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Abstract  

We investigated the effects of dietary fat energy restriction and fish oil intake on glucose 

and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were 

fed a LSO50 diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 

weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets—LSO, 

FO2.5, FO12.5, or FO25—containing 0, 2.5, 12.5, or 25 en% fish oil (FO), respectively, for 9 

weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased 

final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, 

regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased 

in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels 

did not differ among groups, the blood glucose areas under the curve in the oral glucose 

tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase 

chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in 

the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the 

FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed 

by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also 

suggested that the combination of fat energy restriction and fish oil feeding decreased fat 

droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de 

novo lipogenesis in these mice.  
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1. Introduction 

Excess dietary energy and fat intake increases de novo lipid synthesis and causes obesity, 

which leads to hyperlipidemia, diabetes, and hypertension, often resulting in coronary heart 

disease or stroke [1-3]. Adipose tissue mass increase and adipose cell hypertrophy in obesity 

cause abnormal secretion of adipocyte-derived hormones such as adiponectin, leptin, tumor 

necrosis factor α (TNFα), and resistin [4-5]. In several studies, subjects with obesity and 

diabetes showed decreased plasma adiponectin levels and increased leptin and TNFα levels 

[6-8]. Adiponectin stimulates AMP-activated protein kinase (AMPK) activation, inhibits 

gluconeogenesis, and increases glucose uptake and fatty acid oxidation, thus enhancing 

insulin sensitivity [9-11]. We previously demonstrated that fish oil (FO) feeding increased 

plasma adiponectin levels and decreased plasma insulin and leptin levels, leading to 

ameliorated insulin sensitivity in female C57BL/6J and KK mice [12, 13]. FO contains n-3 

polyunsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid 

(DHA), and its ingestion reduces plasma and hepatic lipid levels [14, 15]. FO-induced 

lipid-lowering actions have been shown to cause lipogenesis inhibition and fatty acid 

oxidation stimulation in the liver [16-18]. The synthesis of fatty acids and cholesterol is 

mainly regulated by sterol regulatory element-binding proteins (SREBPs), which are 

transcription factors of genes related to lipogenesis [19]. FO feeding decreases SREBP1c 

mRNA expression and/or mature protein, and results in the inhibition of SREBP-1 target 

genes such as those that encode acetyl-CoA carboxylase, fatty acid synthase (FAS), and 

stearoyl-CoA desaturase 1 (SCD-1) [18, 20]. On the other hand, fatty acid oxidation is 

stimulated by FO intake and caused by activation of peroxisome proliferator-activated 

receptor (PPAR)α, a nuclear receptor that regulates the target genes for acyl-CoA oxidase 

(AOX) and uncoupling protein 2 (UCP-2) [20, 21]. In previous studies, we suggested the 

changes in these mRNA expressions by FO differed in female C57BL/6J or KK mice [12, 13]. 
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In 20–25 energy% (en%) FO feeding, hepatic SREBP-1 mRNA levels did not change in 

C57BL/6J mice but decreased in KK mice. Insulin-induced gene 1 (Insig-1) and FAS mRNA 

levels significantly decreased in both FO-fed C57BL/6J and KK mice. However, body weight 

gains and fat accumulations were markedly decreased with FO feeding in KK mice but not in 

C57BL/6J mice. These data imply that the effects of FO on lipid metabolism vary 

considerably with physical conditions such as the degrees of obesity. Therefore, we evaluated 

the potential beneficial effects of FO feeding with dietary fat energy restriction on glucose 

and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. 
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2. Materials and Methods  

2.1. Mice and diets 

 Female KK mice were obtained from Tokyo Laboratory Animals Science Co. (Tokyo, 

Japan) at 5 weeks of age and fed a standard pelleted diet (CE2; Clea, Tokyo, Japan) for 1 

week to acclimate. Mice were exposed to a 12-h light–dark cycle and maintained at a 

constant temperature of 22 ± 2°C and humidity of 55 ± 10%. To induce obesity, the mice 

were fed a HF diet consisting of 50 en% lard/safflower oil (LSO50) as the fat source for 12 

weeks. Then, the mice with HF diet-induced obesity were divided into 5 groups (n = 5 in 

each group). For another 9 weeks, 1 group was maintained with LSO50 feeding, and the other 

4 groups were fed various 25 en% fat diets—LSO, FO2.5, FO12.5, or FO25—containing 0, 

2.5, 12.5, or 25 en% FO (fish oil), respectively. The composition of experimental diets is 

summarized in Table 1. Lard/safflower oil, which was a mixture with the six to four ratio of 

lard and safflower oil, was used as a base oil of all diets. Lard (Oriental Yeast, Tokyo, Japan) 

contained 44% oleic acid (18:1, n-9), 24% palmitic acid (16:0), and 14% stearic acid (18:0) 

as the main fatty acids; safflower oil (Benibana Foods, Tokyo, Japan) contained 78% oleic 

acid and 14% linoleic acid (18:2, n-6); and fish oil (NOF Co., Tokyo, Japan) contained about 

7% EPA (20:5, n-3) and 24% DHA (22:6, n-3). All diets were made into a soft pellet with 

water and stored at −30°C until each meal is supplied at 10:00 AM daily freshly. The mice 

were allowed free access to water and feed. During the 9 weeks, body weight was measured 

weekly and food intake was recorded daily. Food intake energy was represented by the daily 

mean intake calculated from total intake energy in the feeding period for 9 weeks. The animal 

experiments were approved by the Institutional Animal Care and Use Committee of Josai 

University. 

 

2.2. CT scan analysis 
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At the end of the experiments, the mice were fasted for 3 hours and anesthetized by 

intraperitoneal injection of pentobarbital sodium (Nembutal; Dainippon Sumitomo Pharma, 

Osaka, Japan). The body composition of the abdomens of mice was radiographically 

examined using computed tomography (CT) scan for experimental animals in the mouse 

mode (La Theta LCT100; ALOKA, Tokyo, Japan). Contiguous 2-mm slice images between 

L2 and L4 were used for quantitative assessment using LaTheta software (version 2.10). 

Details of the CT-scanning procedures have been described elsewhere [13]. 

 

2.3. Collection of blood and tissue samples 

 After CT scanning, blood samples were drawn from the inferior vena cava and treated with 

EDTA 2Na. The liver, white adipose tissue (WAT) around the uterus, and brown adipose 

tissue (BAT) from the interscapular region were removed, immediately weighed, froze in 

liquid nitrogen, and then stored at −80°C. The liver tissue was homogenized with Trizol 

(Invitrogen, Carlsbad, CA), and RNA was prepared by the method described by Chirgwin et 

al. [22]. 

 A portion of the liver tissue of each mouse was used for analyzing triglyceride (TG) and 

total cholesterol (TC) contents. Hepatic lipids were extracted from approximately 100 mg of 

liver tissue for each mouse in accordance with the method of Folch et al. [23]. For the 

measurements of triglyceride and total cholesterol in the liver, Wako Triglyceride E-Test and 

Cholesterol E-Test kits (Wako Pure Chemical Industries, Osaka, Japan) were used, 

respectively. Plasma TG, TC, and HDL cholesterol (HDL-C) levels were measured using the 

same E-Test Wako kits. Plasma insulin and leptin levels were quantified by enzyme-linked 

immunosorbent assays (ELISA) using the Insulin ELISA kit and the Leptin/mouse ELISA kit, 

respectively (Morinaga Institute of Biological Science, Tokyo, Japan). Plasma adiponectin 
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levels were quantified using the mouse/rat adiponectin ELISA kit (Otsuka Pharmaceutical, 

Tokyo, Japan). 

 

2.4. Liver histopathology  

 A piece of liver tissue was excised from the median lobe of the liver. Samples from five 

mice were collected for each group. The liver tissues were immersed in 10% formaldehyde 

and embedded in paraffin, cut into sections, stained with hematoxylin eosin (H&E), and 

examined under a microscope. 

 

2.5. Measurement of mRNA in the liver  

 mRNA levels were quantified by real-time reverse transcription polymerase chain reaction 

(RT-PCR) using a sequence detector by the cycle number (Ct) for threshold signal detection. 

PCR was performed using the ABI Prism 7500 Sequence Detection System (Applied 

Biosystems, Foster City, CA) using a QuantiTect SYBR Green Real-time PCR kit (QIAGEN, 

Hilden, Germany) according to the manufacture’s instruction. The thermal cycling conditions 

were as follows: reverse transcription at 50°C for 30 min, PCR initial activation at 95°C for 

15 min plus 40 cycles of denaturation at 94°C for 15 s, annealing at the optimum temperature 

of each primer for 30 s, and extension at 72°C for 1 min. The PCR primer sequences were 

showed in Table 2. 

 

2.6. Oral glucose tolerance test (OGTT)  

 At 25 weeks of age, OGTTs were performed by gavage administration of 1g glucose/kg 

body weight after 4 hours fasting. Blood samples were collected from the tail vein before 

glucose administration (time 0) and at 30, 60, 90, and 120 min afterward. Glucose levels were 

determined by a blood glucose monitoring system (One Touch, Lifescan, Milpitas, CA). 
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2.7. Statistical analysis  

 Data from multiple groups were compared by one-way or two-way analysis of variance 

(ANOVA). Each group was compared with the others using Fisher’s protected least 

significant difference test (SYSTAT 11; Systat Software, Chicago, USA). Values were 

reported as the mean ± S.D. Statistical significance was defined as P < 0.05. 

 

3. Results 

3.1. Fat energy restriction decreased body weight and adipose tissue mass in female KK mice 

with HF diet-induced obesity 

 Body weights in the LSO50 group continued to increase until the end of the experiment. In 

the LSO and all FO groups that switched to fat energy restriction (25 en% fat) diets, body 

weights were decreased, although these changes were similar between the LSO and all FO 

groups. And, there were significant differences in time effect and in interaction between diet 

and time (P <0.05, two-way ANOVA) (Fig. 1A). Although liver weights did not differ 

between the LSO50 and LSO groups, they significantly decreased in the FO12.5 and FO25 

groups and also showed a decreasing tendency (P = 0.066) in the FO2.5 group compared with 

the LSO group. There was no difference in parametrial WAT weights between the LSO50 and 

LSO groups or between the LSO and all FO groups. Interscapular BAT weights decreased 

significantly in the LSO group compared with the LSO50 group (Table 3). Meanwhile, on CT 

scan analysis, visceral and subcutaneous fat mass significantly decreased in the LSO group 

compared with the LSO50 group (Fig. 2). There were no differences in interscapular BAT 

weights and visceral and subcutaneous fat mass between the LSO and all FO groups.   
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3.2. FO feeding decreased blood glucose levels in female KK mice with HF diet-induced 

obesity  

To investigated the effects of FO and fat energy restriction in acquired-cause induced 

obesity, we used KK mice with high-fat diet induced obesity, insulin resistance and 

hyperlipidemia. Body weights and insulin levels of KK mice used in this study were higher 

than other KK or KK-Ay mice [13, 24, 25]. 

Although there was no difference in the blood glucose levels between the LSO50 and LSO 

groups, the levels significantly decreased in the FO25 group compared with the LSO group. 

Plasma insulin levels did not differ among groups. However, plasma adiponectin levels 

significantly decreased in the FO2.5 group compared with the LSO group. Plasma leptin 

levels significantly decreased in the FO2.5 and FO12.5 groups compared with the LSO group 

(Table 3). To examine the effects of FO on glucose clearance in obese KK mice, the oral 

glucose tolerance test (OGTT) was performed. In the blood glucose levels, there were 

significant differences in effects of diet, time and interaction between diet and time (P <0.05, 

two-way ANOVA) (Fig. 1B). The blood glucose area under the curve (AUC) values did not 

vary in the LSO group compared with the LSO50 group. However, blood glucose levels at 

the 30, 60, 90 and 120 min. were low in the FO12.5 and FO25 group compared with the LSO 

group (Fig. 1B) and the glucose AUCs significantly decreased by 88% and 72% in the 

FO12.5 and FO25 groups, respectively, compared with the LSO group (Fig. 1C). 

 

3.3. FO feeding decreased hepatic triglyceride and total cholesterol levels 

 To elucidate the effects of FO and fat energy restriction in obese female KK mice, we 

measured plasma and hepatic lipid levels, and the results are shown in Table 4. 

The plasma TG levels significantly increased in the FO2.5 group, but there was no 

difference in the FO12.5 and FO25 groups compared with the LSO group. On the other hand, 
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plasma TC and non HDL-C levels decreased in the FO2.5, FO12.5, and FO25 groups 

compared with the LSO group. Plasma HDL-C levels showed comparable levels in all groups. 

Hepatic TG contents in the FO12.5 and FO25 groups significantly decreased to about 50% 

and 30% of that in the LSO group, respectively. Hepatic TC contents showed a significant 

decrease in the FO2.5, FO12.5, and FO25 groups compared with the LSO group (35%, FO2.5 

diet; 18%, FO12.5 diet; 12%, FO25 diet, respectively). These hepatic lipid contents 

reductions were confirmed in the microscopic images of liver tissue (Fig. 2). In the LSO50 

group, the liver tissues showed grossly developed hepatic cell hypertrophy, with all of the 

hepatic cells filled with numerous fat droplets. Although the liver tissues in the LSO and 

FO2.5 groups did not show a change in the deposition of fat droplets, the FO12.5 and FO25 

groups showed markedly decreased fat droplets, suggesting the effects of FO on inhibition of 

hepatic lipids accumulation. 

 

3.4. 25 en% FO feeding decreased mRNA levels of fatty acid synthesis-regulating genes  

The hepatic mRNA levels of lipid metabolism-regulating genes are shown in Table 5. The 

LSO50 group showed significantly decreased SREBP-1c, Insig-1, and FAS mRNA levels but 

no change in SCD-1 or Insig-2a mRNA levels compared with the LSO group. There were no 

significant differences in SREBP-1c mRNA levels among the 25 en% fat diets groups; 

however, the FO25 group showed a decreasing tendency (P = 0.061) compared with the LSO 

group. In addition, the FO25 group showed significantly decreased FAS, SCD-1, Insig-1 and 

Insig-2a mRNA levels, whereas the FO12.5 group only showed significantly decreased 

SCD-1 mRNA levels, compared with the LSO group. 

 There were no differences in AOX and UCP-1 mRNA levels between the LSO50 and LSO 

groups. However, mRNA levels of AOX, a target gene of PPARα related to fatty acid 

oxidation, significantly increased in the FO12.5 group but not in the other FO groups. 
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AdipoR2 mRNA levels significantly decreased in all FO groups compared with the LSO 

group. There were no differences in AdipoR2 mRNA levels between the LSO50 and LSO 

groups. 

 

4. Discussion 

 This study showed that a change from a HF diet (50 en% fat) to fat energy restriction (25 

en% fat) diets decreased the body weight and visceral and subcutaneous fat mass in female 

KK mice with HF diet-induced obesity. In addition, a 25 en% fish oil containing diet (FO25) 

significantly decreased hepatic mRNA levels of fatty acid synthesis-regulating genes 

compared with the LSO diet. Furthermore, mice fed the FO12.5 and FO25 diets showed 

smaller fat droplets in the liver tissues than those fed the LSO diet. These tissue specimen 

results were reflected in the reduced hepatic TG and TC contents. In OGTT, the FO12.5 and 

FO25 diets decreased plasma glucose AUC compared with the LSO diet.  

As a result of the LSO50 diet, body weight of female KK mice increased by about 2.5 fold 

for 12 weeks leading to obesity (23.6 ± 1.0 g in 6-week-old mice at the starting point, 55.9 ± 

4.3 g in 18-week-old mice at the end point). A change to the 25 en% fat diets, such as LSO 

and all FO diets, for another 9 weeks resulted in significant reductions in final body weight. 

Also, visceral and subcutaneous fat mass and interscapular BAT weight decreased in the LSO 

and each FO diet-fed mice. These decreases in final body weight and adipose tissue weight 

probably were due to the restricted fat energy ratio of 25 en% (Fig. 1A). Meanwhile, all FO 

diets did not particularly affect body weight reduction in the female KK mice with HF 

diet-induced obesity. In previous studies, we showed that body weights were 

markedly decreased in C57BL/6J mice fed 20 en% FO diet and regular KK mice, are free 

from the prior induction by high-fat diet, fed 25 en% FO diet [13, 26]. These results 
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suggested that a 25 en% FO diet in the female KK mice with HF diet-induced obesity did not 

enough to modify body weight and WAT weight. 

Kim et al. [27] reported that body weight and visceral fat mass significantly increased with 

36 en% fat diet for 12 weeks in C57BL/6J mice, but the expressions of lipogenesis-regulating 

genes, such as ACS 2 (acetyl-CoA synthetase 2), FAS and Insig-1, were decreased in 36 en% 

fat diet-fed mice compared to 17 en% fat diet-fed mice. These results are consistent with our 

observation that SREBP-1c, Insig-1 and FAS mRNA levels in the liver significantly 

decreased in the LSO50 diet-fed obese mice compared with the LSO diet-fed mice. These 

results revealed that fatty acid synthesis is suppressed to maintain the lipid metabolism 

homeostasis under excess body fat accumulation conditions. In rodent studies, diets 

containing 25 en% FO or 60 en% FO decreased SREBP-1c mRNA, compared with their 

respective controls, while 40 en% FO decreased mature SREBP-1 protein but not its mRNA 

[18, 28-30]. These data suggested that FO is probably associated with modification in the 

maturation process of the SREBP-1 precursor. Our previous studies with C57BL/6J mice 

showed that 20 en% FO did not decrease SREBP-1c mRNA levels, but markedly reduced 

mRNA levels of SREBP-targeting genes such as FAS and SCD-1. Also, FO intake decreased 

the mRNA levels of Insig-1, which is regulated coordinately with SREBP-1 mature protein 

levels [26, 31]. In agreement with previous studies, the FO25 group significantly decreased 

FAS, SCD-1, Insig-1 and Insig-2a mRNA levels compared with those of the LSO group, 

whereas no difference was observed in SREBP-1c mRNA level. 

mRNA levels of fatty acid oxidation-regulating genes, such as AOX and UCP-2, did not 

change between the LSO50 and LSO groups. AOX and UCP-2 mRNA levels in the liver 

increased as an adaptive response to the excess fat droplet accumulation in Wistar rats and 

C57BL/6J mice [32, 33]. Also, AOX and UCP-2 mRNA levels were markedly increased 

following 30–60 en% FO feeding for 1 week or 60 en% FO feeding for 5 months in 

12 
 



C57BL/6J mice [20, 21]. In the present study, UCP-2 mRNA levels did not show large 

difference in any of the group, and AOX mRNA levels significantly increased in the FO12.5 

group but not in the other FO groups. These results indicate that body weight loss by fat 

intake restriction in the KK mice with HF diet-induced obesity appears to have occurred 

independently from the reduction of lipogenesis and the stimulation of fatty acid oxidation. 

Also, our findings demonstrate that 2.5–25 en% FO intake is not sufficient to induce fatty 

acid oxidation in KK mice with HF diet-induced obesity. 

 SCD-1 mainly converts palmitic acid to oleic acid, a monounsaturated fatty acid, and SCD 

activation induces triglyceride synthesis [34]. SCD-1 deficiency prevented adiposity and 

hepatic steatosis on diet-induced obesity, and increased insulin sensitivity [35, 36]. In our 

present study, SCD-1 mRNA levels were significantly decreased in the FO12.5 and FO25 

groups, compared with the LSO group. Also, hepatic TG and TC contents significantly 

decreased in the FO12.5 and FO25 groups. These results suggest that 12.5–25 en% FO intake 

effectively decreased SCD-1 mRNA levels, resulting in the inhibition of fatty acid synthesis 

and the amelioration of hepatic lipid accumulation even in the HF diet-induced obesity KK 

mice. These changes with SCD-1 mRNA reduction might have improved the OGTT levels 

even without decline of plasma insulin level. Further studies are necessary to determine a link 

between plasma insulin level, insulin sensitivity and diet-induced obesity.    

 Muurling et al. [37] showed that a 17 en% fat diet ameliorated insulin resistance and 

decreased plasma TG levels in C57BL/6J mice, although a 45 en% fat diet worsened insulin 

resistance. In our previous study, the elevations of plasma insulin level in the regular KK 

mice were sufficiently inhibited with the 25 en% FO diet, indicating that body weight loss 

may ameliorate insulin resistance [13]. However, in this study with the HF diet-induced 

obesity KK mice, the 25 en% FO did not affect plasma insulin level. These data indicate that 

fat energy restriction and/or 25 en% FO were not sufficient to alter the elevated plasma 
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insulin levels caused by excessive body weight gain in KK mice with HF diet-induced 

obesity. 

 The OGTT at the 7th week from the transition to the experimental diets showed that the 

FO12.5 and FO25 diets significantly decreased the glucose AUC compared with the LSO diet. 

Adiponectin secreted from adipocytes stimulates fatty acid oxidation in the liver and induces 

AMPK activation in muscle, which decreases plasma and hepatic lipid levels, inhibits 

gluconeogenesis, and improves peripheral uptake of glucose [9, 38]. An elevation of insulin 

secretion or a decline of insulin sensitivity shows an inverse correlation with plasma 

adiponectin level or hepatic AdipoR2 mRNA expression [39-42]. Also, an increase of the 

body mass index and/or body fat suppresses adiponectin secretion [7, 43]. On the other hand, 

in the insulin-resistant rat, plasma adiponectin increases following treatment with FO [44]. 

Our previous study also showed that plasma adiponectin levels were significantly increased 

in 25 en% FO diet-fed KK mice [13]. In our present study with the HF diet-induced obesity 

KK mice, fat energy restriction resulted in decreased body weight and adipose tissue weight, 

however plasma adiponectin levels were not increased. Even in 2.5–25 en% FO diets similar 

results showed, which, caused an inhibition of hepatic AdipoR2 mRNA. Huang et al. [24] 

reported that exercise training suppressed hepatic AdipoR2 mRNA levels and then enhanced 

insulin sensitivity; however, plasma adiponectin levels were not changed. These variations 

might be due to differences between the congenital obesity and the congenital plus 

diet-induced obesity. We may need to elucidate the details of this obesity models. And, 

further investigations are required to clarify the relationship among plasma adiponectin, 

hepatic AdipoR2 mRNA levels and insulin resistance on glucose and lipid metabolism in the 

various physical conditions. 

 In conclusion, we have showed that dietary fat restriction is effective in suppressing body 

weight gain even in the HF diet-induced obesity KK mice, and the combination of dietary fat 

14 
 



energy restriction and fish oil feeding produced a suppression of de novo lipogenesis, 

resulting in a decrease of hepatic fat droplet and an amelioration of hepatic hypertrophy. Also, 

12.5–25 en% FO diets might be effective to improve marked glucose tolerence caused by HF 

diet -induced obesity. These results may provide data and information useful to understanding 

the difference of obesity treatments between the congenital obesity and the congenital plus 

diet-induced obesity.  
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Legends for figures  

Fig. 1 

Growth curves and glucose level changes during the oral glucose tolerance tests 

(OGTTs) in obese KK mice treated with dietary fat energy restriction and/or fish oil. 

Growth curves (A), the time course of blood glucose levels (B), and glucose area under the 

curve(C) during OGTT. Growth curves were plotted until 8 weeks. OGTT was performed at 

the 7th week of treatment with the experimental diets. After 4 h of fasting, OGTT was 

performed by administration of a 10% glucose solution (1g/kg). Blood samples were obtained 

immediately before glucose administration and 30, 60, 90, and 120 min after glucose loading. 

Values represent the mean ± S.D. (n = 5). Two-way ANOVA P values are shown in 

parentheses with D, diet effect; T, time effect; D×T, interaction between diet and time. (A) * 

means P < 0.05 versus the LSO50 group. (C) Groups with different letters are significantly 

different. ANOVA with Fisher’s protected least significant difference (PLSD) test, P < 0.05.  

 

Fig. 2 

CT-based body fat composition and the alteration of hepatic condition in obese KK mice 

treated with dietary fat energy restriction and/or fish oil for 9 weeks. 

CT images (A), visceral fat (B), subcutaneous fat (C), liver megascopic condition (D, upper) 

and histopathology (D, lower). In CT images, purple and yellow areas represent visceral and 

subcutaneous fat, respectively. Liver tissues from each group embedded in paraffin, stained 

with hematoxylin and eosin (H&E), and examined under a microscope at 400-fold 

magnification (D, lower). Values represent the mean ± S.D. (n = 5). Groups with different 

letters are significantly different. ANOVA with Fisher’s protected least significant difference 

(PLSD) test, P < 0.05. 
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