA-LC formulations  

Abbreviations: the same in Table 1. 

 

 

 

 

 

 

 

 

 

 

Formulation Peak position (q)  
(nm-1) 

Intensity 
 (cps)  

PABA-GMO 0.982 1412 
 1.203 545.8 
 1.388 219.8 
 1.623 192 
 1.979 169 
PABA-PHT 1.352 698 

1.659 470 
 1.915 169 
 2.376 126 
 2.772 64 
PABA-MGE 1.381 1088 
 1.694 609 
 1.95 189 
 2.406 136 
 2.755 69 
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Table 3  

Particle size (nm) of LCs 

 Dispersed with 
PABA at 25°C 

Dispersed with 
PABA at 37°C 

Without PABA 
at 25°C 

Without PABA 
at 37°C 

GMO 212 ± 15 254 ± 12 244 ± 21 239 ± 23 
PHT 332 ± 31 361 ± 34 319 ± 22 352 ± 38 
MGE 289 ± 25 320 ± 31 311 ± 27 306 ± 12 
Abbreviations: the same in Table 1. 

Each value represents the mean ± S.E. of 3 experiments. 

 

 

Table 4  

Rheological properties of LC forming lipids and LC formulations 

 At 25°C At 37°C 
GMO alone* > 10000 187 ± 23 
PHT alone* 8619 ± 34 2019 ± 103 
MGE alone* 560 ± 41 175 ± 27 
PABA-GMO formulation 6422 ± 133 2193 ± 213 
PABA-PHT formulation 7231 ± 183 4331 ± 198 
PABA-MGE formulation 1890 ± 201 1101 ± 112 
Abbreviations: the same in Table 1. 

*: LC forming lipid only without water or any additive. 

Each viscosity (mPa.s) represents the mean ± S.E. of 3 experiments. 
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Table 5 
Correlation coefficients* of PABA-LC formulations  
 Fast release 

phase (pH 7.4) 
Slow release 

phase (pH 7.4) 
Fast release phase 

(0.1 M HCl) 
Slow release phase 

(0.1 M HCl) 
PABA-GMO 0.9965 0.9993 0.9965 0.9992 
PABA-PHT 0.9902 0.9974 0.9937 0.9904 
PABA-MGE 0.9936 0.9973 0.9881 0.9791 
Abbreviations: the same in Table 1. 

*: The correlation coefficients were obtained by data from 5-60 and 60-240 min as a 
represent to the fast release phase and the slow release phase, respectively. 

 

 

Table 6 

Pharmacokinetic parameters of PABA after oral administration of its solution or its 
dispersed LC formulation 

 AUC 0-6 h Tmax (min) Cmax (µM) Bioavailability 0-6 h (%) 

PABA solution 774 ± 77 33 ± 5 13 ± 2.3 19 ± 2 
GMO-PABA 3203 ± 107* 38 ± 5 27 ± 2.4* 78 ± 3* 
PHT-PABA 1467 ± 98* 30 ± 8 15 ± 0.89 62± 10* 
MGE-PABA 3887 ± 539* 26 ± 9 36 ± 3.7* 91 ± 13* 
Abbreviations: the same in Table 1. 

Each value shows the mean ± S.E. of 3 experiments. 

*: P < 0.05 significantly different from PABA solution (Student’s t-test). 
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Figure captions 

Fig. 1. Chemical structures of glyceryl monooleate (GMO), phytantriol (PHT), 

C17-monoglycerol ester (MGE) and C22-erythritol ester (ERT). 

Fig. 2. Small-angle X-ray scattering (SAXS) profiles and lattice parameter (a) of 

p-amino benzoic acid (PABA)-glyceryl monooleate (GMO) formulation (a), 

PABA-phytantriol (PHT) formulation (b) and PABA-C17-monoglycerol ester (MGE) 

formulation (c). 

Fig. 3. Percentage of p-amino benzoic acid (PABA) release profiles into 

phosphate-buffered saline (PBS) pH 7.4 (a) and 0.1 M HCl (b). Symbols: (●), PABA 

solution; (), PABA-glyceryl monooleate (GMO) formulation; (), PABA-phytantriol 

(PHT) formulation; and (□) PABA-C17-monoglycerol ester (MGE) formulation. Dashed 

line showing two release phases of PABA from its LC formulations. Each point 

represents the mean ± S.E. of three experiments. 

Fig. 4. Plasma profiles of p-amino benzoic acid (PABA) after oral administration. 

Symbols: (●), PABA-glyceryl monooleate (GMO) formulation; (), PABA-GMO 

formulation; (), PABA-phytantriol (PHT) formulation; and (□) 

PABA-C17-monoglycerol ester (MGE) formulation. Each point represents the mean ± 

S.E. of three experiments. 

Fig. 5. Skin concentration of p-amino benzoic acid (PABA): (a) 30 min after oral 

administration of PABA solution or its liquid crystal (LC) formulation; (b) 3 h after oral 

administration of PABA solution or its LC formulation. Each column represents the 

mean ± S.E. of three experiments. *: P < 0.05 significantly different from PABA 

solution (Student’s t-test). 
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Fig. 6. An illustrative photograph of the remaining dispersed p-amino benzoic acid 

(PABA)-liquid crystal (PABA-LC) formulation in the stomach of rats after oral 

administration. 

Fig. 7. The percentage of p-amino benzoic acid (PABA) remaining in the stomach: (a) 2 

h after oral administration of PABA solution or its dispersed liquid crystal (LC) 

formulation; (b) 8 h after oral administration of PABA solution or its dispersed LC 

formulation. Each column represents the mean ± S.E. of three experiments. 

Fig. 8. In vitro skin permeation study: time course of the cumulative amount of p-amino 

benzoic acid (PABA) that permeated through full-thickness hairless rat skin. Symbols: 

(■), from the dermis to epidermis; and (), from the epidermis to dermis. Each point 

shows the mean ± S.E. of three experiments. 

Fig. 9. Skin concentration of p-amino benzoic acid (PABA) after an 8 h in vitro skin 

permeation experiment. Each column represents the mean ± S.E. of three experiments. 

*: P < 0.05 significantly different from the epidermis to dermis (Student’s t-test). 
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