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Abstract  

Inflammatory bowel diseases (IBDs) such as Crohn’s disease and ulcerative colitis are chronic 

inflammatory disorders of the intestinal tract with excessive production of cytokines, adhesion 

molecules, and reactive oxygen species. Although nitric oxide (NO) is reported to be involved in 

the onset and progression of IBDs, it remains controversial as to whether NO is toxic or protective 

in experimental colitis. We investigated the effects of oral nitrite as a NO donor on dextran sulfate 

sodium (DSS)-induced acute colitis in mice. Mice were fed DSS in their drinking water with or 

without nitrite for up to 7 days. The severity of colitis was assessed by disease activity index (DAI) 

observed over the experimental period, as well as by the other parameters, including colon lengths, 

hematocrit levels, and histological scores at day 7. DSS treatment induced severe colitis by day 7 

with exacerbation in DAI and histological scores. We first observed a significant decrease in 

colonic nitrite levels and increase in colonic TNF-α expression at day 3 after DSS treatment, 

followed by increased colonic myeloperoxidase (MPO) activity and increased colonic expressions 

of both inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) at day 7. Oral nitrite 

supplementation to colitis mice reversed colonic nitrite levels and TNF-α expression to that of 

normal control mice at day 3, resulting in the reduction of MPO activity as well as iNOS and HO-1 

expressions in colonic tissues with clinical and histological improvements at day 7. These results 

suggest that oral nitrite inhibits inflammatory process of DSS-induced experimental colitis by 

supplying nitrite-derived NO instead of impaired colonic NOS activity. 
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Introduction 

  Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, are 

chronic inflammatory disorders of the intestinal tract with excessive production of cytokines, 

adhesion molecules, and reactive oxygen species (ROS) [1]. The etiology of IBDs is believed to 

involve inappropriate host responses to the complex commensal microbial flora in the gut resulting 

from mucosal barrier dysfunction, such as an abnormal leaky mucus layer, altered tight junction 

protein expression for distribution, and increased epithelial apoptosis [2].  

  In order to study etiology of IBDs, mouse experimental colitis induced by oral administration of 

dextran sulfate sodium (DSS) is widely used as a standardized colitis model [3]. Histologically, 

colitis induced by DSS is characterized by infiltration of inflammatory cells into the lamina propria, 

accompanied by lymphoid hyperplasia, focal crypt damage, and epithelial ulceration [4]. DSS has a 

direct toxic effect on the epithelium and destroys the mucosal barrier, allowing bacteria to come 

into contact with lamina propria cells [5], resulting in activation of intestinal macrophages and 

secreting proinflammatory cytokines such as TNF-α [6]. These innate immune dysfunctions 

mediated by intestinal macrophage induce excessive production of superoxide, leading to further 

inflammatory process and endothelial dysfunction as a result of ability of superoxide to inactivate 
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endogenous NO [7].  

  There is growing experimental evidence that nitric oxide (NO), enzymatically generated by three 

isoforms of nitric oxide synthase (NOS) (endothelial NOS: eNOS, neuronal NOS: nNOS, and 

inducible NOS: iNOS), plays an important role in the intestinal barrier and immune functions. 

Impaired NO production in intestine, therefore, might have a causative effect on the progression and 

sequelae of IBDs. Although controversy has continued as to whether the in vivo effects of 

iNOS-induced NO are beneficial or detrimental on the experimental colitis [8], the majority of 

studies using selective inhibitors of iNOS and iNOS-deficient mice have shown improvement in 

experimental colitis, suggesting a possible involvement of inflammatory iNOS in the progression of 

IBDs. On the other hand, constitutively produced NO by eNOS and nNOS appears to be a 

homeostatic regulator of numerous essential functions of the gastrointestinal mucosa, such as 

maintenance of adequate perfusion, and regulation of microvascular and epithelial permeability. 

The protective actions of constitutive NOS also include reduction of leukocyte adherence, inhibition 

of macrophage activation, and inhibition of Th1 type cytokines by inactivation of cytokine 

processing. These evidences suggest protective effects of NO produced by constitutive NOS on the 

pathogenic processes of acute colitis following barrier dysfunction. 

  Thus, while the association of NOS-mediated NO dynamics with pathophysiology of IBDs has 

been investigated in detail, exogenous NO donors are attempted to be applied to experimental 

colitis models as a therapeutic intervention [9,10]. Salas et al. showed that subcutaneous 

administration of NO donor modulates DSS-treated colitis in mice, suggesting that the beneficial 
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effect of NO is related to a reduction in leukocyte recruitment and subsequent proinflammatory 

cytokine production by inhibiting endothelial adhesion molecule expression in the early phase of 

this animal model [9]. 

  Recently, an alternative pathway fundamentally different from enzymatic NOS system for NO 

generation was discovered in which nitrite and nitrate are reduced in vivo to form NO, exerting  

physiological functions in the gastrointestinal tract and cardiovascular system [11,12]. Moreover, 

nitrate and nitrite are thought to have therapeutic application for the diseased states where oxygen 

availability is reduced or NOS activity is decreased [13-15]. 

  Based on these recent observations, we hypothesized that oral nitrite supplementation could be 

effective on reducing inflammatory processes in DSS-treated colitis mice, which mimics IBDs in 

that it induces inflammation and macrophage activation accompanied with disrupted epithelial 

barrier integrity [16]. Since DSS-treated colitis by 5 to 10 days in mice is considered to be an acute 

colitis model [17], we investigated how constitutive NOS and iNOS are implicated in the onset and 

progression of DSS-treated mice colitis, and also investigated the effect of oral nitrite on clinical 

and histological improvement following inflammatory responses including colonic TNF-a, iNOS 

and HO-1 expressions especially focusing on the role of NO availability in the early phase of this 

model.  

 

Materials and methods 

Animals 
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Specific pathogen-free male ICR (CD-1) mice, 7 wk old, weighing 30-35 g, from Kiwa 

Laboratory Animals (Wakayama, Japan) were allowed food (CE-2, CLEA Japan) and reverse 

osmosis (RO) water ad libitum, and were kept on a 12/12 h light/dark cycle with at least 7 days of 

local vivarium acclimatization before experimental use. All the protocols were approved by the 

Institutional Animal Care and Use Committee at the University of Josai Life Science Center and 

were consistent with the Guide for the Care and Use of Laboratory Animals published by the NIH. 

 

Experimental procedures 

Experimental colitis was induced in ICR mice [9,18] by administrating 2.5-3.0% DSS (molecular 

weight 50 kDa, ICN Biomedicals Inc., Costa Mesa, California) in RO water ad libtum over the 

experimental period. Sodium nitrite (NaNO2) was also administered orally in RO water at 25 

mmol/l ad libtum. As shown in Figure 1, mice were randomly divided into four groups: 1) 

non-treated group, 2) NaNO2-treated group, 3) DSS-treated group, and 4) DSS+NaNO2-treated 

group. DSS-treated groups were given 2.5% DSS. The first administration of NaNO2 was given one 

day before the administration of DSS. Based on our preliminary study suggesting that DSS-treated 

mice drink 15% more water than DSS+NaNO2-treated mice over the experimental period, 

DSS+NaNO2-treated mice were, therefore, given 3.0% DSS to provide the same total dose of DSS 

between them, as evidenced in Table 1. Drinking water containing DSS and/or NaNO2 was freshly 

prepared and replaced every evening. Fluid intake was recorded daily throughout the duration of the 

study.  
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Animal body weight, presence of blood in excreta, and stool consistency were recorded daily, 

then assessed as disease activity index (DAI) in accordance with the method described by Murthy et 

al. [19]. In brief, each score in DAI was determined as the extent of body weight loss (0, < 1%; 1, 

1-5%; 2, 6-10%; 3, 11-15%; 4, >15%), stool consistency (0, normal; 2, loose; 4, diarrhea), and stool 

haemoccult positivity or gross bleeding (0, normal color; 2, reddish color; 4, bloody stool) and 

combined and divided by 3 for each mouse. 

In order to examine unfavorable effects of oral nitrite on blood pressure, systolic blood pressure 

(SBP) as well as heart rate (HR) was measured at day 3 and 7 using a noninvasive computerized 

tail-cuff method (BP98A; Softron, Tokyo, Japan).  

At day 3 or 7, the mice were sacrificed under pentobarbital anesthesia (60 mg/kg), and blood 

samples (about 0.5 ml) were collected via the abdominal aorta into plastic tubes containing sodium 

EDTA. Hematocrit (Ht) and total hemoglobin (Hb) were analyzed using an automatic cell counter 

(Celltac MEK-5208, Nihon Kohden, Japan). The analysis of methemoglobin (Met Hb) in blood was 

performed using manual spectrophotometric assays based on the observation that Met Hb with 

absorption peak of 635 nm at pH 6.6 disappears after the conversion of Met Hb to cyan-Met Hb by 

neutralized cyanide [20]. Plasma samples were prepared by centrifugation at 12,000 g for 5 min at 4 

ºC and stored at -80 ºC until use. The colon was excised and washed with ice-cold PBS and its 

length was measured after exclusion of the cecum. The colon samples were snap-frozen in liquid 

nitrogen and stored at -80 ºC until use, or fixed in 10% neutral buffered formalin solution. 
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Histological analysis 

The colon was fixed in 10% neutral buffered formalin solution and embedded in paraffin. 

Sections (5 µm) were stained with hematoxylin and eosin (HE) for light microscopic observation. 

Eight randomly selected fields (magnified 100 times) in each section were graded and averaged 

according to the method described by Cooper et. al. [21], the severity of mucosal injury was graded 

as follows: grade 0, normal colonic mucosa; grade 1, loss of 1/3 of the crypts; grade 2, loss of 2/3 of 

the crypts; grade 3, the lamina propria is covered with a single layer of epithelium and mild 

inflammatory cell infiltration is present; grade 4, erosions and marked inflammatory cell infiltration 

are present. Digital images were obtained from a high-resolution digital camera system (Penguin 

150CL, Pixera, Los Gatos, CA, USA) linked to a microscope (BX41, Olympus, Tokyo, Japan) and 

desktop computer (Pentium 4, 2.0 GHz).  

 

Nitrite and nitrate concentrations in colon and plasma  

Nitrite concentration in the colon and the plasma was measured using a dedicated HPLC system 

(ENO-20; EiCom, Kyoto, Japan) [22]. This method is based on the separation of nitrite and nitrate 

by ion chromatography, followed by on-line reduction of nitrate to nitrite, postcolumn 

derivatization with Griess reagent, and detection at 540 nm. Proteins in each sample were removed 

by centrifugation at 10,000 g for 5 min following methanol precipitation (colon : methanol = 1 : 2 

weight/volume, plasma : methanol = 1 : 1 volume/volume, 4 ºC).  
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Myeloperoxidase (MPO) activity 

MPO activities in the colonic tissues were measured according to the technique described by 

Bradley et al. [23]. The results are expressed as MPO units/g wet tissue; 1 unit of MPO activity was 

defined as that degrading 1 µmol hydrogen peroxide/min at 25 ºC. 

 

Western blot analysis 

  The colonic samples obtained from the mice were homogenized in 20 volumes of ice-cold lysis 

buffer; 25 mM HEPES/NaOH; pH 7.4, 150 mM NaCl, 4 mM EDTA, 25 mM NaF,1 mM Na2VO4, 

0.2% (w/v) SDS and 1% (v/v) Nonidet P-40 with Complete Protease Inhibitor (Roche Diagnostics, 

Indianapolis, IN). The tissue homogenates were centrifuged at 12,000 g for 10 min at 4 ºC, and the 

supernatants were retained. Colonic mucosal lysates typically contained 8 mg protein per ml on the 

basis of the BCA protein assay. Protein lysates (60 µg protein/lane) were resolved by SDS-PAGE, 

electroblotted to PVDF membranes, and immunoblotted with selected antibodies against TNF-α 

(goat pAb, Santa Cruz Biotechnology, CA, USA), HO-1 (rabbit pAb, Stressgen Bioreagents, 

Hamburg, Germany), iNOS (rabbit pAb, BD Bioscience, CA, USA), and β-actin (mouse mAb, 

Santa Cruz Biotechnology, CA, USA). Bound antibody was visualized using the ECL 

chemiluminescence detection system (SuperSignal West Dura Extended Duration Substrate, Pierce) 

with HRP-conjugated secondary antibodies (Pierce). The band intensity was quantified using a Bio 

Imaging System, with Gene Snap and Gene Tools software (Syngene Bio Imaging, Cambridge, 

USA). Control of protein loading and transfer was conducted by detection of the β-actin levels.  
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Statistical analysis 

All values are expressed as means ± SE. Data were analyzed by one- or two-way (NaNO2 intake 

×DSS intake) ANOVA, and then differences among means were analyzed using the Tukey-Kramer 

multiple comparison test. A level of P < 0.05 was considered significant.  

 

 

Results 

Characteristics of DSS-treated colitis 

  As described in the experimental procedures in the methods, DSS-treated mice drink 15% more 

water than DSS+NaNO2-treated mice. Therefore, DSS+NaNO2-treated mice were given 3.0% DSS 

to provide the same total dose of DSS between them. We calculated the average intake of DSS in 

DSS-treated and DSS+NaNO2-treated mice (245.6 ± 28.4 mg/mouse/day and 248.6 ± 11.1 

mg/mouse/day, respectively) resulting in no significant difference in DSS intake between the two 

groups (Table 1). No difference of average intake of nitrite was observed between NaNO2-treated 

mice and DSS+NaNO2-treated mice (6.4 ± 0.1 and 7.2 ± 0.3 mg/mouse/day, respectively) either 

(Table 1).  

Consistent with previous report [18,24,25], mice administered 2.5-3.0% DSS developed severe 

colitis and suffered weight loss. Bloody stools started at day 4 and continued to the end of the 

experimental period. DAI consisting of parameters of body weight loss, stool consistency, and 
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bloody feces significantly started increasing from day 4 to day 7 in DSS-treated mice, whereas the 

DAI was decreased by oral NaNO2 supplementation in NaNO2+DSS-treated mice, compared with 

DSS-treated mice (Figure 2). NaNO2 supplementation alone had no impact on DAI both in 

non-treated and NaNO2-treated mice over the 7 day experimental period (Figure 2). DSS treatment 

also resulted in the reduction of Ht levels due to continued bloody stools, as well as colon length in 

DSS-treated mice at day 7, all of which were consequently restored by oral NaNO2 supplementation 

(Figure 3).  

 

Effects of oral NaNO2 on blood pressure, heart rate, and Met Hb levels 

  In order to investigate unfavorable side effects of oral NaNO2, blood pressure, heart rate and Met 

Hb were measured. Irrespective of with or without DSS treatment, the dose of oral NaNO2 used in 

the present study had no effect on the systolic blood pressure and heart rate both at day 3 and 7 

(non-treated versus NaNO2-treated, DSS-treated versus NaNO2+DSS-treated). Consistent with 

previous report [26], DSS significantly reduced systolic blood pressure irrespective of with or 

without NaNO2 treatment (non-treated versus DSS-treated, NaNO2-treated versus 

NaNO2+DSS-treated) (Table 2). Oral NaNO2 had no impact on Hb levels between non-treated and 

NaNO2-treated mice, while DSS decreased Hb levels (non-treated versus DSS-treated) and 

improved with oral NaNO2 (DSS-treated versus NaNO2+DSS-treated), which is similar result to 

that of Ht levels (A in Figure 3). Thus, despite DSS-induced deleterious effects probably due to 

gross bloody stool and circulating volume loss resulting from poor intake and frequent diarrhea, 
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oral NaNO2 had no clinical unfavorable effects except for more increased Met Hb formation at day 

7 with NaNO2 than without NaNO2 (non-treated versus NaNO2-treated, and DSS-treated versus 

NaNO2+DSS-treated, respectively) (Table 3).  

 

Histological findings of colitis  

Despite normal colonic histological structures in non-treated mice and NaNO2-treated mice at 

day 7, the colonic histology observed in DSS-treated mice at day 7 was characterized by multifocal 

dropouts of entire crypts in all parts of the colon, as well as a marked infiltration of inflammatory 

cells into the mucosa (C versus A and B in Figure 4). The histological exacerbations induced by 

DSS treatment at day 7 were significantly improved by additional oral NaNO2 supplementation (D 

in Figure 4), which was definitely manifested by histological scores in Figure 4 (E).  

 

MPO activity in colon 

  Induction of colitis by DSS represented a remarkable increase in MPO activity in colonic tissue 

at day 7, whereas additional NaNO2 supplementation to DSS-treated mice significantly reduced 

MPO activity (Figure 5). 

 

Nitrite and nitrate levels in colon and plasma  

Because we believe that a protective effect of NO produced by constitutive NOS occurs before 

clinical and histological exacerbations are actualized, nitrite levels in plasma and colonic tissue, 



13 

 

which reflect acute changes in regional eNOS activity [27], were measured at day 3. In spite of no 

significant changes in plasma nitrite levels between non-treated mice and DSS-treated mice at day 3 

(C in Figure 6), colonic nitrite levels were significantly decreased by DSS treatment at day 3 due to 

a decreased activity of the constitutive form of NOS, whereas this decrease in colonic nitrite levels 

recovered to the control levels of non-treated mice with oral NaNO2 supplementation at day 3 (A in 

Figure 6). Although there are tendencies towards an increasing concentration of plasma nitrite 

levels due to oral NaNO2 supplementation at day 7, no significant difference in plasma nitrite levels 

was found between the four groups (G in Figure 6). Different from plasma nitrite levels, colonic 

nitrite levels in DSS-treated and DSS+NaNO2-treated mice are directly influenced by iNOS-derived 

nitrite and oral NaNO2 supplementation, respectively (E in Figure 6). 

With respect to nitrate levels in colon and plasma, colonic and plasma nitrate appear to be 

accumulating due to oxidation process from unstable nitrite to stable nitrate. At day 3, DSS 

treatment significantly reduced nitrate levels in colon and plasma (between NaNO2-treated group 

and DSS+NaNO2-treated group, B and D in Figure 6), while no significant reduction of colonic and 

plasma nitrate levels were observed at day 7 (between NaNO2-treated group and 

DSS+NaNO2-treated group, F and H in Figure 6), suggesting possible background activities of 

constitutive NOS (at day 3) and iNOS (at day 7). 

 

Effects of oral NaNO2 on colonic TNF-α, iNOS and HO-1 expressions at day 3 and day 7 

  We observed the impaired constitutive NOS activity already existing at day 3 in the colitis mice 
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(A in Figure 6), and also found an increased expression of colonic TNF-α, while there was no 

significant difference between the colonic iNOS and HO-1 expressions between non-treated control 

and DSS-treated mice (A, C, E, G in Figure 7). However, at day 7, significantly increased  

expressions of these proteins were observed after DSS treatment (B, D, F, H in Figure 7) in colitis 

mice, accompanied with deterioration of clinical (Figure 2) and other parameters (Figure 3, 4, 5), 

which was consequently almost reversed to non-treated normal control levels by oral NaNO2 

supplementation.  

 

 

Discussion 

  Constitutive NO production by eNOS prevents the accumulation of platelets and adherent 

leukocytes, thus creating a nonthrombogenic environment in the vasculature. In the intestinal tract, 

small amounts of NO produced by constitutive forms of NOS (eNOS and nNOS) are thought to be 

physiologic and protective by regulating mucosal integrity, especially in response to noxious stimuli. 

Because acute DSS-induced colitis represents primarily a barrier disruption model which results in 

the activation of cells of the innate immune system [6], impaired constitutive NOS activities in the 

colon might be closely related to the progression of this experimental colitis.  

  Recent studies regarding the effects of eNOS on experimental colitis demonstrated that the 

colonic mucosal mRNA levels of eNOS were decreased after DSS administration in mice [28], and 

DSS treatment increased the disease activity in eNOS-deficient colitis mice [29], suggesting that 
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eNOS plays an important role in limiting intestinal injury during experimental colitis by preventing 

leukocyte recruitment and subsequent proinflammatory cytokine production, such as IL-12 and 

IFN-γ [30,31]. nNOS is also another source of constitutively released NO in the intestine, mediating 

neuronal signal transmission and regulating gut motility in rat and guinea pig [30,31]. Constitutive 

nNOS also has the ability to suppress iNOS expression in the intestine via down-regulation of 

NF-κβ. Pharmacological inhibition of nNOS causes IκBα degradation, leading to up-regulation of 

NF-κβ in rat [32]. This transcription factor, NF-κβ, plays an important role in inflammation by 

regulating the transcription of proinflammatory cytokines, adhesion molecules, and 

proinflammatory enzymes such as iNOS [32]. Therefore, reduced NO production by either eNOS or 

nNOS in the injured intestine could appear responsible for triggering acute colitis and subsequent 

chronic inflammation in the colon. 

  In our colitis model, we first observed a significant decrease in colonic nitrite levels at day 3 (A 

in Figure 6), presumably caused by the reduction of endogenously produced NO by constitutive 

NOS. At day 7, however, the colonic nitrite levels significantly increased above the control levels 

due to the prominent NO production by iNOS (E in Figure 6), which is evidenced in our current 

study by showing the increase in MPO activity (Figure 5) and iNOS expressions in the colon (B and 

H in Figure 7). Oral NaNO2 supplementation to colitis mice reversed colonic nitrite levels to those 

of non-treated control mice at day 3 (A in Figure 6), subsequently resulting in clinical and 

histological improvements at day 7.  

  Concerning plasma levels of nitrite and nitrate, despite the significant difference of colonic nitrite 
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levels between non-treated control and DSS-treated colitis mice (A in Figure 6), we observed no 

difference in plasma nitrite levels between them (C in Figure 6). Because, when oxygen availability 

is reduced or NOS activity is decreased, tissue nitrite is more susceptible to modification than 

plasma nitrite which has a function as a reservoir for tissues to maintain steady-state nitrite levels. 

Therefore, nitrite level starts decrease first at tissues, reflecting NO bioavailability much more in 

tissues than plasma. On the other hand, plasma nitrite levels are easily affected and fluctuated by 

oral nitrite intake. Because of a rapid turnover of unstable nitrite in plasma, unless nitrite is required 

in tissues, excessive nitrite easily undergoes oxidation to form stable nitrate in plasma [33], which is 

evidenced in Figure 6 (D and H).   

  Despite the contribution of eNOS and nNOS in preventing the development of colitis, large 

amounts of NO produced by iNOS are likely to be pro-inflammatory and injurious [34]. Selective 

pharmacological inhibition of iNOS reduces colonic inflammation and tissue injury by 7 days of 

DSS treatment [34,35]. Mice genetically deficient in iNOS revealed an attenuated colonic 

inflammatory response to DSS treatment, suggesting that iNOS-induced NO production is directly 

responsible for the subsequent development of experimental colitis in mice [36].  

  Although the potential of either pro-inflammatory or anti-inflammatory effects of NO in IBDs is 

still controversial [8], Kissa et al. demonstrated that pretreatment of trinitrobenzene sulphonic acid 

(TNBS)-induced colitis rat with L-NAME, a nonselective NOS inhibitor, exacerbated the 

subsequent colonic damage by suppressing eNOS activity, whereas delayed administration of 

L-NAME had a beneficial action on colonic injury and inflammation by suppressing iNOS activity, 
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suggesting the time-dependent actions of NOS activity might be involved in the development of 

these experimental colitis [37].  

  Abnormal interaction between intestinal bacteria and macrophages following barrier dysfunction 

due to impaired NOS system activates innate immune cells and induces ROS and proinflammatory 

cytokines such as TNF-α, which is well known inducer of NO generation in intestinal macrophages 

as well as epithelial cells [6]. Neutralizing anti-TNF antibodies have been shown to lead to an 

improvement of the colitis score [38,39]. In the current study, a significant increase in the colonic 

TNF-α expression was observed in colitis mice at day 3 before the appearance of HO-1 and iNOS 

expression in the colon, and oral NaNO2 supplementation to colitis mice reduced colonic TNF-α 

expression with the reduction of HO-1 and iNOS expression as well as clinical and histological 

improvements at day 7, possibly suggesting TNF-α a key factor for the subsequent ROS-mediated 

inflammatory process. HO is the rate-limiting enzyme in the catabolism of heme, followed by 

production of biliverdin, free iron, and carbon monoxide. Among three mammalian HO isozymes 

identified (HO-1, 2, and 3), HO-1 is a stress-responsive protein induced by various oxidative agents 

[40,41]. Recent studies suggested that the induction of HO-1 expression plays a protective role in 

intestinal damage models induced by TNBS or DSS, indicating that activation of HO-1 may act as 

an endogenous defensive mechanism to reduce inflammation and tissue injury in the intestinal tracts. 

In the present study, impaired constitutive NOS activity already existed at day 3, while colonic 

HO-1 expression was not remarkable. However, it significantly increased at day 7 with 

deterioration of clinical and biological parameters, which was reversed by the treatment with oral 
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NaNO2. This result suggests that intestinal NO deficit precedes oxidative stress, supporting the idea 

that the preexisting NO, irrespective of being endogenously produced or exogenously supplemented, 

could play an important role in preventing and limiting oxidative injury following DSS treatment. 

  There are several NOS-independent mechanisms of NO formation in biological tissues [42]. One 

of the mechanisms generating NO in the body is the reduction of nitrite in the gastric lumen and 

colon where acidic and anaerobic conditions are responsible for NO formation, respectively. 

Besides the NOS-dependent pathway, this NOS-independent pathway provides an important 

alternative source supplying NO to lesions where NOS activity is impaired [33]. Ourselves and 

others previously showed that oral nitrite elicits its beneficial effects on experimental diseased 

states such as hypertension and diabetic kidney [22,43] through the bioactive conversion of nitrite 

to NO in the stomach and peripheral tissues by non-enzymatic reductions. The recent growing body 

of evidence regarding the beneficial effects of oral or dietary nitrite on physiologic and pathological 

conditions has been well demonstrated.  

  In the present study, from the standpoint of therapeutic intervention for acute experimental colitis, 

we used high dose of oral nitrite (25 mM ≈ 1.73 g/L) far from what can be achieved through dietary 

consumption. We therefore evaluated unfavorable side effects on blood pressure and Met Hb 

formation after oral NaNO2 intake, revealing no effect on the blood pressure (Table 2), but a 

significantly increased Met Hb formation found to be within a permitted limit [44] and not too toxic 

to continue the study. Because recent reports use much lower nitrite, as well as nitrate, which is 

physiologically relevant to dietary sources [13,14,45], lower doses of oral nitrite will be required to 
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attempt for a possible application to therapeutic and prophylactic use in future.  

  Another issue to be considered is carcinogenic property of nitrite and nitrate. Certain 

nitrosamines formed in the stomach by reaction between nitrite and naturally occurring secondary 

amines in food are known to be experimentally carcinogenic in rodents [46]. Although a causal 

relationship between nitrite and nitrate exposure and human cancer has not been unequivocally 

demonstrated [47], there is limitation of this study with respect to carcinogenicity of oral nitrite in 

that we deal with acute phase of experimental colitis. Whereas, data regarding carcinogenicity of 

oral or dietary nitrite and nitrate should be accumulated using as lower dose of nitrite and nitrate as 

possible. 

 

  In summary, the results of the current study demonstrate that oral nitrite significantly ameliorate 

DSS-treated experimental colitis by supplying nitrite-derived NO instead of impaired colonic NOS 

activity, consequently inhibiting inflammatory process of DSS-treated experimental colitis 
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Legends 

Table 1  Averaged amounts of supplemented NaNO2 and DSS. 

  There was no difference in total amounts of supplemented NaNO2 between NaNO2-treated and 

NaNO2+DSS-treated groups, and no difference in total amounts of supplemented DSS between the 

DSS-treated and NaNO2+DSS-treated groups. Data represent mean (n=8-10/group) ± S.E.  

 

 

Table 2  Effect of NaNO2 on blood pressure and heart rate 

  The dose of oral NaNO2 used in the present study had no effect on the systolic blood pressure 

(SBP) and heart rate (HR) both at day 3 and 7 (non-treated versus NaNO2-treated, DSS-treated 

versus NaNO2+DSS-treated). DSS significantly reduced systolic blood pressure irrespective of with 

or without NaNO2 treatment (non-treated versus DSS-treated, NaNO2-treated versus 

NaNO2+DSS-treated). These data were analyzed with two-way ANOVA (NaNO2 intake and DSS 

intake as main effects). Data represent mean (n=8-10/group) ± S.E. NS ; no significance. 

 

 

 

Table 3  Effect of NaNO2 on Methemoglobin level 

  Oral NaNO2 had no impact on Hb levels between non-treated and NaNO2-treated mice, while 

DSS significantly decreased Hb levels (non-treated versus DSS-treated) and improved with oral 
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NaNO2 (DSS-treated versus NaNO2+DSS-treated). Methemoglobine (Met Hb) formation at day 7 

was significantly more induced in non-treated and DSS-treated mice with NaNO2 than without 

NaNO2. These data were analyzed with two-way ANOVA (NaNO2 intake and DSS intake as main 

effects). Data represent mean (n=8-10/group) ± S.E.  aP<0.05 versus non-treated group. bP<0.05 

versus NaNO2-treated group. cP<0.05 versus DSS-treated group. NS; no significance. 

 

 

Figure 1 

Experimental protocol for DSS-treated colitis in mice. Experimental colitis was induced in ICR 

mice by administrating 2.5-3.0% DSS in drinking water ad libtum over the experimental period. 

Sodium nitrite (NaNO2) was administered orally in drinking water at 25 mmol/l ad libtum over the 

experimental period. In group 4, the first administration of NaNO2 was given 1 day before the 

administration of DSS. ‡; Based on our preliminary study, suggesting that DSS-treated mice drink 

15% more water than DSS+NaNO2-treated mice over the experimental period. Therefore, group 4 

mice were given 3.0% DSS in drinking water.  

 

 

Figure 2 

  Effects of DSS and/or NaNO2 supplementation on the disease active index (DAI) over the 

experimental time-course. DSS induced a significant increase in DAI of DSS-treated mice at day 4. 
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Treatment of DSS-treated mice with NaNO2 significantly attenuated the development of the colonic 

inflammatory process from day 6 up to the end of the experimental period. Data represent mean 

(n=8-10/group) ± S.E. aP<0.05 versus non-treated group. bP<0.05 versus NaNO2-treated group. 

cP<0.05 versus DSS-treated group.  

 

 

Figure 3 

  Effects of DSS and/or NaNO2 supplementation on hematocrit (Ht), and colon length in the DSS 

model of mouse colitis. Treatment with NaNO2 significantly attenuated the decrease both in Ht (A) 

and in colon length at day 7 (B and C). Data represent mean (n=8/group) ± S.E. aP<0.05 versus 

non-treated group. bP<0.05 versus NaNO2-treated group. cP<0.05 versus DSS-treated group.  

 

 

Figure 4 

Histological findings of colitis in mice. Excised colons at day 7 were stained with hematoxylin 

and eosin (original magnification ×100): non-treated group (A), NaNO2-treated group (B), 

DSS-treated group (C), DSS+NaNO2-treated group (D). Closed arrow shows the crypt loss, and 

open arrow shows inflammatory cell infiltration. The histological scores [21] for eight independent 

sections were determined (E). DSS-treated mice showed a significant increase in the histological 

scores compared with non-treated mice. Treatment of mice with DSS and NaNO2 significantly 
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reduced the histological scores compared with DSS-treated mice. Data represent mean (n=8/group) 

± S.E. aP<0.05 versus non-treated group. bP<0.05 versus NaNO2-treated group. cP<0.05 versus 

DSS-treated group.  

 

 

Figure 5 

Effects of DSS and/or NaNO2 supplementation on colonic MPO activity at day 7. DSS-treated 

mice showed a significant increase in the colonic MPO activity compared with non-treated mice. 

Treatment of mice with DSS and NaNO2 significantly reduced the colonic MPO activity compared 

with DSS-treated mice. Data represent mean (n=8/group) ± S.E. aP<0.05 versus non-treated group. 

bP<0.05 versus NaNO2-treated group. cP<0.05 versus DSS-treated group.  

 

 

Figure 6 

  Nitrite and nitrate levels in the colon and plasma of each of the four groups at day 3 (A, B, C, D) 

and day 7 (E, F, G, H). At day 3, DSS-treated mice exhibited a reduced colonic nitrite level 

compared with non-treated and NaNO2-treated mice, whereas this decrease in colonic nitrite levels 

recovered to the control levels of non-treated mice with NaNO2 supplementation (A). At day 7, 

DSS-treated mice exhibited an increased colonic nitrite level compared with non-treated mice. 

Additional NaNO2 supplementation to DSS-treated mice further increased colonic nitrite level 
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compared with DSS-treated mice (E). No difference in plasma nitrite levels was observed between 

the four groups at day 3 and day 7 (C and G). At day 3, DSS treatment significantly reduced nitrate 

levels in colon and plasma (B and D), while no significant reduction of colonic and plasma nitrate 

levels were found at day 7 (F and H).Data represent mean (n=8-10/group) ± S.E. Data represent 

mean (n=8/group) ± S.E. aP<0.05 versus non-treated group. bP<0.05 versus NaNO2-treated group. 

cP<0.05 versus DSS-treated group.  

 

 

Figure 7 

Effects of DSS and/or NaNO2 supplementation on colonic TNF-α, HO-1, and iNOS expressions 

at day 3 and day 7. Colonic TNF-α, HO-1 and iNOS expressions at day 3 in Western blot (A), and 

at day 7 in Western blot (B). Densitometric quantification of colonic TNF-α, HO-1 and iNOS at 

day 3 (C, E, and G, respectively), and at day 7 (D, F, and H, respectively). At day 3, a significant 

increase in the colonic TNF-α expression was observed in colitis mice, which was reversed to 

control level by NaNO2 supplementation (A, C). On the other hand, there was no significant 

difference in the colonic iNOS and HO-1 expressions between non-treated control and DSS-treated 

mice (A, E, G). At day 7, significant increases in all of these proteins were observed in colitis mice, 

which were almost reversed to control levels by oral NaNO2 supplementation (B, D, F, H). Data 

represent β-actin standardized mean (n=8/group) ± S.E. aP<0.05 versus non-treated group. bP<0.05 

versus NaNO2-treated group. cP<0.05 versus DSS-treated group.  
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Group Non-treated NaNO2-treated       DSS-treated       NaNO2+DSS-treated

NaNO2 intake (mg/mouse/day) - 6.4 ± 0.1                    - 7.2 ± 0.3 
DSS intake (mg/mouse/day) - - 245.6 ± 28.4 248.6 ± 11.1 

Table 1  Averaged amounts of supplemented NaNO2 and DSS

There was no difference in total amounts of supplemented NaNO2 between NaNO2-treated and NaNO2+DSS-
treated groups, and no difference in total amounts of supplemented DSS between the DSS-treated and 
NaNO2+DSS-treated groups. Data represent mean (n=8-10/group) ± S.E.



Group                     Non-treated           NaNO2-treated        DSS-treated        NaNO2+DSS-treated

At day 3                                                                                                                     
SBP (mmHg)            98.1 ± 6.0            99.4 ± 4.3             79.1 ± 6.3            78.9 ± 6.9                 NS                 P = 0.0003              NS                 
HR (beats/min)      498.0 ± 23.4          496.1 ± 27.0           466.0 ± 27.4          524.8 ± 24.5                 NS                      NS NS

At day 7
SBP (mmHg)             98.3 ± 6.0            97.4 ± 5.6             82.3 ± 6.6            85.3 ± 7.0                NS                 P = 0.02                  NS
HR (beats/min)       479.5 ± 15.0          478.8 ± 41.4           437.9 ± 24.1          493.1 ± 11.6 NS                      NS NS

Table 2  Effect of NaNO2 on blood pressure and heart rate
Two-way ANOVA

Main effects                       Interaction
NaNO2 intake (N)     DSS intake (D)      N × D 

The dose of oral NaNO2 used in the present study had no effect on the systolic blood pressure (SBP) and heart 
rate (HR) both at day 3 and 7 (non-treated versus NaNO2-treated, DSS-treated versus NaNO2+DSS-treated). 
DSS significantly reduced systolic blood pressure irrespective of with or without NaNO2 treatment (non-
treated versus DSS-treated, NaNO2-treated versus NaNO2+DSS-treated). These data were analyzed with two-
way ANOVA (NaNO2 intake and DSS intake as main effects). Data represent mean (n=8-10/group) ± S.E. 
NS ; no significance.



Group                     Non-treated           NaNO2-treated        DSS-treated        NaNO2+DSS-treated

At day 7   

Hb (g/dL)                15.9 ± 0.5 15.8 ± 0.7               9.0 ± 0.3a,b 13.7 ± 0.6c P = 0.0001        P = 0.001         P = 0.0007
Met Hb (g/dL)           0.2 ± 0.0              0.4 ± 0.1               0.1 ± 0.0                   0.3 ± 0.1                  P = 0.0001 NS                     NS                                                                                          
Met Hb (%)               1.3 ± 0.2              2.3 ± 0.3               1.4 ± 0.2                   2.4 ± 0.5                  P = 0.002                NS                     NS 

Table 3 Effect of NaNO2 on Methemoglobin level
Two-way ANOVA

Main effects                       Interaction
NaNO2 intake (N)     DSS intake (D)      N × D 

Oral NaNO2 had no impact on Hb levels between non-treated and NaNO2-treated mice, while DSS 
significantly decreased Hb levels (non-treated versus DSS-treated) and improved with oral NaNO2 (DSS-
treated versus NaNO2+DSS-treated). Methemoglobine (Met Hb) formation at day 7 was significantly more 
induced in non-treated and DSS-treated mice with NaNO2 than without NaNO2. These data were analyzed 
with two-way ANOVA (NaNO2 intake and DSS intake as main effects). Data represent mean (n=8-10/group) 
± S.E. aP<0.05 versus non-treated group. bP<0.05 versus NaNO2-treated group. cP<0.05 versus DSS-treated 
group. NS; no significance.
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