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Abstract

Topical formulations are not always suitable to deliver active ingredients to
large areas of skin. Thus, in this study, we aimed to develop an oral formulation for skin
tissue targeting with a high bioavailability using liquid crystals (LCs) dispersions
comprising cubosomes of a mal-absorptive model compound, p-amino benzoic
acid (PABA), which is an active element in cosmeceuticals, dietary supplements and
skin disorder medicines. The bioavailability and skin concentration of PABA were
investigated after oral administration in rats. The effect of the remaining amount of the
LCs formulation in the stomach on the pharmacokinetic profiles of orally administered
PABA was evaluated. The skin permeation and concentration of PABA were also
investigated using an in vitro permeation experiment. As a result, the bioavailability of
PABA was significantly improved by administration of PABA-LC formulations
compared with PABA solution alone, although the effect was greatly influenced by the
type of LC-forming lipids. The in vitro skin permeation study showed that the PABA
concentration in skin when applied from the dermis side was higher than when applied
from the epidermis side. These findings suggested that oral administration
advantageously supports skin targeting, and oral LC formulations could be a promising

material in cosmeceutical, dietary and clinical fields.
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1. Introduction:

Skin is utilized as an application site for many topical and transdermal drug
delivery systems, and a variety of topical drug formulations have been developed to
treat local indications. However, these formulations are not always suitable for treating
broad areas of skin, especially in the case of UV protection agents, dietary and cosmetic
skin supplements and several skin disorder medicines. Topical application for a broad
area skin is often associated with certain drawbacks such as staining of clothes,
sweating, pigmentation and skin irritation. Moreover, only a limited number of drugs
are amenable to administration by topical application and it is not a practical route to
cover large areas of skin on a daily basis [1, 2]. These limitations are associated with a
number of drugs not only as medicines for skin disorders but also in dietary and
cosmetic skin supplements.

In this study, we aimed to improve the oral bioavailability and skin tissue
targeting of p-amino benzoic acid (PABA) as a model compound with a formulation
approach by utilizing liquid crystals (LCs). LCs are semisolids made of lipids with
crystalline structures combining the properties of both crystal and liquid states.
Molecules in crystal are highly ordered, while those in liquid are free to diffuse in a
random way. Thus, molecules in LC phases diffuse like the molecules in liquid but
contain some degree of order [3-6]. A generally used term is the mesophase for LC,
indicating such a unique structure is between those of true liquid and solid crystals [7].
In general, LCs can be classified into two categories, i.e., thermotropic and lyotropic.
Thermotropic LCs are formed by a change in temperature, whereas lyotropic phases are
obtained when mixed with some solvent. Lyotropic LCs usually consist of amphiphilic

substances like surfactants and solvents. Amphiphilic substances become micelle at a



low concentration, having cluster of molecules with their polar groups oriented in the
water. This is a liquid isotropic phase, where isotropic means identical properties of the
structure in all directions. More ordered structures such as hexagonal, lamellar and
cubic phases are formed at higher concentrations. These structures are formed, due to
insufficient water to fill up spaces between the spherical or elongated micelles [8, 9].
Depending on the solvent concentration and the polarity of solvated mesogen, these
systems can undergo phase transitions and structure modifications. Thus, their
consistencies and rheological properties can be systematically changed as required [7,
10]. Lyotropic LCs formed with aqueous surfactants can absorb water from the
environment, inducing spontaneous phase-transition and forming lamellar phase (La),
cubic phase (V) and hexagonal phase (H,) [11, 12]. Among them, cubic phase and
hexagonal phase have received much attention due to their highly ordered internal
structures, and can be used as a slow release matrix for active pharmaceutical
ingredients with various molecular sizes and polarities [13, 14]. Cubic and hexagonal
LCs are often spontaneously formed by addition of certain amphiphilic lipids in an
aqueous environment [15]. When these LCs are dispersed into nanoparticles by addition
of excess water with the stabilizers such as Pluronic copolymers and Myrj series [16],
they form stable colloidal dispersions which are termed cubosomes and hexosomes,
respectively [17-20].

PABA also known as vitamin Bx was selected as a model compound, which is
widely found in foods as a cofactor of the vitamin B complex [21]. PABA is often used
as an ingredient in sunscreen owing to its high absorbance in the UVB region, and it is
protective against skin cancers. Protection against UV and free radical damage is related

to the ability of PABA to scavenge reactive oxygen species [22]. It is also available as a



health supplement (vitamin Bjg) because of its antioxidant activity [23]. The potassium
salt of PABA is used as a prescription drug in the USA for the treatment of skin
disorders such as scleroderma, dermatomyositis and Peyronie’s disease [24-26]. Based
on these findings, PABA is considered as an active element in cosmeceuticals, dietary
supplements and skin disorder medicines. However, PABA suffers from a narrow
absorption window in the gastrointestinal (GI) tract [27].

During the last few decades, increasing attention has been paid to LC
formulations including cubosomes and hexosomes because of their remarkable
structural complexity and usefulness in diverse applications [28], but very few studies
demonstrated their use in vivo or particularly for the investigation of their application in
oral drug delivery and skin tissue targeting. The present work was undertaken with the
intention of enhancing the oral delivery and skin tissue targeting of PABA using LC
formulations and evaluating LCs as a drug delivery system. Oral LC formulations
containing PABA were prepared using the following LC forming lipids: glyceryl
monooleate (GMO), phytantriol (PHT), Ci;-monoglycerol ester (MGE) and
Cx-erythritol ester (ERT) (Fig. 1).

Fig. 1

The confirmation of LC phase structures in the presence of PABA was
undertaken by small-angle X-ray scattering (SAXS). The physicochemical
measurements of these formulations were performed using a viscometer and a Zetasizer.
The in vitro release of PABA from LC formulations was determined using a dialysis
release method. PABA solution or its dispersed LC formulations were administrated to
rats, and the pharmacokinetic profile, stomach remaining contents and skin

concentration of PABA were determined. Furthermore, the skin permeation and



concentration were investigated using in vitro skin permeation studies.

2. Materials and methods

2.1. Materials

PABA was purchased from Kanto Chemical Co., Inc. (Tokyo, Japan). GMO
with a normal purity of > 97% and MGE with a normal purity of > 99.56% were
purchased from Farnex Co., Inc. (Yokohama, Japan). PHT with a normal purity of >
95% and ERT with a normal purity of > 97% were purchased from Tokyo Chemical
Industry Co., Ltd. (Tokyo, Japan). A surfactant, Pluronic® F127, was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Other reagents and solvents were of special grade

or HPLC grade and used without further purification.
2.2. Preparation of PABA-LC formulations

Table 1 shows the composition of dispersed PABA-LC formulations prepared
in this study. These formulations were designed based on a 1:1 ratio of the active
ingredient (PABA) solution and LC forming lipids. The mixture was dispersed using an
ultrasonic homogenizer (USP-50; Shimadzu Corp., Kyoto, Japan) in a pulsing mode
(5-s pulse interrupted by 1-s pauses) for 15 min. GMO was melted at 50°C before use,
but ERT was hard to melt even at 100°C. Other LC forming lipids were dispersed with
PABA solution without preheating. The dispersion for PABA-GMO, -PHT and -MGE
formulations produced uniform opaque creamy mixtures. These formulations were able
to be orally administered to rats via an oral zonde needle, although a non-uniform

mixture with gel-like highly viscous aggregates was observed in case of the PABA-ERT



formulation. No further work was carried out using PABA-ERT formulation owing to

high melting point of ERT.
Table 1
2.3. SAXS measurement

SAXS measurement of dispersed PABA-GMO, -PHT and -MGE formulations
was performed using a Nano-Viewer (Rigaku, Tokyo, Japan) with a Pilatus 100K/RL
2D detector. The X-ray source was Cu Ka radiation with a wavelength of 1.54 A and
operating at 45 kV and 110 mA. The sample-to-detector distance was set at 375 mm.
Each sample was placed into a vacuum-resistant glass capillary cell and exposed at
25°C for 10 min. The obtained SAXS pattern was plotted against the scattering vector
length, q=(4n/2)sin(8/2),where @ is scattering angle. The lattice parameter (a) was
obtained from the gradient of the plot of q as a function of (h®+k*+I>)? using the
following equation: q = (2n/al/h? + k2 + 12 , where h, k, and | are the Miller indices.

The scattering intensity was normalized by decayed direct beam intensity.
2.4. Measurement of particle size and viscosity

The particle size of LC formulations with or without PABA was measured using
a dynamic light scattering Nano-ZS ZEN3600 Zetasizer (Malvern Instruments Ltd.,
Worcestershire, UK) at 25°C and 37°C. Samples were diluted 10000-fold in water and
shaken using a vortex mixer prior to measurement. In addition, the viscosity of LC
forming lipids and PABA-LC formulations was measured at 25°C and 37°C using a
viscometer (Toki Sangyo Co., Ltd.,, Tokyo, Japan) that allowed a sensitive
determination of viscosity within a range of 0.3-10000 mPa-s with an accuracy of 1%

relative error.



2.5. Analytical procedures

The in vivo or in vitro study sample (50 pL) was mixed with the same volume of
acetonitrile (to precipitate plasma proteins) containing methyl paraben (10 pg/mL) as an
internal standard and centrifuged (5 min, 4°C). The obtained supernatant (20 uL) was
injected into an HPLC system. The HPLC system (Shimadzu, Kyoto, Japan) consisted
of a system controller (CBM-20A), pump (LC-20AD), auto-sampler (SIL-20AC),
column oven (CTO-20A), a UV detector (SPD-M20A), and analysis software (LC
Solution). The column was an Inertsil® ODS-3 (5 pm, 4.6 x 250 mm) (Nihon Waters
K.K.; Tokyo, Japan), which was maintained at 40°C. The mobile phase was
acetonitrile : 0.1% phosphoric acid = 8 : 52 (0-4 min), 35 : 65 (4-14 min) and 8 : 92
(14-20 min). The flow rate was adjusted to 1.0 mL/min. PABA was detected at UV 280
nm. In the case of skin samples, the skin piece (0.1 g) was minced with scissors and
homogenized (5 min, 4°C) with water (0.9 mL) using a homogenizer (Polytron PT-MR
3000; Kinematica Inc., Littau, Switzerland). The homogenate was mixed with
acetonitrile : water = 1:1 (0.5 mL) and agitated for 15 min. After centrifugation (5 min,
4°C), the supernatant (50 pL) was mixed with the same volume of acetonitrile
containing methyl paraben (10 pg/mL) and centrifuged again (5 min, 4°C). The
obtained supernatant (20 pL) was injected into an HPLC system, and the measurement

was obtained with the same conditions as mentioned above.
2.6. In vitro dialysis release study

The in vitro release study was performed using dialysis bags (Eidia Co., Ltd.,
Tokyo, Japan). Prior to use, the dialysis bags were soaked in distilled water for 1 h.

Phosphate-buffered saline (PBS) as a solvent with physiological pH (7.4) or 0.1 M HCI



to simulate gastric conditions (300 mL each) was used as a receiver medium and
continuously stirred at 300 rpm in a beaker and warmed in a water bath at 37°C. A
dialysis bag was then loaded with 1 mL of 20 mM PABA or PABA-LC formulation and
placed in the beaker. An aliquot (0.5 mL) was withdrawn from the receiver beaker and
the same volume of pH 7.4 PBS or 0.1 M HCI was added to the beaker to keep the
volume constant. The concentration of released PABA was then determined using an
HPLC in conditions as explained in Section 2.5. The cumulative % PABA release was

plotted against the square root of time (Higuchi model) [29].

2.7. Animals

Male Wistar rats (200-250 g) were purchased from Sankyo Labo Service Co.,
Inc. (Hamamatsu, Shizuoka, Japan). Male hairless rats were purchased either from Life
Science Research Center, Josai University (Sakado, Saitama, Japan) or Ishikawa
Experiment Animal Laboratories (Fukaya, Saitama, Japan). Animals were housed in
temperature-controlled rooms (25 £+ 2°C) with a 12 h light-dark cycle (7:00-19:00 h).
The rats were allowed free access to food (Oriental Yeast Co., Tokyo, Japan) and tap
water. The animal care protocol was approved by the Animal Care and Use Committee

of Josai University (Sakado, Saitama, Japan).

2.8. Pharmacokinetic studies and skin samples excising

Intravenous (i.v.) and per oral (p.0.) administrations were performed in Wistar
rats under anesthesia by intraperitoneal (i.p.) injection of urethane (1.0 g/kg) to
determine the pharmacokinetic parameters of PABA. In case of i.v., PABA dissolved in
physiological saline (PABA solution) was injected (10 pmol/kg) into the tail vein.

Blood samples (0.2 mL) were collected from the jugular vein at predetermined intervals



up to 3 h, and the same volume of saline was injected via the tail vein to prevent severe
changes the in volume of distribution. For p.o administration, PABA solution or its
dispersed LC-formulation (20 umol/kg) was administered to rats, and blood (0.2 mL)
was sampled from the jugular vein at intervals up to 8 h and the same volume of saline
was injected via tail vein. Blood samples placed into heparinized tubs were immediately
separated by centrifugation to obtain plasma (5 min, 4°C). Skin samples were taken
from the abdomen area at 0.5 or 3 h after p.o. administration. Plasma and skin samples

were stored at -30°C until analysis.
2.9. Determination of PABA concentration remaining in the stomach

Rats were sacrificed at 3 and 8 h after p.o. administration of PABA solution or
its dispersed LC formulation, and the stomach was removed and the internal lining was
scraped with a scalpel blade to collect the stomach contents. The contents were mixed
with acetonitrile : ethanol = 2:1 to dissolve the lipid phase and agitated for 15 min. The
supernatant (50 pL) after centrifugation (5 min, 4°C) was mixed with the same volume
of acetonitrile containing methyl paraben (10 pg/mL) and centrifuged (15,000 rpm, 5
min, 4°C) [28]. The obtained supernatant was diluted 100-fold and injected (20 uL) into

an HPLC system. The measurement was obtained as described in Section 2.5.
2.10. In vitro skin permeation study

Full-thickness hairless rat skin was excised from the abdomen under anesthesia
by i.p. injection of pentobarbital (50 mg/kg). The excess fat was trimmed off and the
skin samples were set in vertical-type diffusion cells (effective diffusion area: 1.77 cm?)
with the epidermis side facing the donor compartment (epidermis to dermis) or facing

the receiver compartment (dermis to epidermis). Skin permeation experiments were

10



conducted after hydration for 60 min with PBS pH 7.4 at 32°C. PABA solution (20 mM,
1.0 mL) and PBS (6.0 mL) were added to the donor and receiver compartments,
respectively, in all permeation experiments. The receiver solution was agitated using a
stirrer bar and a magnetic stirrer throughout the experiments. An aliquot (0.5 mL) was
withdrawn from the receiver chamber and the same volume of PBS was added to keep
the volume constant. PABA concentration in the receiver was determined using an
HPLC as described in Section 2.5. The donor solution was removed and the skin sample
was washed with PBS after the permeation experiment. The permeation area of the skin
(1.77 cm?) was then cut and stored at -15°C until analysis. The skin concentration was

measured as described in Section 2.5.
2.11. Determination of AUC

The area under the plasma concentration-time curve (AUC) was calculated
using the linear trapezoidal rule. The absolute bioavailability was determined as
AUC,/AUC;,, using the mean AUC values for p.o. and i.v. doses. Statistical analysis
was performed using unpaired Student’s t-test (ANOVA), and P values less than 0.05

were considered to be significant.
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3. Results

3.1. SAXS measurement

The phase behavior of dispersed PABA-LC (PABA-GMO, -PHT and -MGE)
formulations was evaluated by SAXS. Figure 2 shows the X-ray diffraction profiles and
the lattice parameter (a) of the three PABA-LC formulations. Table 2 summarizes the
peak position (q) and intensity of these formulations. These typical reflection patterns;
for dispersed PABA-GMO formulation at nearly V2, V3, V4, V6, V8, V9 (a), PABA-PHT
formulation at nearly V2, V3, V4, V6, V8, V9 (b) and PABA-MGE formulation at nearly
V2, V3, V4, V6, V8, V9 (c), revealed the presence of inverse bicontinuous cubic (V>)

Pn3m phase for the three formulations [30, 31].
Fig. 2 and Table 2
3.2. Measurement of particle size and viscosity

The particle sizes of LC formulations with or without PABA in Pluronic® F127
solution was measured by a dynamic light scattering at 25°C and 37°C. Table 3 lists the
obtained particle sizes. The particle size was nearly 200-400 nm for all formulations,
suggesting that the presence of PABA and temperature changes did not affect the

particle size of LC formulations.

Table 3

12



Moreover, the viscosity of LC forming lipids and their PABA formulations was
measured using a viscometer at 25°C and 37°C. Table 4 lists the obtained viscosity
values. The viscosity grades of LC forming lipids and their PABA formulations were
affected dramatically by changes in experimental temperature, except for the MGE-LC
forming lipid and its PABA formulation, suggesting that MGE-LC forming lipid is

more thermally stable compared with other LC forming lipids.

Table 4

3.3. In vitro dialysis release

The in vitro release study was performed using dialysis bags. PBS as a solvent
with physiological pH (7.4) or 0.1 M HCI for gastric conditions was used as the receiver
medium. Figure 3 shows PABA release profiles from LC formulations into PBS pH 7.4
(@) and 0.1 M HCI (b). The PABA release profile into 0.1 M HCI was similar to that
when PBS was used as the receiver medium, indicating that changes in pH probably did
not affect the release rate of PABA from its solution or its LC formulations. The PABA
release profile from the LC formulations was a relatively slow and gradual till 60 min
compared with that from PABA solution. The release profiles of PABA from its GMO
and MGE formulations were similar each other. Higuchi’s square-root model analysis
showed two phases of PABA release; a fast release phase (5-60 min), followed by a
slow release phase (60-240 min) of PABA from the LC-matrix. The correlation
coefficients of PABA-LC formulations were calculated in accordance with the release

profiles obtained using square root Higuchi model as shown in Table 5.

The amount of PABA released from GMO, PHT and MGE were 81 + 3, 67 + 2

and 90 £ 4%, respectively, against the initial dosing. These results showed that the
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release profile of PABA from the PHT formulation was slower than that from other
PABA-LC formulations and could be related to its high viscosity at 37°C, which could
lead to reduced mobility of PABA in this formulation compared with other PABA-LC

formulations.

Fig. 3and Table 5
3.4. Bioavailability of PABA after oral administration

Figure 4 shows the time course of the plasma concentration of PABA after p.o.
administration of its solution or LC formulations in male Wistar rats. Table 6
summarizes the calculated AUCo6 h, Tmax, Cmax @and bioavailability of PABA after
administration of PABA solution or its dispersed LC formulations. The Cnax after oral
administration of dispersed PABA-MGE or -GMO formulations was significantly
higher than with PABA solution. The Tnax for administration of dispersed PABA-MGE
formulation was faster compared with PABA solution and other PABA-LC
formulations. In addition, the bioavailability of PABA was significantly improved by
administration of dispersed PABA-MGE or -GMO formulations compared with PABA
solution. Although the PABA-PHT formulation resulted in a significant improvement in
bioavailability, a relatively lower Cpnax was obtained compared with the other
formulations. No plasma concentration was observed 6 h after administration except for
the PHT formulation, for which a very low concentration of PABA (3 £ 1 nmol/mL)

was observed at 8 h (not shown in Fig. 4).

Fig. 4 and Table 6

3.5. Skin concentration of PABA

14



Figure 5a and b show the skin concentration of PABA 30 min and 3 h,
respectively, after oral administration of PABA solution or its dispersed LC formulation.
A significant improvement in the skin concentration at 30 min was observed with the
GMO and MGE LC formulations compared with PABA solution, but no improvement
was observed using the PHT formulation. No detection of PABA in skin was observed
3 h after application of PABA solution. However, LC formulations sustained a low
concentration of PABA in the skin even 3 h after administration. These results
suggesting that GMO and MGE formulations were more efficient for enhancing the skin

concentration of PABA than PABA solution and PHT formulation.
Fig. 5
3.6. Concentration of PABA remaining in the stomach

In order to estimate the sustained release of PABA from LC formulations, the
PABA concentration remaining in the stomach was determined 2 and 8 h after p.o.
administration of its solution or LC formulation. LC dispersions were observed to
accumulate in the pyloric region of the stomach, as shown in Fig. 6. Figure 7 shows
nearly 40% of the total dose of PABA concentration from the PHT formulation
remained in the stomach 2 h after administration, and nearly 20% remained from the
GMO and MGE formulations (Fig. 7a). No PABA was detected 8 h after administration
of PABA solution or GMO and PHT formulations, but nearly 12% of the total dose of
PABA in the PHT formulation remained in the stomach 8 h after administration (Fig.
7b). The high percentage of PABA remaining in the stomach for the PHT formulation
must be consistent with its high viscosity, leading to a prolonged emulsification effect

of the formulation in the stomach.

15



Figs. 6 and 7
3.7. In vitro skin permeation study

Figure 8 shows the accumulation time course of PABA that permeated through
the skin of full-thickness hairless rat. Almost no change was observed in the skin
permeation profile of PABA after application to the epidermis side or the dermis side.
However, PABA skin concentration was significantly higher when applied on the
dermis side compared with the epidermis-side application, as shown in Fig. 9. This
indicated that the partition of PABA to skin tissue from the dermis side was higher than
that from the epidermis side; and this supported for usefulness of p.o. administration,

especially for targeting of PABA to the skin.

Figs.8and 9

4. Discussion

The general concept of targeting the skin tissue is by topical application. Very
limited studies have emphasized drug-skin tissue targeting via oral administration. The
issue to be addressed in this study is that the skin is the largest organ in our body and it
is not always suitable to distribute an active ingredient over the whole area of the skin
especially for certain indications. Hence, it is necessary to develop oral-skin tissue
targeting delivery systems that can effectively deliver a drug to a wide area of skin.
Recent studies have shown successful developing of LC formulations that can be
applicable for i.v. administration [32, 33]. A previous study has demonstrated that PHT
dispersions could trigger complement activation, and the process may limit their use for
i.v. administration as this may initiate infusion-related reactions in sensitive individuals.

However, complement activation was significantly milder when PHT was replaced with

16



GMO [32]. These finding should be considered for the safety concerns of such materials.
Minimal studies have been undertaken to investigate potential toxic effects of
nanoparticle formulations made from LC forming lipids [34-36]. GMO was reported as
a nontoxic, biodegradable and biocompatible material classified as GRAS (generally
recognized as safe), and it is included in the FDA Inactive Ingredients Guide and in
non-parenteral medicines licensed in the UK [37]. Its biodegradability comes from the
fact that GMO is subject to lipolysis due to diverse kinds of esterase activity in different
tissues [38-40]. In contrast, PHT comprises of a trihydroxy head group and a branched
phytanyl tail without the presence of a labile (e.g. ester) functionality, which may confer
more stable toward enzymatic degradation [41, 42]. A previous study has showed that
the in vitro toxicity of PHT cubosomes is considerably greater than that of GMO
cubosomes. The increased toxicity of PHT appears to result from its greater ability to
disrupt the cellular membrane and oxidative stress [42]. No toxicity studies have been
reported to investigate the toxic effect of MGE cubosomes. Further efforts are necessary
to investigate the potential toxicity of such materials for therapeutic applications.

In this study, we evaluated LC forming lipids formulations as an orally
administered drug delivery system for skin tissue targeting. We initially prepared PABA
oral formulations using different types of LC forming lipids. The phase behavior of
these formulations was determined by SAXS measurement, based on international
tables for crystallography [30, 31] obtained reflection patterns for dispersed
PABA-GMO formulation at V2, V3, V4, V6, V8, V9 (Fig. 2a), PABA-PHT formulation at
V2, V3, V4, V6, /8, 9 (Fig. 2b) and PABA-MGE formulation at \2, V3, V4, V6, V8, V9
(Fig. 2c), thereby confirming the presence of inverse bicontinuous cubic (V;) Pn3m

phase for the prepared formulations (Table 2). These results were consistent with
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previous studies on GMO and PHT [43-45]. In addition, the obtained lattice parameters
(a) of PABA-GMO formulation (Fig. 2a) and PABA-PHT formulation (Fig. 2b) were
consistent with other studies on GMO and PHT [46, 47]. In case of MGE (Fig. 2c), no
studies were reported on its formulations phase behavior.

The particle sizes of the LC formulations with or without PABA were measured
at 25°C and 37°C. The obtained data showed that the particle size was not affected by
changes in temperature or the presence of PABA dispersion (Table 3). Although the
particle size of the GMO formulation with or without PABA was smaller compared
with other LC formulations, the details were unknown.

The viscosity grade of LC forming lipids and their PABA formulations was
dramatically decreased at physiological temperature (37°C) except for MGE and its
PABA formulation, which showed almost similar grades at 25°C and 37°C (Table 4).
The reason why the viscosity grade of GMO at 25°C was expressed as >10000 mPa.s
was due to the viscometer allowing a sensitive determination of viscosity within a range
of 0.3-10000 mPa-s. These results suggested that MGE is more thermally stable than

GMO and PHT LC forming lipids.

In vitro dialysis release studies showed that there were no changes in the release
profiles of PABA in PBS pH 7.4 (Fig. 3a) and in 0.1 M HCI (Fig. 3b), suggesting that
changes in the physiological Gl tract pH do not affect the release behavior of PABA.
The amount of PABA released from its GMO and MGE formulations was 81 + 3 and 90
+ 4%, respectively, against a dose at 240 min. In case of PABA-PHT formulation,
PABA release was slower than that from the PABA solution or other PABA-LC
formulations, the amount of PABA released was 67 = 2% at 240 min. These results

suggested that the high viscosity of PHT at 37°C could affect the drug mobility in its
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formulation and its release rate. High correlation coefficients were obtained for each
formulation as shown in Table 5, which indicated that in vitro drug release profiles of
PABA cubosomes were fitted well with the square root Higuchi model. The obtained
two phases of PABA release suggested a proposed diffusion mechanism that PABA
tends to be adsorbed at the surface of LC during the fast release phase (5-60 min),
followed by a slow release phase (60-240 min) of PABA from the LC-matrix. In-depth
investigations, the short time taken to achieve more than 50% release of PABA from its
LC formulations justifies that these systems are a burst release delivery system where
drug is released by diffusion from the cubic phase matrix. Other studies also showed

that cubosomes should be classified as a burst release delivery system [8, 48].

In vivo pharmacokinetic studies have shown that the bioavailability of PABA
was significantly improved by administration of PABA-LC formulations compared with
PABA solution alone (Fig. 4 and Table 6). The Cnax after oral administration of
dispersed PABA-MGE (36 = 3.7 nmol/mL) or -GMO (27 + 2.4 nmol/mL) formulation
was significantly higher than PABA solution (13 £ 2.3 nmol/mL). The Tmax after
administration of dispersed PABA-MGE (26 £ 9 min) formulation was relatively faster
compared with PABA solution (33 = 5 min) and the PABA-GMO (38 £ 5 min) and
-PHT (30 £ 8 min) formulations. In addition, the bioavailability of PABA was
significantly improved by administration of dispersed PABA-MGE (91 £ 13%) or
-GMO (78 £ 3%) formulations compared with PABA solution (19 + 2%). Although the
PABA-PHT formulation exhibited significantly improved bioavailability (62 + 10%),
no significant improvement in Cpnax was obtained compared with those for PABA
solution and the other formulations. No plasma concentration was observed 6 h after

administration except for the PHT formulation, in which a very low concentration of
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PABA (3 £ 1 nmol/mL) was observed at 8 h (not showed in Fig. 4). These results
suggested that the PABA-MGE formulation was the most efficient formulation for
enhancing Cnaxand the bioavailability of PABA. Although the PABA-PHT formulation
managed to sustain PABA concentration even at 6 h after administration, the Cpax was
not improved compared with the PABA solution only. In addition, the obtained results
suggested that changes in the pharmacokinetic profiles can be observed dependent on
the individual LC forming lipid used in the formulation (Fig. 4). Further investigations
was done to examine the effect of the physiological temperature, viscosity and the
emulsifying effect of the stomach on the pharmacokinetic of PABA. The PABA-PHT
formulation showed the highest viscosity at 37°C compared with the other formulations,
which was consistent with the high percentage of PABA remaining in the stomach with
this formulation compared with the other PABA-LC formulations (Fig. 7). Because the
emulsifying ability of the stomach is well known [45], the obtained results suggested
that the high viscosity of PHT could delay the emulsifying rate of the PABA
formulation in the stomach and consequently could prolong the absorption rate and
stomach empting rate of the dispersed drug. This could be a reason why it managed to
sustain the release of PABA for longer hours but with relatively low bioavailability and

Cmax compared with the other formulations.

The other LC forming lipids used in this study was GMO, which is one of the
most widely studied LC forming lipids [49]. Our findings showed that the physical state
of GMO can be easily affected with the changes in temperature and the viscosity of this
LC forming lipid and its PABA formulation was dramatically decreased at 37°C. In
addition, the amount of PABA remaining in the stomach using GMO was low compared

with the PABA-PHT formulation. These results suggested that this formulation can be
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emulsified by the stomach at a faster rate compared with PABA-PHT, and this might
offer better drug mobility and influence the movement and absorption of the drug in the
intestine. Therefore, it significantly improved bioavailability and Cpax compared with
PABA solution. At the same time, the high viscosity of this LC forming lipid at 25°C
makes it not easy to handle, not practical for drug loading and need to melt at 50°C

before its use.

In the case of MGE, no studies have utilized this for oral drug delivery. Our
finding showed that MGE was more thermally stable compared with other LC forming
lipids. The PABA-MGE formulation showed the highest bioavailability and Cnax and
relatively short Trax compared with PABA solution and other LC formulations. The low
viscosity of MGE at 37°C might offer more drug mobility and drug absorption from the
intestine, and this was consistent with the low amount of PABA remaining in the
stomach compared with PABA-PHT the formulation (Fig. 7), at the same time its low

viscosity at 25°C makes it easy to handle and more practical for drug loading.

In consequence, a non-uniform mixture with gel-like high viscosity aggregates
was observed in the preparation of the PABA-ERT formulation, which was related to
the high melting point of ERT, making it impractical for designing an oral formulation;
therefore, no further work was carried out using this lipid.

Although a significant improvement in skin concentration was observed with
the administration of dispersed PABA-GMO or -MGE LC formulations compared with
PABA solution at 30 min, no significant enhancement in the skin concentration of
PABA was observed using PABA-PHT formulation compared with PABA solution (Fig.
5a). No detection of PABA in the skin was observed 3 h after PABA solution

administration. However, dispersed PABA-LC formulations maintained a low
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concentration of PABA in the skin even after 3 h (Fig. 5b). As a consequence, as shown
in Fig. 4 and Table 6, the Cnax of PABA after p.o. administration of its solution or LC
formulations was obtained within 40 min after administration, then the concentration
profiles of PABA decreased after 40 min. In addition, the skin concentrations at 30 min
were higher than those at 3 h after administration. These results suggested that the skin

concentrations of PABA were closely related to its plasma level.

Moreover, in vitro skin permeation results showed no changes in the skin
permeation profiles of PABA after application of its solution on the epidermis side or on
the dermis side (Fig. 8). However, PABA skin concentration was significantly higher
after its application on the dermis side compared with its application on the epidermis
side (Fig. 9), indicating that the affinity PABA for accumulation in the skin via systemic
direction is higher than its delivery via the topical direction; and this could be due to the
high barrier function of the stratum corneum. The results obtained in this study

advantageously support the concept of targeting PABA to skin.

In conclusion, our obtained data showed that LC formulations are a promising
approach to improve the oral absorption and skin tissue targeting of PABA. The
PABA-MGE formulation was the most efficient formulation for enhancing Cpax,
bioavailability and skin tissue targeting of PABA compared with other formulations.
The pharmacokinetic profiles can be modified based on the type of LC forming lipid
used in the formulation design. Despite the changes in the pharmacokinetic profiles that
the observed using different LC forming lipids, our main intention was to enhance the
oral absorption and skin tissue targeting of PABA and to evaluate LC formulations for
oral drug delivery. Further studies need to be conducted to investigate the mechanism of

enhancing Gl tract-drug absorption using LC formulations. Targeting the skin by orally
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dispersed PABA-LC formulations could be a promising achievement in cosmeceutical,

dietary and clinical fields.
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Tables

Table 1
Composition of dispersed PABA-LC formulations

Ingredients (%) PABA-GMO PABA-PHT  PABA-MGE PABA-ERT
20 mM 20 mM 20 mM 20 mM
GMO 30
PHT 30
MGE 30
ERT 30
PABA solution 30 30 30 30
Purified water
containing 5% 40 40 40 40
Pluronic® F127
Total % 100 100 100 100

Abbreviations: PABA, p-amino benzoic acid; LC, liquid crystal; GMO, glyceryl
monooleate; PHT, phytantriol; MGE, C;,-monoglycerol ester; ERT, Cy,-erythritol ester.
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Table 2
Peak position (g) and intensity observed in Bragg reflection of PABA-LC formulations

Formulation Peak position (q) Intensity
(hm™) (cps)
PABA-GMO 0.982 1412
1.203 545.8
1.388 219.8
1.623 192
1.979 169
PABA-PHT 1.352 698
1.659 470
1.915 169
2.376 126
2.772 64
PABA-MGE 1.381 1088
1.694 609
1.95 189
2.406 136
2.755 69

Abbreviations: the same in Table 1.
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Table 3

Particle size (nm) of LCs

Dispersed with  Dispersed with ~ Without PABA  Without PABA
PABA at 25°C PABAat37°C  at25°C at 37°C

GMO 254 +12 244 £ 21 239+ 23

PHT 361 +34 319+ 22 352 + 38

MGE 320+ 31 311+ 27 306 + 12

Abbreviations: the same in Table 1.

Each value represents the mean + S.E. of 3 experiments.

Table 4

Rheological properties of LC forming lipids and LC formulations

At 25°C At 37°C
GMO alone* > 10000 187+ 23
PHT alone* 8619 + 34 2019 + 103
MGE alone* 560 + 41 175+ 27
PABA-GMO formulation 6422 + 133 2193 + 213
PABA-PHT formulation 7231 + 183 4331 + 198
PABA-MGE formulation 1890 + 201 1101 + 112

Abbreviations: the same in Table 1.

*: LC forming lipid only without water or any additive.

Each viscosity (mPa.s) represents the mean + S.E. of 3 experiments.



Table 5
Correlation coefficients* of PABA-LC formulations

Fast release Slow release Fast release phase  Slow release phase
phase (pH 7.4)  phase (pH 7.4) (0.1 M HCI) (0.1 M HCI)
PABA-GMO 0.9965 0.9993 0.9965 0.9992
PABA-PHT 0.9902 0.9974 0.9937 0.9904
PABA-MGE 0.9936 0.9973 0.9881 0.9791

Abbreviations: the same in Table 1.

*: The correlation coefficients were obtained by data from 5-60 and 60-240 min as a
represent to the fast release phase and the slow release phase, respectively.

Table 6

Pharmacokinetic parameters of PABA after oral administration of its solution or its
dispersed LC formulation

AUC o6h Tmax (Min) Cmax (MM)  Bioavailability ¢ (%)

PABA solution 77477 33+5 13+2.3 19+2

GMO-PABA 3203 +107* 38+5 27 +2.4% 78 + 3*
PHT-PABA 1467 + 98* 30+38 15+0.89 62+ 10*
MGE-PABA 3887 + 539* 26+ 9 36 +3.7* 91 +13*

Abbreviations: the same in Table 1.

Each value shows the mean £ S.E. of 3 experiments.

*: P < 0.05 significantly different from PABA solution (Student’s t-test).
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Figure captions

Fig. 1. Chemical structures of glyceryl monooleate (GMO), phytantriol (PHT),

Cy7-monoglycerol ester (MGE) and C,-erythritol ester (ERT).

Fig. 2. Small-angle X-ray scattering (SAXS) profiles and lattice parameter (a) of
p-amino benzoic acid (PABA)-glyceryl monooleate (GMO) formulation (a),
PABA-phytantriol (PHT) formulation (b) and PABA-C;-monoglycerol ester (MGE)

formulation (c).

Fig. 3. Percentage of p-amino benzoic acid (PABA) release profiles into
phosphate-buffered saline (PBS) pH 7.4 (a) and 0.1 M HCI (b). Symbols: (e), PABA
solution; (O), PABA-glyceryl monooleate (GMO) formulation; (A), PABA-phytantriol
(PHT) formulation; and (o) PABA-C17-monoglycerol ester (MGE) formulation. Dashed
line showing two release phases of PABA from its LC formulations. Each point

represents the mean £ S.E. of three experiments.

Fig. 4. Plasma profiles of p-amino benzoic acid (PABA) after oral administration.
Symbols: (e), PABA-glyceryl monooleate (GMOQO) formulation; (O), PABA-GMO
formulation; (A), PABA-phytantriol (PHT) formulation; and (o)
PABA-C;7-monoglycerol ester (MGE) formulation. Each point represents the mean +

S.E. of three experiments.

Fig. 5. Skin concentration of p-amino benzoic acid (PABA): (a) 30 min after oral
administration of PABA solution or its liquid crystal (LC) formulation; (b) 3 h after oral
administration of PABA solution or its LC formulation. Each column represents the
mean *+ S.E. of three experiments. *: P < 0.05 significantly different from PABA

solution (Student’s t-test).
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Fig. 6. An illustrative photograph of the remaining dispersed p-amino benzoic acid
(PABA)-liquid crystal (PABA-LC) formulation in the stomach of rats after oral

administration.

Fig. 7. The percentage of p-amino benzoic acid (PABA) remaining in the stomach: (a) 2
h after oral administration of PABA solution or its dispersed liquid crystal (LC)
formulation; (b) 8 h after oral administration of PABA solution or its dispersed LC

formulation. Each column represents the mean + S.E. of three experiments.

Fig. 8. In vitro skin permeation study: time course of the cumulative amount of p-amino
benzoic acid (PABA) that permeated through full-thickness hairless rat skin. Symbols:
(m), from the dermis to epidermis; and (A), from the epidermis to dermis. Each point

shows the mean + S.E. of three experiments.

Fig. 9. Skin concentration of p-amino benzoic acid (PABA) after an 8 h in vitro skin
permeation experiment. Each column represents the mean = S.E. of three experiments.

*: P <0.05 significantly different from the epidermis to dermis (Student’s t-test).
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Figures
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Fig. 3
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Fig. 4
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Fig. 5
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Fig. 6
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Fig. 7
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Fig. 8

®< LW

W< T

Il g

-
-1
S

I T T T
i = ur = r
ol Lo | v —

(;umy/fowtl) vEVJ JO JUNOWE JANE[NWIN)D)

0B
0

Time (hr)

43



Fig. 9
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