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ABSTRACT (not more than 200 words) 25 

The objective of the present study is to search for a good selection method of 

phospholipids to design liposome preparations with high skin penetration-enhancing effects. 

Five kinds of phosphatidylcholines and phosphatidylglycerols each were selected. First, 

phospholipid aqueous dispersions and liposomes containing caffeine as a model drug were 

tested for their skin penetration-enhancing effects using excised hairless rat skin. As results, 30 

1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-

phosphoglycerol, sodium salt (DPPG) dispersions showed high penetration-enhancing ratio 

(ER), whereas DPPG, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) and 1,2-

dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes showed high ER, suggesting 

that liposomes had different skin penetration-enhancing mechanisms from phospholipid 35 

dispersions. Next, two kinds of experiments were done to clarify the possible mechanism of 

liposomes as follows: the excised skin was pretreated for 1 h with caffeine-free phospholipid 

dispersions and liposomes, and caffeine solution was added to determine its skin permeation. 

Separately, caffeine permeation experiments were done using physical mixture of blank 

liposomes and caffeine solution (caffeine-spiked liposomes) and caffeine-entrapped liposomes 40 

(caffeine was entrapped only in liposomes). As results, DPPG was a promising phospholipid 

candidate to fabricate liposome formulations with high skin penetration-enhancing effects, 

since DPPG phospholipid and its liposome vesicles had a combination effect to disrupt the SC 

lipid barrier as well as could carry both free and entrapped caffeine in the formulation through 

the skin. 45 
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formulation development 50 

 

Chemical compounds used in this article: 

DLPC (PubChem CID: 512874); DLPG (PubChem CID: 46891823); DMPC (PubChem CID: 

5459377); DMPG (PubChem CID: 46891824); DPPC (PubChem CID: 452110); DPPG 

(PubChem CID: 46891827); DSPC (PubChem CID: 94190); DSPG (PubChem CID: 55 

53487811); DOPC (PubChem CID: 10350317); DOPG (PubChem CID: 23702460); 

Cholesterol (PubChem CID: 5997); Caffeine (PubChem CID:  2519) 
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1. Introduction 60 

Liposomes, a type of classical vesicular drug delivery systems, have been received 

high attention in the field of skin drug delivery due to their ability to entrap drug(s) and enhance 

the skin penetration of both hydrophilic and lipophilic molecules (Jain et al., 2017; Liu et al., 

2004; Yu and Liao, 1996). The main composition of liposomes is an amphiphilic molecule, 

phospholipids, which can spontaneously form the structure of closed bilayers vesicles as they 65 

confront with water (Jadhav et al., 2012). The mechanisms to enhance the skin penetration of 

drugs by liposomes have been proposed including (1) free drug operation, (2) intact vesicular 

penetration, (3) vesicle adsorption to and/or fusion with the stratum corneum (SC) and (4) their 

penetration-enhancing effect (El Maghraby et al., 2006). However, conflicting results on these 

mechanisms have been found in spite of much efforts made by many researchers.  70 

One of the well-accepted mechanisms for the skin penetration-enhancement by 

liposomes is the penetration of the amphiphilic components into the skin barrier and their 

perturbation actions on the packing of SC lipids (Kato et al., 1987; Kirjavainen et al., 1996). 

From this reason, liposome composition must be an important parameter for the enhancing 

effect of liposomes on the skin penetration of drugs. In the formulation design of liposomes, 75 

many researches have already focused on the optimization of liposomal characteristics; i.e., 

morphology, vesicular size, surface charge, entrapment efficiency, transition temperature or 

elasticity of liposomes by changing the liposome compositions or their preparation procedure 

(Gillet et al., 2011a, 2011b; Verma et al., 2003a). Moreover, novel classes of vesicular carriers 

have been developed to obtain the high skin penetration-enhancing effect of liposomes, by 80 

addition of edge activators or chemical penetration enhancers into the classical liposomes 

(Duangjit et al., 2011; Gillet et al., 2011a; Manconi et al., 2011; Touitou et al., 2000).  However, 

the skin penetration-enhancing effects of the main phospholipid compositions in liposomes 

were not fully clarified yet.  



4 
 

In the present study, different types of phospholipids were first tested for their skin 85 

penetration-enhancing effects of a model hydrophilic drug, caffeine, through excised hairless 

rat skin using a currently established assay system comprised of multiple-diffusion cells as a 

screening approach, since phospholipids as the liposome composition can play an important 

role in the skin penetration-enhancing effect of liposomes. Then, several kinds of phospholipids 

were selected to prepare liposomes and tested for their skin penetration-enhancing effects, and 90 

the obtained results were compared to those for their phospholipid dispersions to design 

suitable liposomes having high skin penetration-enhancing effects. Next, two kinds of further 

permeation experiments were done in order to clarify their possible modes of action of each 

phospholipid for their skin penetration-enhancing effects as follows: The effect of 1h-

pretreatment on the excised skin was evaluated with caffeine-free phospholipid dispersions and 95 

liposomes. Caffeine solution was added after the pretreatment to carry out the general skin 

permeation experiment. Separately, caffeine permeation experiments were done using physical 

mixture of blank liposomes and caffeine solution (caffeine-spiked liposomes) and caffeine-

entrapped liposomes (caffeine was entrapped only inside of liposomes). 

These results were used to search phospholipid(s) to design liposomes having a high 100 

skin penetration-enhancing effect of a model hydrophilic drug, caffeine. 

 

2. Materials and methods 

2.1 Materials 

Phospholipids including 1,2-dilauroyl-sn-glycero-3-phosphocholine (abbreviated as 105 

in DLPC; the same as below), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-

dimyristoyl-sn-glycero-3-phospho-glycerol, sodium salt (DMPG), 1,2-dipalmitoyl-sn-glycero-

3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, sodium salt 

(DPPG), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero-3-
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phosphoglycerol, sodium salt (DSPG), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 110 

1,2-dioleoyl-sn-glycero-3-phosphoglycerol, sodium salt (DOPG) were purchased from NOF 

Corporation (Tokyo, Japan). 1,2-Dilauroyl-sn-glycero-3-phosphoglycerol, sodium salt (DLPG) 

was obtained from Olbracht Serdary Research Laboratories (Toronto, ON, Canada). Table 1 

summarizes the abbreviations and number of carbon atom and double bond in the alkyl chain 

for the phopholipids . 115 

 

Table 1 

 

Cholesterol was purchased from Sigma-Aldrich (St. Louis, MO, U.S.A.). Caffeine, 

chloroform, methanol and ethanol were purchased from Wako Pure Chemicals Industries, Ltd. 120 

(Osaka, Japan). These reagents were used without further purification.  

 

2.2. Experimental animals 

Male WBN/ILA-Ht hairless rats, weighing between 200 and 260 g, were obtained 

from the Life Science Research Center, Josai University (Sakado, Saitama, Japan) and 125 

Ishikawa Experimental Animal Laboratories (Saitama, Japan). Rats were bred in a room 

maintained at 25 ± 2°C, in which the on and off times for the lighting were 07:00 and 19:00, 

respectively. Animal had free access to water and food (MF, Oriental Yeast Co., Ltd., Tokyo, 

Japan).  

All breeding procedures and experiments on the animals were performed in 130 

accordance with the guidelines of the Animal Experiment Committee of Josai University. 

The abdominal skin from hairless rats was excised under anesthesia by i.p. injection 

of anesthesia containing medetomidine (0.375 mg/kg), butorpharnol (2.5 mg/kg) and 
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midazolam (2 mg/kg).  After that, the hairless rats were sacrificed immediately by injection of 

pentobarbital sodium (40 mg/kg). 135 

 

2.3 Preparation of liposomes 

Liposomes were prepared using phospholipids and cholesterol in a ratio of 4:1 w/w. 

The compositions were dissolved in chloroform: methanol (2:1 v/v) in a round-bottomed flask 

and the solvent was evaporated to form the thin film using a rotary evaporator under reduced 140 

pressure. The obtained film was purged with nitrogen gas and kept overnight to remove the 

trace organic solvent. After that, the flask was immersed in a water bath at 90°C for annealing 

of the thin film for 30 min, and then 100 mM caffeine in phosphate buffered saline pH 7.4 

(PBS) solution was added to adjust phospholipid concentration to 3% (w/v). The thin film was 

hydrated for 30 min and the resulting liposomes containing caffeine were then sonicated using 145 

a probe sonicator (VCX-750, Sonics & Materials Inc., Newtown, CT, USA) for 30 s. Next, 4 

cycles of freeze-thaw process were performed by immersing the flask in liquid nitrogen and in 

90°C-water bath for 3 min each. The obtained liposomes were further extruded using a mini-

extruder (Avanti Polar Lipids, Inc., Alabaster, AL, USA) assembled with a membrane filter 

(with pore sizes of 400, 200 and 100 nm, Whatman® track-etched membranes, GE Healthcare 150 

Japan, Tokyo, Japan). All final liposome formulations containing caffeine were kept at 25°C 

and freshly used for the skin permeation experiment within the next day after preparation. In 

the final formulations, caffeine must be contained both in the inside and outside of liposomes. 

These liposome formulations were used to evaluate the caffeine permeation through skin. 

Caffeine-free liposomes (blank liposomes) was also prepared with the same procedure 155 

without addition of caffeine. 
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2.4 Characterizations of liposomes 

2.4.1 Particle size and zeta potential  

The particle size and zeta potential of liposomes were measured after 100-fold dilution 160 

with PBS using a Zetasizer Nano ZS (Malvern Instruments Ltd., Malvern, UK). The size 

measurements were performed at 25°C and a scattering angle of 90°. Individual zeta potential 

measurement was repeated for at least 10 readings from each liposome sample.  

 

2.4.2 Caffeine distribution in liposome formulations  165 

The entrapment efficiency (EE) of caffeine in each liposome sample was determined 

by ultracentrifuge technique to evaluate the caffeine distribution in either inside and outside of 

liposome formulations. Final liposome suspension (400 µL) was put in a centrifuge tube and 

centrifuged using a micro-ultracentrifuge (Himac CS120GXII, Hitachi Koki Co., Ltd., Tokyo, 

Japan) at 289,000 x g, 4°C for 20 min to separate the liposome pellet (entrapped drug, Edrug) 170 

from the supernatant (unentrapped drug, Udrug). The supernatant was collected and the free 

caffeine content was determined after 10-fold dilution with ethanol followed by 10-fold with 

PBS. In addition, the entrapped drug content in the inside of liposomes was determined by 

dispersing the packed liposome pellet with 400 µL PBS and further disrupting with 10-fold 

ethanol followed by dilution with 10-fold PBS. Caffeine contents were analyzed by an HPLC 175 

and the % EE was calculated according to the following equation. 

 

% Entrapment efficiency (EE)  = � 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+ 𝑈𝑈𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

� 𝑥𝑥 100  (1) 

 

Thus, caffeine content in the outside of liposomes is represented by 100 – EE. 180 
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2.4.3 Differential Scanning Calorimetry 

The phase transition temperature of liposomes (Tm) was determined by a differential 

scanning calorimeter (DSC) (Thermo plus EVO/ DSC8230, Rigaku Corporation, Akishima, 185 

Tokyo, Japan). About 5 mg of liposome pellets obtained from the ultracentrifugation process 

as described in section 2.4.2, were placed in an aluminum pan. An empty pan was used as a 

reference. The DSC heating scan was performed at a heating rate of 5.0°C/min in a 15-80°C 

range. 

 190 

2.5 In vitro skin permeation experiment 

2.5.1 Determination of cumulative amount of caffeine permeated through skin over 12 h from 

different phospholipid dispersions 

First, the skin penetration-enhancing effect of different types of phospholipids were 

determined using a currently designed diffusion cell array system as shown in Fig. 1 (Ikeda 195 

Scientific Co., Ltd., Tokyo, Japan). This system is comprised of 12 wells wherein the donor 

compartments are above the receiver chambers with the excised skin sandwiched between them. 

This system can simultanously determine 12 sets of permeation data at a single run of the 

experiment. However, the time course of the cumulative amount of caffeine that permeated 

through skin could not be determined using this system which differs from Franz-type diffusion 200 

cell because of lack of sampling port. Effective permeation area and receiver volume for each 

well are 0.785 cm2 and 1.36 mL, respectively. The study was performed using excised 

abdominal skin from hairless rat after removing subcutaneous fat. The skin was excised and 

cut into two pieces of 3 x 4 cm size from the middle line of rat abdomen and set on the diffusion 

cell array system. At first, 1.0 and 1.36 mL PBS were added in each donor and receiver chamber, 205 

respectively, for 1 h for skin hydration. After that, PBS was removed from donor compartment 

and replaced with 200 µL of 3%(w/v) phospholipid dispersions containing caffeine in PBS at 
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a concentration of 100 mM. The permeation experiment was performed at 32°C using a thermo-

shaker at the rotation speed of 200 rpm and the receiver solution was stirred using a stir ball 

for 12 h. At the end of the permeation experiment, the receiver solution was collected to 210 

determine the cumulative amount of caffeine that permeated per unit area of skin (Q12) by an 

HPLC.  Caffeine solution (100 mM) in PBS was used as a control and calculated for skin 

penetration-enhancement ratio (ER) of each sample by the following equation;  

ER = �𝑄𝑄12,   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑄𝑄12,   𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

�     (2) 

 215 

where Q12, sample and Q12, control are the cumulative amount of caffeine permeated per unit area 

of skin over 12 h from different phospholipid dispersions and control solution, respectively. 

 

Fig. 1 

 220 

2.5.2 Determination of time course of skin permeation of caffeine from different liposome 

formulations 

Excised abdominal skin from hairless rat was mounted in a vertical-type Franz diffusion 

cell (effective permeation area of 1.77 cm2 and receiver cell volume of 6.0 mL) with the SC 

side facing the donor cell and the dermal side facing the receiver cell. The receiver and donor 225 

cells were filled with 6.0 and 1.0 mL of PBS, respectively, for 1 h for skin hydration. Then, 

400 µL of liposomes containing caffeine at a concentration of 100 mM were replaced in the 

donor compartment to determine its skin permeation at 32°C over 8 h, while the receiver 

solution was agitated at 500 rpm using a magnetic stirrer. At predetermined times, 0.5 mL 

aliquot were collected and the same volume of PBS was added to keep the volume constant. 230 

The amount of caffeine permeated through skin was determined by an HPLC.  
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2.5.3 Determination of the effect of pretreatment of caffeine-free phospholipid dispersions and 

liposomes on the caffeine permeation through skin 

Selected caffeine-free liposomes (400 µL) prepared using phospholipids (DPPG, DLPC 235 

or DSPG) were applied onto the SC surface of skin for 1 h after the hydration period with PBS. 

Phospholipid dispersions (3% DPPG, DLPC or DSPG) without caffeine were also applied on 

skin for comparison. Then, the liposomes or phospholipid dispersion without caffeine were 

removed from the skin surface by washing with 1.0 mL fresh PBS for 10 times. Caffeine 

solution (100 mM, 400 µL) was then applied on the skin. The skin permeation experiment was 240 

conducted using vertical-type Franz diffusion cell for 8 h as described in section 2.5.2.  

 

2.5.4 Determination of the skin permeation of caffeine from the physical mixture of blank 

liposomes and caffeine solution (caffeine-spiked liposomes) 

The caffeine-spiked liposomes containing 3% phospholipid and 100 mM caffeine was 245 

prepared by mixing the same volume of the double-concentrated liposomes (preparation 

method was similar to the final liposomes as above) and 200 mM caffeine. The resultant 

caffeine-spiked liposomes (400 µL) were used for the skin permeation experiment of caffeine 

using vertical-type Franz diffusion cell. 

 250 

2.5.5 Determination of the skin permeation of caffeine from caffeine-entrapped liposomes 

Caffeine-entrapped DPPG, DLPC and DSPG liposomes were obtained by 

ultracentrifugation separation as described in section 2.4.2. In the preparation process, free 

caffeine was totally removed and the remained caffeine-entrapped liposomes pellet was 

dispersed with PBS (400 µL). The skin permeation experiment using this caffeine-entrapped 255 

liposome formulation was performed and compared with the same concentration of free 

caffeine solution using vertical-type Franz diffusion cell. 
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2.6 Determination of caffeine concentration 

Concentration of caffeine was determined using an HPLC system (Prominence, 260 

Shimadzu Corporation, Kyoto, Japan) equipped with a UV detector (SPD-M20A, Shimadzu 

Corporation). The sample solutions were mixed with the same volume of methanol and then 

centrifuged at 21,500 ×g and 4°C for 5 min. The supernatant (20 µL) was injected directly into 

the HPLC system. Chromatographic separation was performed at 40°C using an Inertsil ODS-

3 (5 μm in diameter) entrapped in a column (4.6 mm I.D. x 150 mm, GL Sciences Inc., Tokyo, 265 

Japan). The mobile phase was 0.1% phosphoric acid : methanol (7:3 v/v) and the flow rate was 

1.0 mL/min. The detection was performed at UV 280 nm. 

 

2.7 Statistical analysis 

Data were expressed as the mean ± S.E. or S.D. The differences among the obtained 270 

data were analyzed using unpaired t-test. The differences were considered to be significant 

when p < 0.05. 

 

3. Results 

3.1 Characteristics of liposomes 275 

Table 2 summarizes the physicochemical properties of liposomes prepared in this study. 

All liposome formulations had a small diameter in a range of 110-185 nm. Phosphatidylcholine 

(DLPC, DMPC, DPPC, DSPC and DOPC) liposomes showed larger particle size than 

phosphatidylglycerol (DLPG, DMPG, DPPG, DSPG and DOPG) liposomes. The zeta potential 

of these phosphatidylcholine liposomes had quite neutral charge, whereas phosphatidylglycerol 280 

liposomes had negative surface charge less than -40 mV. The EE was less than 50% and Tm 

was within a range of 41-66°C for all liposomes. 
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3.2 Skin penetration-enhancing effect of phospholipid dispersions 

Figure 2 shows the obtained ER of hairless rat skin permeation of caffeine in the 285 

presence of 3% phospholipid dispersion in PBS against that of free caffeine solution in PBS 

(without phospholipids). Currently designed diffusion cell array system (Fig. 1) was used in 

this experiment to determine Q12. Q12 was used as an index for skin permeation of caffeine, 

since data over 12 h was more reliable to the shorter periods like 8 h (data not shown). Both 

DSPC and DPPG dispersions significantly enhanced the skin permeation of caffeine (ER was 290 

1.93 and 1.57, respectively), whereas DOPG dispersion showed significantly lower skin 

permeation than the control (PBS) (ER = 0.38).  The other phospholipid dispersions showed 

almost the same permeation of caffeine to the control (PBS). 

 

Fig. 2 295 

 

3.3 Skin permeation of caffeine from liposomes 

Then, liposomes prepared from different phospholipids were determined for their skin 

penetration-enhancing of caffeine. Franz diffusion cell sets were used in this experiment. The 

experimental period using Franz cells was decided to 8 h, since the reliablity was proven due 300 

to the time course data. Figure 3 shows the time course of the cumulative amount of caffeine 

that permeated through skin from different kinds of liposomes over 8 h. Typical lag time and 

following steady-state permeation profiles were observed for all liposome preparations 

prepared in this experiment. Only DPPG, DLPC and DMPC liposomes significantly promoted 

the caffeine permeation compared to control (caffeine solution in PBS) (ER was 5.43, 3.17 305 

and 2.17, respectively), whereas DPPC and DOPG liposomes significantly decreased the 

caffeine permeation (ER was 0.21 and 0.27, respectively). No or little change in the skin 
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penetration was found by the other phospholipid liposomes.  

 

Fig. 3 310 

 

Then, the skin penetration-enhancing effect by phospholipid dispersions and liposome 

preparations were summarized to compare them as shown in Fig. 4. Interestingly, DLPC, 

DMPC and DPPG liposomes showed significant higher ER compared to their phospholipid 

dispersions, while DPPC and DSPC liposomes showed significant lower ER compared to 315 

their phospholipid dispersions.  

 

Fig. 4 

 

Although DSPC phospholipid provided the highest ER in the form of dispersion, the 320 

skin permeation of caffeine from DSPC liposomes was substantially decreased. DPPG 

showed the enhancement effect both by phospholipid dispersions and liposomes. However, its 

ER was highly increased by modification to the liposome formulation. In case of other 

phospholipids such as DLPG, DMPG, DSPG, DOPC and DOPG, their liposomes showed no 

significant difference in the ER to those from their dispersions. 325 

Especially in case of DPPG, liposome formulations showed markedly high skin 

penetration-enhancing effects, although the mechanism was not clarified yet. Then, the 

following experiments were designed. 

 

  330 
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3.4 Effect of pretreatment with caffeine-free phospholipid dispersions and liposomes on 

the skin permeation of caffeine  

DPPG and DLPC liposomes exhibited the highest skin penetration-enhancement 

effects among all liposomes, but DSPG liposomes exhibited low skin permeation of caffeine.  

Then these three phospholipids were selected and 1 h-pretreatment experiment using caffeine-335 

free phospholipid dispersions or liposomes was done before skin permeation measurement 

from caffeine solution to clarify the possible skin penetration-enhancing effect of liposomes. 

Figure 5 shows the results.  The pretreatment with phospholipid dispersions enhanced caffeine 

permeation for DLPC (ER=1.35) and DPPG (ER=2.47), but decreased for DSPG (ER=0.48). 

The pretreatment experiment was also performed using caffeine free-liposomes. Interestingly, 340 

the 1 h-pretreatment with caffeine free-liposomes showed different results: the lower ER was 

observed compared to the effect of pretreatment with phospholipids dispersions. The ER for 

caffeine free-DLPC, DPPG and blank DSPG liposomes were 0.87, 1.50 and 0.46, respectively. 

 

Fig. 5 345 

 

3.5 Effect of physical mixture of blank liposomes and caffeine solution (caffeine-spiked 

liposomes) on the skin permeation of caffeine 

In order to evaluate the contribution of caffeine contents in the inside and outside of 

liposomes on its skin permeation, physical mixture of blank liposomes and caffeine was 350 

applied on the excised skin to measure the skin permeation of caffeine. The results are shown 

in Fig. 6. Caffeine-spiked DLPC and DSPG liposomes exhibited lower skin permeation of 

caffeine (ER was 0.58 and 0.44, respectively). On the other hand, only the caffeine-spiked 

DPPG liposomes significantly enhanced the skin permeation of caffeine (ER = 2.65) 

compared to control caffeine solution. 355 



15 
 

 

Fig. 6 

 

3.6 Effect of caffeine-entrapped liposomes on the skin permeation of caffeine 

Next, caffeine entrapped liposomes were evaluated for the skin permeation of caffeine. 360 

Figure 7 shows the results. Caffeine-entrapped DPPG liposomes showed the highest caffeine 

permeation (ER=4.39), whereas caffeine-entrapped DLPC liposomes enhanced about 1.65-

fold compared to caffeine solution which contained the same concentration as in liposome 

formulations. No penetration enhancing effect was observed for the caffeine-entrapped DSPG 

liposomes. 365 

 

Fig. 7 

 

4. Discussion  

Although several studies have reported on the potential of liposomes as a 370 

topical/transdermal drug delivery system compared to conventional formulations (Foldvari, 

1994; Michel et al., 1992; Yu and Liao, 1996), there seems to be a general lack of understanding 

among researchers regarding on the formulation factors of liposomes to provide high skin 

penetration-enhancing effects. Therefore, the present study was mainly focused on the 

designing strategies of liposomes by investigating the effect of phospholipid composition of 375 

liposomes on the enhanced skin permeation of drugs.  

First, the skin penetration-enhancing effect of different phospholipids used for liposome 

preparations was evaluated using caffeine as a model penetrant, since the selection of 

phospholipids must be very important to design suitable liposomes formulations. Among 10 

kinds of phospholipids (5 kinds each of phosphatidylcholines and phosphatidylglycerols), 380 
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DPPG and DSPC dispersions significantly improved the skin permeation of caffeine, whereas 

DOPG dispersion markedly decreased the skin permeation. In addition, the other phospholipids 

had no or little skin penetration-enhancing effects against the control group (Fig. 2).  

Limited studies have reported the skin penetration-enhancing effect of phospholipids 

(Junyaprasert et al., 2013; Yokomizo, 1996; Yokomizo and Sagitani, 1996). It is a pity that 385 

propylene glycol was used to dissolve the phospholipids, which differ from the present study 

(We used PBS). The present results showed that all phospholipids provided only mild 

penetration-enhancing effect or decreased the skin permeation of caffeine. Valjakka-Koskela 

et al. (1998) reported that phospholipids inhibited the skin permeation of naproxen from 

aqueous gel, but only the gel containing ethanol or propylene glycol as a co-solvent increased 390 

the skin permeation of the drug. In addition, Yokomizo and Sagitani (1996) reported that the 

penetration-enhancing effect of phospholipids was affected by their solubility in solvents. 

Thus, organic solvents like propylene glycol may overestimate the effect of phospholipids on 

drug permeation (El Maghraby et al., 2000) 

Although the size of liposomes prepared in the present study was equally small (110-395 

180 nm), but Tm, EE and zeta potential were dramatically affected by changes of the kinds of 

phospholipids (Table 2). The reason for the differences in the skin penetration-enhancing 

effects depending on the phospholipids is still unknown with these parameters. 

The reason why only DPPG, DLPC and DMPC liposomes showed higher permeation 

than other liposomes (Fig. 3) can be explained as follows: (1) Some liposomes might have a 400 

rigid structure that could form an extra lipid barrier on the skin surface which retards the skin 

permeation of caffeine, and this extent must be different depending on the phospholipids, or 

(2) some liposomes might release caffeine in a slower rate than other phospholipid-based 

liposomes probably due to the interaction between the drug and phospholipids (Kirjavainen et 

al., 1999).  405 
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The penetration-enhancement ratios (ER) by the phospholipid dispersions were 

different from those by their liposome formulations (Fig. 4), suggesting that liposome 

containing caffeine could have different mechanisms to increase the skin permeation than the 

phospholipid dispersions.  

Understanding of different physiochemical properties of phospholipids and liposomes 410 

may be necessary to clarify the skin penetration-enhancing mechanism of phospholipids and 

liposomes. DLPC, DPPG, and DSPG were selected, because DLPC showed a high ER only in 

the dispersion form and DPPG showed a high effect in the both forms, whereas DLPC had no 

effect in the both forms. For the above purposes, the skin pretreatment approach and following 

skin permeation experiments of caffeine were carried out using caffeine-free phospholipids 415 

dispersions and liposomes (Fig. 5). In addition, the effect of physical mixture of blank 

liposomes and caffeine solution (caffeine-spiked liposomes) and caffeine-entrapped liposomes 

(caffeine presented only in the liposomes) were determined (Figs. 6 and 7, respectively). 

Pretreatment with DLPC and DPPG dispersions enhanced the skin permeation of caffeine (Fig. 

5), indicating that these phospholipids had skin penetration-enhancing effects, since they might 420 

rearrange and fuse with an ordered structure of intercellular lipids (like ceramides) to reduce 

the SC barrier function made by disruption of well-packed intercellular lipids and creation of 

a permeation pathway for drugs (Kato et al., 1987; Mahrhauser et al., 2015; Zellmer et al., 

1995). Interestingly, the pretreatment of caffeine-free liposomes provided lower ER than their 

corresponding phospholipid dispersions (Fig. 5).  This could be due to the presence of such 425 

vesicles having less fluidity to disrupt the rigid structure of SC than its dispersion forms. 

Obviously, only the pretreatment with caffeine-free DPPG liposomes increased the skin 

permeation of caffeine. 

For the physical mixture of blank liposomes and caffeine, caffeine-spiked DPPG 

liposomes could deliver the drug through skin with the highest ER (Fig. 6). Caffeine-free DPPG 430 
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liposomes might disrupt the SC structure, allowing the free caffeine being mixed outside the 

liposome vesicles to diffuse through the skin barrier. In consequence, the caffeine-entrapped 

DPPG liposomes also provided the highest ER compared to the caffeine-entrapped DLPC and 

DSPG liposomes (Fig. 7).  

The highest skin penetration-enhancing effect observed from DPPG liposomes was thus 435 

due to the synergistic of different actions; the skin penetration-enhancing effect of DPPG 

dispersions and the skin penetration-enhancing effect of caffeine-free DPPG liposomes as well 

as the penetration-enhancing ability of caffeine both outside (caffeine-spiked liposome) and 

inside (caffeine-entrapped liposome) of liposomal vesicles. As similar to the previous report 

(Verma et al., 2003b), the penetration of non-entrapped and entrapped hydrophilic fluorescence 440 

probe, carboxyfluorescein, in liposomes through human skin were increased compared to 

control solution. The fluorescent may be penetrated along with intact liposomes or associated 

with liposomal fragment.  

The skin penetration-enhancing effect of DLPC liposomes was observed after the 

pretreatment only with its phospholipid dispersions. Furthermore, only caffeine-entrapped 445 

DLPC liposomes showed enhance caffeine permeation. Thus, the overall skin penetration-

enhancing effect obtained from DLPC liposomes were lower compared to DPPG liposomes. 

On the other hand, no skin penetration-enhancing effect was observed for DSPG liposomes in 

all cases resulting in low caffeine permeation.  

Lipophilic tails of fatty acids and phospholipids are known to increase the skin 450 

permeation of drugs. Kim et al. (2008) have investigated the effect of carbon-chain length of 

saturated fatty acids on the skin penetration-enhancing effect and revealed a parabolic 

correlation between the penetration-enhancing effect and their carbon-chain length of the 

saturated fatty acids These results suggested that fatty acids with a certain-chain length possess 

an optimal partition coefficient or solubility parameter.  As the carbon-chain length of lipophilic 455 
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tails in phospholipid increased from C12 (DLPC) to C18, (DSPC) in the present experiment, 

the skin permeation was increased in the dispersion form. Since interaction between liposome 

membrane and SC intercellular lipids was not investigated yet, the reason for the highest skin 

permeation from DLPC liposomes is still unclear.  

The modes of action of liposomes to enhance the skin permeation of drugs observed in 460 

the present study were summarized as follows; (1) the phospholipid molecule could disrupt the 

SC lipid barrier and enhance the drug permeation, (2) The free liposome vesicles themselves 

could also disrupt the SC lipid, and (3) drug could associate outside or encapsulate inside of 

liposome vesicles and then liposomes carry the drug to pass through the skin. However, 

different compositions of liposomes resulted in different degree of those effects. Further studies 465 

should be carried out to understand the molecular mechanisms of each liposomes composition 

on their skin penetration-enhancing effect.   

 

5. Conclusion 

Our findings exhibited that composition of liposomes must be an important factor to 470 

improve their performance. Understanding the effect of such factors of liposomes could enable 

researchers to develop the effective liposome formulation with high skin permeation of drugs. 
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Figure captions 

Fig. 1. Schematic representation of currently designed diffusion cell array system 

Fig. 2. ER of skin permeation of caffeine from different phospholipid dispersions. Each value 

represents the mean ± S.E. (n = 3–4). *: p < 0.05 significantly different from control (free 555 

caffeine solution in PBS). 

Fig. 3. Time course of the cumulative amount of caffeine that permeated through skin from 

different liposome formulations. Each value represents the mean ± S.E. (n = 3-5). *: p < 0.05 

significantly different from control (free caffeine solution in PBS). 

Fig. 4. Comparison of ER of skin permeation of caffeine from phospholipid dispersions and 560 

liposomes. Each value represents the mean ± S.E. (n = 3–5). *: p < 0.05 significantly different 

for liposomes from their phospholipid dispersion. 

Fig. 5. Effect of 1 h-pretreatment with caffeine-free phospholipid dispersions and liposomes 

on the ER of skin permeation of caffeine. Each value represents the mean ± S.E. (n = 3–5).  

*: p < 0.05 significantly different from control (no pretreatment; free caffeine solution in PBS). 565 

Fig. 6. Time course of the cumulative amount of caffeine that permeated through skin from 

physical mixture of blank liposomes and caffeine solution (caffeine-spiked DPPG, DLPC and 

DSPG liposomes). Each value represents the mean ± S.E.   (n = 3–5). *: p < 0.05 significantly 

different from control (free caffeine solution in PBS). 

Fig. 7. Time course of the normalized cumulative amount of caffeine that permeated through 570 
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skin from caffeine-entrapped DPPG, DLPC and DSPG liposomes. Each value represents the 

mean ± S.E. (n = 3–5). *: p < 0.05 significantly different from control (free caffeine solution 

in PBS). Y-axis was calculated with dividing the cumulative amount of caffeine that permeated 

through skin by the total amount of applied drug. 

 575 
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Table 1 Abbreviation and number of carbon atom and double bond in the alkyl chain for the 

phopholipids used in the present study 

Full name Abbreviation Carbon length : 

double bond 

1,2-dilauroyl-sn-glycero-3-phosphocholine  DLPC 12:0 

1,2-Dilauroyl-sn-glycero-3-phosphoglycerol, sodium salt  DLPG 12:0 

1,2-dimyristoyl-sn-glycero-3-phosphocholine  DMPC 14:0 

1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt  DMPG 14:0 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine  DPPC 16:0 

1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol, sodium salt  DPPG 16:0 

1,2-distearoyl-sn-glycero-3-phosphocholine  DSPC 18:0 

1,2-distearoyl-sn-glycero-3-phosphoglycerol, sodium salt  DSPG 18:0 

1,2-dioleoyl-sn-glycero-3-phosphocholine  DOPC 18:1 

1,2-dioleoyl-sn-glycero-3-phosphoglycerol, sodium salt  DOPG 18:1 

 

  580 
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Table 2 Physicochemical properties of liposomes prepared in the present study 

Main component Tm 

(°C) 

EE 

(%) 

Particle diameter 

(nm) 

Polydispersity 

Index 

Zeta 

potential 

(mV) 

DLPC (12:0) 49.8 15.44 ± 0.74 161.2 ± 0.3 0.211 ± 0.023 0.2 ± 0.5 

DLPG (12:0) -  23.98 ± 0.42 109.3 ± 0.3 0.088 ± 0.016 -41.2 ± 3.0 

DMPC (14:0) 49.0 18.68 ± 0.54 165.3 ± 2.0 0.111 ± 0.079 -1.3 ± 1.6 

DMPG (14:0) 65.3 27.95 ± 1.10 130.2 ± 0.8 0.059 ± 0.011 -40.3 ± 3.5 

DPPC (16:0) 47.6 17.46 ± 0.63 169.9 ± 2.4 0.250 ± 0.011 -1.3 ± 0.7 

DPPG (16:0) 41.5 13.35 ± 0.03 152.1 ± 0.9 0.164 ± 0.016 -44.3 ± 2.5 

DSPC (18:0) 51.7 12.93 ± 0.15 184.6 ± 3.4 0.214 ± 0.005 -0.5 ± 1.2 

DSPG (18:0) 62.8 21.14 ± 0.27 162.1 ± 0.9 0.096 ± 0.007 -45.1 ± 1.0 

DOPC (18:1) 65.8 49.08 ± 1.27  143.3 ± 1.0 0.070 ± 0.007 -6.6 ± 1.2 

DOPG (18:1) 54.5 45.38 ± 0.11  110.7 ± 0.5 0.116 ± 0.122 -41.6 ± 1.7 
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Fig. 1. 
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Fig. 2. 585 
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Fig. 3. 

 

 

  

* 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 1 2 3 4 5 6 7 8

C
um

ul
at

iv
e 

am
ou

nt
 o

f c
af

fe
in

e 
pe

rm
ea

te
d 

th
ro

ug
h 

 sk
in

 (µ
m

ol
/c

m
2 )

 

Time (h)

DPPG
DLPC
DMPC
Control
DMPG
DSPC
DLPG
DSPG
DOPC
DOPG
DPPC

* 

* 
* 

* * 



8 
 

Fig. 4.  595 
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Fig. 5.  
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Fig. 6. 
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Fig. 7. 
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