Long Chain N-Vanillyl-Acylamides from Capsicum Oleoresin

Kenji Kobata, ^{†, ‡} Kazumi Saito, [†] Hitomi Tate, [†] Aki Nashimoto, [†] Hiromi Okuda, [†] Ikue Takemura, [†] Ken Miyakawa, [§] Masayoshi Takahashi, [§] Kazuo Iwai, [¶] and Tatsuo Watanabe *^{, †}

[†]School of Food and Nutritional Sciences and Global COE Program, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan, [‡]Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan, [§]S&B Foods Inc., 38-8 Miyamoto-cho, Itabashi-ku, Tokyo 174-8651, Japan, and [¶]Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Kyoto 606-8502, Japan

Title running header:

LCNVAs from Capsicum oleoresin

* Corresponding author. Tel: +81-54-264-5543. Fax: +81-54-264-5550. E-mail: watanbt@u-shizuoka-ken.ac.jp

- 1 Abstract

3	N-Vanillyl-acylamides (NVAs) naturally occur as capsaicinoids in Capsicum plants.		
4	NVAs with a longer chain acyl moiety (LCNVAs) have been developed as attractive		
5	tools for medicinal usage because of their capsaicin-like bioactive and physiological		
6	properties, without harmful irritancy. In this study, we isolated four LCNVAs from		
7	Capsicum oleoresin. Their structures were determined to be N-vanillyl-hexadecanamide		
8	(palvanil, 2), <i>N</i> -vanillyl-octadecanamide (stevanil, 3), <i>N</i> -vanillyl-9 <i>E</i> -octadecenamide		
9	(olvanil, 4), and <i>N</i> -vanillyl-9 <i>E</i> ,12 <i>E</i> -octadecadienamide (livanil, 5) by spectroscopic		
10	analysis and by GC-MS analysis of their methanolysis products. Furthermore, the		
11	existence of two LCNVAs in oleoresin was suggested: N-vanillyl-tetradecanamide		
12	(myrvanil, 1) and <i>N</i> -vanillyl-9 <i>E</i> ,12 <i>E</i> ,15 <i>E</i> -octadecatrienamide (linvanil, 6). The contents		
13	of these LCNVAs and the major capsaicinoids—capsaicin and dihydrocapsaicin—in		
14	three Capsicum oleoresins and the fresh fruits of two hot peppers were measured by an		
15	LC-MS/MS system. The contents ratio of the total LCNVAs, except for myrvanil,		
16	versus the capsaicin in the oleoresins $(0.1 - 41\%)$ was significantly larger than that in		
17	fresh fruits (<0.01%). The composition of these LCNVAs in each oleoresin was similar		
18	to that of fatty acids in the oil fraction of each oleoresin. We observed no relationship		
19	between the composition of these LCNVAs in the fresh fruits.		
20			
21	Keywords		
22			
23	capsaicinoids, long chain N-vanillyl-acylamides (LCNVAs), olvanil, Capsicum		
24	oleoresin, LC-MS/MS		

- 26 Introduction

28	When consuming <i>Capsicum</i> fruits, the burning sensation (pungency in the mouth
29	or irritation of the skin and mucosa) is caused by the presence of capsaicinoids.
30	Capsaicinoids is a general term for a group of N-vanillyl-acylamides (NVAs) (1). The
31	acyl chain length of naturally-occurring NVAs ranges from 8 to 10 carbons (2). The
32	most abundant NVAs in nature are capsaicin (CAP) and its dihydro analog,
33	dihydrocapsaicin (DC). Studies on the relationship between the acyl chain length and
34	the pungency of NVAs revealed that a chain length of around 9 carbons, such as CAP
35	and DC, causes the strongest sensation of pungency in humans $(3, 4)$. NVAs with a
36	longer or shorter acyl chain than CAP have less pungency, and NVAs with a chain
37	length of more than 18 carbons chain length do not generate any stimulus. The burning
38	sensation caused by CAP is induced by the direct activation of a non-selective cation
39	channel-transient receptor potential vanilloid 1 (TRPV1) -which is located at the end
40	of sensory nerves (5). It has been revealed that several physiological activities caused
41	by CAP are also related to the activation of TRPV1 (6).
42	Long acyl chain NVAs (LCNVAs) have been developed as synthetic CAP analogs
43	with CAP-like physiological activities and with no, or less, harmful stimuli (7). Since
44	the late 1980s, olvanil, N-vanillyl-9E-octadecenamide, has mostly been studied as an
45	attractive LCNVA because of its high CAP-like activities: it is anti-inflammatory (8),
46	anti-nociceptive (9) , and it enhances adrenaline secretion (10) , despite its lack of
47	irritancy or pungency. Furthermore, several studies have shown that the potency of
48	olvanil to activate TRPV1 is comparable to that of CAP (5, 11, 12). The paradoxical
49	relationship between the high potency of olvanil to activate TRPV1 and its lack of
50	pungency might be due to its lower accessibility to TRPV1 in the tongue owing to its

51	higher lipophilicity than CAP (12). LCNVAs with ubiquitously occurring natural fatty
52	acid moieties, such as stearic (C18:0), linoleic (C18:2), and linolenic (C18:3) acids,
53	have been developed as stevanil, livanil, and linvanil, respectively (13-15). LCNVAs
54	with arachidonic (C20:4) and docosahexanoic (C22:6) acids have also been investigated
55	(16, 17).
56	In the course of our survey on various capsaicinoids from natural sources, we
57	found several LCNVAs in a foodstuff commonly used as a seasoning, Capsicum
58	oleoresin. The six LCNVAs were identified to be myrvanil, palvanil, stevanil, olvanil,
59	livanil, and linvanil (Figure 1) by spectroscopic analysis together with their chemical
60	derivatization and/or by comparison of the data with authentic compounds. The contents
61	of these LCNVAs in three oleoresins and the fruits of two hot peppers were determined
62	by an LC-MS/MS analysis. On the basis of the relationship between the contents of the
63	LCNVAs and the fatty acid composition of the oleoresins and the fruits, we discussed
64	the origin of the LCNVAs in the oleoresins.
65	
66	
67	Materials and Methods
68	
69	Materials
70	Three types of <i>Capsicum</i> oleoresin (A—C) were obtained from a Chinese market.
71	The fresh fruits of Capsicum annuum cv. Takanotsume and C. chinense cv. Habanero
72	were harvested from the experimental farm at the University of Shizuoka, Japan.
73	Authentic capsaicin and dihydrocapsaicin were purchased from Sigma (St. Louis, MO,
74	USA). Authentic LCNVAs were prepared according to a previous report (18). The other
75	reagents were of guaranteed grade.

77 Apparatus

78	¹ H- and ¹³ C-NMR spectra (tetramethylsilane was used as the internal standard)
79	were recorded on a JEOL α -400 instrument (JEOL, Tokyo, Japan) at 399.65 and 100.40
80	MHz, respectively. LC-APCI-MS/MS analysis was performed with the API2000
81	LC-MS/MS system (Applied Biosystems, Carlsbad, CA, USA) equipped with a
82	semi-micro HPLC system (Nanospace SI-1, Shiseido, Tokyo, Japan). GC-MS analysis
83	was performed with the Agilent 6890 GC & 5975 MSD system (Agilent Technologies,
84	Santa Clara, CA, USA).
85	
86	Isolation of LCNVAs from Capsicum oleoresin
87	Capsicum oleoresin (Sample A, 87.8 g) was extracted with MeOH (200 mL \times 4) to
88	obtain an LCNVA-containing extract (8.7 g). The extract was chromatographed on a
89	silica gel column (70 mm i.d. \times 200 mm) with the stepwise elution of <i>n</i> -hexane and
90	EtOAc [<i>n</i> -hexane/EtOAc = 90:10 (1 L, Fr. 1 and 2) \longrightarrow 80:20 (1 L, Fr. 3 and 4) \longrightarrow
91	70:30 (1 L, Fr. 5 and 6) —> 60:40 (1 L, Fr. 7 and 8) —> 50:50 (3.5 L, Fr. 9-15)]. Two
92	fractions (Fr. No. 12 and 13) were as the LCNVAs-containing fractions. Fr. No.12 was
93	chromatographed with an MPLC system (Yamazen Co., Osaka, Japan) using a reversed
94	phase silica gel column (UltraPack ODS-50B, 26 mm i.d. \times 300 mm, Yamazen) with the
95	stepwise elution of MeOH and water [70% MeOH (100 mL) \longrightarrow 80% MeOH (900 mL)
96	\longrightarrow 85% MeOH (500 mL) \longrightarrow 90% MeOH (500 mL)]. The 80% MeOH elution was
97	purified by an HPLC system (Shimadzu, Kyoto, Japan) using a reversed phase silica gel
98	column (J'sphare ODS-H80, 20 mm i.d. \times 150 mm, YMC, Kyoto, Japan) with 95%
99	MeOH to attain compound 5 (53.0 mg). Further purification of the 90% MeOH elution
100	by the same HPLC conditions yielded compound 3 (5.7 mg). The same HPLC system

101	equipped with a recycle valve (HPV-Rc, GL Sciences Inc., Tokyo, Japan) enabled the
102	isolation of compound 2 (23.8 mg) and compound 4 (12.4 mg) from the 85% MeOH
103	elution.
104	Fr. No. 13 was chromatographed with the same MPLC conditions as described
105	above. The fraction eluted with 85% MeOH was subjected to the same HPLC
106	conditions to yield a combination of compounds 1 and 6 (0.6 mg).
107	
108	Compound 2 (<i>N</i> -vanillyl-hexadecanamide, palvanil): colorless amorphous;
109	positive-ion APCI-MS: m/z 392 [M+H] ⁺ , 268, 256, 137; ¹ H-NMR δ 6.86 (1H, d), 6.80
110	(1H, d), 6.75 (1, dd), 5.71 (1H, br, NH), 4.35 (2H, d), 3.87 (3H, s, OMe), 2.19 (2H, t),
111	1.63 (2H, quint), 1.25 (24H, m), 0.88 (3H, t); ¹³ C-NMR δ 173.0, 146.7, 145.1, 130.4,
112	120.8, 114.4, 110.7, 55.9, 43.5, 36.9, 31.9, 29.7 (multiplet), 29.6, 29.5, 29.4, 29.4, 29.3,
113	25.8, 22.7, 14.1.
114	Compound 3 (<i>N</i> -vanillyl-octadecanamide, stevanil): colorless amorphous;
115	positive-ion APCI-MS: m/z 420 [M+H] ⁺ , 296, 284, 137; ¹ H-NMR δ 6.86 (1H, d), 6.80
116	(1H, d), 6.75 (1, dd), 5.63 (1H, br, NH), 4.35 (2H, d), 3.88 (3H, s, OMe), 2.19 (2H, t),
117	2.01 (4H, m), 1.65 (2H, m), 1.28 (20H, m), 0.88 (3H, t); ¹³ C-NMR δ 172.9, 146.7, 145.1,
118	130.4, 120.8, 114.3, 110.7, 55.9, 43.5, 36.9, 31.9, 29.8, 29.7, 29.5, 29.3 (multiplet), 29.2,
119	27.2, 27.2, 25.8, 22.7, 14.1.
120	Compound 4 (N-vanillyl-9E-octadecenamide, olvanil): colorless oil; positive-ion
121	APCI-MS: <i>m</i> / <i>z</i> 418 [M+H] ⁺ , 294, 282, 137; ¹ H-NMR δ 6.86 (1H, d), 6.80 (1H, d), 6.75
122	(1, dd), 5.66 (1H, br, NH), 5.34 (2H, m), 4.35 (2H, d), 3.87 (3H, s, OMe), 2.19 (2H, t),
123	1.63 (2H, quint), 1.25 (24H, m), 0.88 (3H, t); ¹³ C-NMR δ 172.9, 146.7, 145.1, 130.4,
124	130.0, 129.7, 120.8, 114.4, 110.7, 55.9, 43.5, 36.9, 31.9, 29.8, 29.7, 29.5, 29.3, 29.3,
125	29.3, 29.3, 29.2, 27.2, 27.2, 25.8, 22.7, 14.1.

- 126 Compound 5 (N-vanillyl-9E,12E-octadecadienamide, livanil): colorless oil; positive-ion APCI-MS: m/z 416 [M+H]⁺, 292, 280, 137; ¹H-NMR δ 6.86 (1H, d), 6.80 127 (1H, d), 6.75 (1, dd), 5.77 (1H, br, NH), 5.35 (4H, m), 4.34 (2H, d), 3.87 (3H, s, OMe), 128 129 2.77 (2H, t), 2.19 (2H, t), 2.04 (4H, m), 1.63 (2H, quint), 1.35 (14H, m), 0.89 (3H, t); ¹³C-NMR δ 173.0, 146.7, 145.1, 130.3, 130.2, 130.0, 128.1, 127.9, 120.8, 114.4, 110.7, 130 55.9, 43.5, 36.8, 31.5, 29.6, 29.4, 29.3, 29.3, 29.2, 29.1, 27.2, 25.8, 25.6, 22.6, 14.1. 131 132 133 Methanolysis of LCNVAs for GC-MS analysis 134 A small amount (ca. 0.5 mg) of each of the compounds (2-5) and the mixture of compounds 1 and 6 was dissolved in ca. 1 mL of MeOH/conc. HCl (7:3); they were 135 136 then heated at 100°C for 20 h. After extraction with *n*-hexane, an aliquot of the *n*-hexane fraction was subjected to GC-MS analysis. The GC/MS conditions were as 137 138 follows: column, HP-5MS, 0.25 mm i.d. \times 30 m (Agilent Technology); injector
- temperature, 260°C; oven temperature, initial temperature, 160°C increased at 3°C/min
- 140 to 240°C; mobile phase, He, 2 mL/min; injection, splitless; injection vol., 1 μL. The
- 141 operation of the apparatus was performed with the ChemStation software (Agilent), and
- 142 the data base analysis was by the NIST05.
- 143

144 LC-MS/MS quantification of LCNVAs in samples

Each of the *Capsicum* oleoresins (A, 1.0 g; B, 1.4 g; C, 2.9 g) was extracted with MeOH (10 mL \times 3). The MeOH fractions were dried by evaporation; the residues were

again dissolved and diluted with MeOH containing 0.1% AcOH for LC-MS/MS

analyses.

The fresh fruits of Habanero (20.6 g) and Takanotsume (10.2 g) were freeze-dried
and their seeds and calyces were removed. The residues (4.14 g Habanero and 6.24 g

151	Takanotsume) were ground and then soaked with EtOAc (41.4 mL for Habanero and	
152	62.4 mL for Takanotsume) for 1 month. After centrifugation, an aliquot of the	
153	supernatants was subjected to LC-MS/MS analysis, as described below, to quantify the	
154	LCNVAs. Another aliquot of each of the supernatants was dried to weigh the oleoresin	
155	of the pepper fruits. The weights of the Habanero and Takanotsume oleoresins were	
156	estimated to be 0.28 g and 1.09 g from 20.6 g and 10.2 g of the fresh fruits, respectively.	
157	The LC-MS/MS conditions were as follows: LC; column, a reversed phase silica	
158	gel column, Unison UKC-8, 2 mm i.d. × 150 mm (Imtakt Co., Kyoto, Japan); solvent,	
159	80—100% MeOH containing 0.1% AcOH (0—15 min), 100% MeOH containing 0.1%	
160	AcOH (15-25 min); flow rate, 0.2 mL/min; injection volume, 5µL; MS/MS; ion	
161	source, APCI; polarity, positive; detection mode, multiple reaction monitoring (MRM);	
162	detected ions, precursor/product, 306/137 for capsaicin, 308/137 for dihydrocapsaicin,	
163	364/137 for 1 , 392/137 for 2 , 420/137 for 3 , 418/137 for 4 , 416/137 for 5 , and 414/137	
164	for 6 . These ions were observed in the mass chromatogram at 9.6, 12.9, 15.7, 13.6, 11.8	
165	and 10.1 min, respectively. The optimum parameters for the detection of each	
166	compound were tuned automatically using authentic samples by the Analyst software	
167	(Applied Biosystems). The samples were analyzed in duplicate, and each compound	
168	was quantified by the use of the calibration curves from the authentic samples.	
169		
170	GC-MS analysis of fatty acid compositions in the oil fractions of samples	

171 Approximately 10 mg of each sample (the oleoresins and the pepper fruit extracts) 172 was dissolved in 25 μ L of CHCl₃ solution containing 2% (w/v) pentadecanoic acid as an 173 internal standard. The mixture was dried under a nitrogen stream. After heating the 174 residue at 100°C for 1 min with 250 μ L of 0.5 M NaOH in MeOH, the mixture was 175 further heated at 100°C for 2 min with 300 μ L of 14% BF₃ in MeOH. After petroleum

176	ether and water were added to the cooled mixture, the organic layer was collected and
177	dried under a nitrogen stream. The residue was diluted with 100 mL of <i>n</i> -hexane for
178	GC-MS analysis. The conditions of GC-MS have been described above.
179	
180	
181	Results and Discussion
182	
183	Isolation of LCNVAs from Capsicum oleoresin and the structural elucidation of the
184	LCNVAs
185	
186	It is difficult to isolate capsaicinoids from Capsicum oleoresin by chromatographic
187	methods because oleoresin mainly consists of oils (triacylglycerols). In a preliminary
188	experiment, the liquid—liquid partition of the oleoresin with methanol was determined
189	to be suitable for the extraction of natural capsaicinoids (CAP and DC) and spiked
190	olvanil quantitatively into methanol fractions. In the present study, therefore, we used
191	methanol to extract the capsaicinoids and LCNVAs from a Capsicum oleoresin sample
192	(Sample A). Silica gel TLC analysis of the extract showed a typical color development
193	with Gibbs reagent caused by phenolic compounds; the extract had a higher $R_{\rm f}$ value
194	than CAP and DC, suggesting the existence of capsaicinoids that were more
195	hydrophobic than CAP and DC.
196	We isolated four compounds $(2-5)$ from the extract by several chromatographic
197	methods (see the Materials and Methods section). Their ¹ H-NMR spectra showed the
198	typical signals of the vanillyl moiety of capsaicinoids, that is, a 1,2,4-substituted
199	benzene (δ 6.86, 6.80, and 6.75), a methylene (δ 4.35), and a methoxy group (δ 3.88)
200	attached to the benzene ring. Although the higher magnetic fields of their spectra

201	indicated the existence of long chain acyl moieties, it was difficult to estimate their	
202	exact structure from the data. However, it appeared that only one olefin group (δ_H 5.34,	
203	2H; δ_C 130.0 and 129.7) was in the acyl moiety of 4 , and two olefin groups (δ_H 5.35,	
204	4H; δ_C 130.2, 130.0, 128.1, and 127.9) were in the acyl moiety of 5 . To confirm the	
205	structures of the acyl moieties, GC-MS analyses of the methanolysis products of each of	
206	the compounds were performed. The NIST database determined the methanolysis	
207	products of $2-5$ to be methyl esters of hexadecanoic, octadecanoic, $9E$ -octadecenoic,	
208	and $9E$, $12E$ -octadecadienoic acids, respectively. From these data, the structures of $2-5$	
209	were elucidated to be N-vanillyl-hexadecanamide (palvanil), N-vanillyl-octadecanamide	
210	(stevanil), N-vanillyl-9E-octadecenamide (olvanil), and	
211	<i>N</i> -vanillyl-9 <i>E</i> ,12 <i>E</i> -octadecadienamide (livanil), respectively (Figure 1). The APCI-MS	
212	spectra on the positive mode for these compounds showed mass peaks at m/z 392 for 2,	
213	420 for 3 , 418 for 4 , and 416 for 5 . These protonated molecular ion peaks of 2 — 5	
214	strongly supported their structures. Furthermore, the common fragment ion of 2-5 at	
215	m/z 137 indicated the typical vanillylamine moiety caused by the cleavage of	
216	capsaicinoids (19, 20). All of the data for 2-5 were complete agreement with the	
217	chemically synthesized authentic compounds (18).	
218	We were also able to obtain a very small quantity of the mixture of compounds 1	
219	and 6 from the oleoresin. Although further purification of the compounds from the	
220	mixture could not be achieved, the ¹ H-NMR spectrum of the mixture conclusively	
221	indicated the existence of capsaicinoids (data not shown). GC-MS analysis of the	
222	methanolysis products of the mixture revealed the existence of methyl esters of two	
223	fatty acids, tetradecanoic and 9E,12E,15E-octadecatrienoic acids. We, therefore,	
224	estimated the structures of 1 and 6 to be <i>N</i> -vanillyl-tetradecanamide (myrvanil) and	
225	N-vanillyl-9E,12E,15E-octadecatrienamide (linvanil), respectively (Figure 1). HPLC	

226	analysis of the mixture showed two peaks whose retention times were complete
227	agreement with the chemically synthesized authentic compounds (18).
228	
229	The contents of LCNVAs in Capsicum oleoresins and fruits
230	
231	Various methods for capsaicinoids analysis have been developed in the last
232	century (2). Recently, the LC-MS technique has been applied to capsaicinoids analysis
233	(19-21). Although electronic spray ionization (ESI) has been mainly used as the
234	ionization method for capsaicinoids, we selected the atmospheric chemical ionization
235	(APCI) method for the LCNVAs analysis because APCI is effective for the ionization of
236	higher hydrophobic compounds like LCNVAs. The positive-ion APCI-MS spectra of
237	each LCNVA showed a corresponding protonated molecular mass $([M+H]^+)$ as the
238	major peak (see the Materials and Methods section). The successive fragmentation of
239	the peak for each LCNVA by neutral gas collision (MS/MS analysis) conclusively
240	showed a common peak at m/z 137, which presents the vanillyl moiety derived from the
241	cleavage of NVAs at their amide bond (19, 20). Therefore, we chose these two
242	characteristic ions (multiple reaction monitoring, MRM) on an LC-APCI-MS/MS to
243	identify and quantify each LCNVA (see the Materials and Methods section). In the
244	MRM chromatogram of the mixture of authentic CAP, DC, and LCNAVs (1-6), the
245	baseline resolution was achieved at a relatively higher quantity of the compounds (50
246	pmol each). The detection limit was approximately 0.01 pmol and the dynamic range
247	was 0.05—500 pmol under the conditions employed.
248	Table 1 shows the contents of the LCNVAs (1—6), CAP, and DC from <i>Capsicum</i>
249	oleoresin samples (A—C) and extracts from the pepper fruits (Habanero and
250	Takanotsume), measured by LC-APCI-MS/MS. In all the samples, CAP and DC were

251	the dominant components of NVAs. The total amount of CAP and DC in the dry fruits
252	of Habanero and Takanotsume were calculated as 8,380 $\mu g/g$ dw and 2,740 $\mu g/g$ dw,
253	respectively, which were within the ordinary amounts for these varieties (22). The total
254	amounts of CAP and DC in the oleoresins A and C were similar to those of the fruit
255	extract from Takanotsume. The ratio of DC to CAP in these oleoresins was also similar
256	to that observed in Takanotsume. Therefore, the oleoresins A and C might be extracts
257	from a Takanotsume-like variety.
258	The contents of LCNVAs in the samples were very small, except for oleoresin A.
259	Only negligible amount of the LCNVAs $2-6$ were detected in the fruit extracts, and the
260	amount ratios of each LCNVA to CAP were extremely small (< 0.01% each). In contrast,
261	oleoresin A contained a large amount of total LCNVAs (2—6), 2,370 μ g/g, and its
262	amount ratio to CAP was over 41%. Although the amounts of $2-6$ in the other
263	oleoresins (samples B and C) were also very small, their total amount ratios to CAP
264	were obviously remarkable when compared to those of the fruit extracts (0.3% for B
265	and 0.1% for C). On the other hand, N-vanillyl-tetradecanamide (myrvanil, 1) and
266	N-vanillyl-hexadecanamide (palvanil, 2) were significantly abundant in the fresh pepper
267	fruit extracts. Therefore, it is possible that intact fruits of Capsicum plants naturally
268	possess these LCNVAs (1 and 2). The other LCNVAs are probably generated and/or
269	increased in Capsicum oleoresin by an undetermined mechanism.
270	
271	The relationship between the composition of LCNVAs and fatty acids in Capsicum
272	oleoresins and fruits
273	
274	The oil fraction of plants or their products primarily consist of glyceric esters of
275	fatty acids (triacylglycerol). Table 2 shows the fatty acid composition of the oil

fractions in the oleoresins and pepper fruits, measured by GC-MS analysis after
methanolysis of the oil fractions. The richest fatty acid in all the samples was linoleic
acid (C18:2), followed by oleic (C18:1) or palmitic (C16:0) acids. In terms of
composition, the samples was similar to each other and also to the compositions of
common peppers (22). Therefore, the oleoresins we used must be the products
processed by simple extraction from some peppers.

282 Figure 2 shows the comparison of the percent ratios of the fatty acid composition 283 and LCNVAs content for the samples. In oleoresin A, the pattern of the ratio of fatty 284 acids closely resembled those of LCNVAs. The patterns for oleoresins B and C were 285 also alike, especially when myristic acid (C14:0) and myrvanil (1) were excluded. On 286 the other hand, no resemblance was observed with the fruit samples even when C14:0 287 and 1 were excluded. These results suggest that myrvanil (1) and palvanil (2) naturally 288 occur in intact peppers, while the others (3-6) would be generated and accumulate in the oil fraction extracted from the peppers and that the generation of LCNVAs would be 289 290 affected by the fatty acid composition of the oil fraction. This suggestion was consistent 291 with the close resemblance between the patterns of LCNVAs and fatty acids that was 292 observed in oleoresin A, the sample with highest accumulated amount of LCNVAs. 293 There might be a positive correlation between the amount of LCNVAs and the storage 294 and/or maturation period of oleoresin.

Transacylation of triacylglycerols with natural capsaicinoids like CAP and DC to generate LCNVAs probably occurred spontaneously during the storage of the *Capsicum* oleoresins. A nucleophilic amine could react with a carboxylic group, such as glyceride, to generate an amide in ambient conditions. Therefore, the vanillylamine in the pepper fruits could also be a possible source of the vanillyl moiety of LCNVAs. This possibility could be supported by our previous report on the existence of olvanil in olive oil

301	flavored with <i>Capsicum</i> pepper (23). A trace amount of linvanil (6) was detected despite
302	the absence of linolenic acid (C18:3) in the oleoresins. The acyl moiety of this LCNVA
303	might be donated from an extremely small amount of linolenic acid that would be
304	undetectable by GC-MS analysis. Further investigation into the mechanism responsible
305	for the generation of LCNVAs in <i>Capsicum</i> oleoresin is now in progress.
306	We found several LCNVAs from natural sources. These LCNVAs might be
307	spontaneously generated from the major capsaicinoids (CAP and DC) and plant oils
308	during the storage and/or maturation of these sources.
309	

310	Literature	Cited

Appendino, G. Capsaicin and capsaicinoids. In *Modern Alkaloids*, Ernesto
 Fattorusso, E., Taglialatela-Scafati, O., Eds.; Wiley-VCH: Weinheim, Germany, 2008;
 pp 73—109.

- 315 2. Govindarajan, V. S.; Rajalakshmi, D.; Chand, N., Capsicum-production,
 316 technology, chemistry, and quality. Part IV. Evaluation of quality. *CRC Crit. Rev. Food*317 *Sci. Nutr.* 1987, 25, 185–282.
- 318 3. Watanabe, T.; Kawada, T.; Kato, T.; Harada, T.; Iwai, K. Effects of capsaicin
 319 analogs on adrenal catecholamine secretion in rats. *Life Sci.* 1994, *54*, 369—374.
- 320 4. Todd, P. H. Jr.; Bensinger, M. G.; Biftu, T. Determination of pungency due to
 321 capsicum by gas-liquid chromatography. *J. Food Sci.* 1977, *42*, 660—680.
- 322 5. Caterina, M. J.; Schumacher, M. A.; Tominaga, M.; Rosen, T. A.; Levine, J.

323 D.; Julius, D. The capsaicin receptor: a heat-activated ion channel in the pain pathway.
324 *Nature* 1997, *389*, 816—824.

- 325 6. Szallasi, A.; Blumberg, P. M. Vanilloid (Capsaicin) receptors and mechanisms.
 326 *Pharmacol. Rev.* 1999, *51*, 159—212.
- 327 7. Szallasi, A.; Di Marzo, V. New perspectives on enigmatic vanilloid receptors.
 328 *Trends Neurosci.* 2000, *23*, 491–497.
- 329 8. Brand, L.; Berman, E.; Schwen, R.; Loomans, M.; Janusz, J.; Bohne, R.;
- 330 Maddin, C.; Gardner, J.; Lahann, T.; Farmer, R.; Jones, L.; Chiabrando, C.; Fanelli, R.
- 331 NE-19550: a novel, orally active anti-inflammatory analgesic. *Drugs. Exp. Clin. Res.*332 **1987**, *13*, 259—265.
- 333 9. Campbell, E. A.; Dray, A.; Perkins, M. N. Comparison of capsaicin and
 olvanil as antinociceptive agents in vivo and in vitro. *Br. J. Pharmacol.* 1989, *98*, 907P.

Watanabe, T.; Sakurada, N.; Kobata, K. Capsaicin-, resiniferatoxin-, and
olvanil-induced adrenaline secretions in rats via the vanilloid receptor. *Biosci. Biotechnol. Biochem.* 2001, 65, 2443—2447.

- Ralevic, V.; Jerman, J. C.; Brough, S. J.; Davis, J. B.; Egerton, J.; Smart, D.
 Pharmacology of vanilloids at recombinant and endogenous rat vanilloid receptors. *Biochem. Pharmacol.* 2003, 65, 143–151.
- 341 12. Iida, T.; Moriyama, T.; Kobata, K.; Morita, A.; Murayama, N.; Hashizume, S.;
- Fushiki, T.; Yazawa, S.; Watanabe, T.; Tominaga, M. TRPV1 activation and induction of
 nociceptive response by a non-pungent capsaicin-like compound, capsiate. *Neuropharmacology* 2003, *44*, 958—967.
- 345 13. Kim, K. M.; Kawada, T.; Ishihara, K.; Inoue, K.; Fushiki, T. Swimming
 346 capacity of mice is increased by oral administration of a nonpungent capsaicin analog,
 347 stearoyl vanillylamide. *J. Nutr.* **1998**, *128*, 1978—1983.
- 348 14. Di Marzo, V.; Lastres-Becker, I.; Bisogno, T.; De Petrocellis, L.; Milone, A.;
 349 Davis, J. B.; Fernandez-Ruiz, J. J. Hypolocomotor effects in rats of capsaicin and two
- long chain capsaicin homologues. *Eur. J. Pharmacol.* **2001**, *420*, 123–131.

Melck, D.; Bisogno, T.; De Petrocellis, L.; Chuang, H.; Julius, D.; Bifulco,
M.; Di Marzo, V. Unsaturated long-chain N-acyl-vanillyl-amides (N-AVAMs): vanilloid
receptor ligands that inhibit anandamide-facilitated transport and bind to CB1
cannabinoid receptors. *Biochem. Biophys. Res. Commun.* 1999, 262, 275–284.

- 355 16. Sharkey, K. A.; Cristino, L.; Oland, L. D.; Van Sickle, M. D.; Starowicz, K.;
- Pittman, Q. J.; Guglielmotti, V.; Davison, J. S.; Di Marzo, V. Arvanil, anandamide and
 N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and
- 358 vanilloid TRPV1 receptors in the ferret. *Eur. J. Neurosci.* **2007**, *25*, 2773—2782.
- 17. Tuoya; Baba, N.; Shimoishi, Y.; Murata, Y.; Tada, M.; Koseki, M.; Takahata,

K. Apoptosis induction by dohevanil, a DHA substitutive analog of capsaicin, in MCF-7
cells. *Life Sci.* 2006, 78, 1515—1519.

- Kobata, K.; Kobayashi, M.; Tamura, Y.; Miyoshi, S.; Ogawa, S.; Watanabe, T.
 Lipase-catalyzed synthesis of capsaicin analogs by transacylation of capsaicin with
 natural oils or fatty acid derivatives in n-hexane. *Biotechnol. Lett.* 1999, *21*, 547–550.
- Barbero, G. F.; Palma, M.; Barroso, C. G. Pressurized liquid extraction of
 capsaicinoids from peppers. J. Agric. Food Chem. 2006, 54, 3231–3236.
- 367 20. Thompson, R. Q.; Phinney, K. W.; Sander, L. C.; Welch, M. J. Reversed-phase
 368 liquid chromatography and argentation chromatography of the minor capsaicinoids.
 369 *Anal. Bioanal. Chem.* 2005, *381*, 1432—1440.
- Kozukue, N.; Han, J.-S.; Kozukue, E.; Lee, S.-J.; Kim, J.-A.; Lee, K.-R.;
 Levin, C. E.; Friedman, M. Analysis of Eight Capsaicinoids in Peppers and
 Pepper-Containing Foods by High-Performance Liquid Chromatography and Liquid
 Chromatography-Mass Spectrometry. *J. Agric. Food Chem.* 2005, *53*, 9172–9181.
- 374 22. Govindarajan, V. S. Capsicum-production, technology, chemistry, and quality.
 375 Part 1: History, botany, cultivation, and primary processing. *CRC Crit. Rev. Food Sci.*376 *Nutr.* 1985, *22*, 109—176.
- Watanabe, T.; Kobata, K.; Morita, A.; Iwasaki, Y. On the functionality of
 olvanil, a capsaicin analog of no or very low pungency. *Foods & Food Ingredients J. Jpn.* 2005, 210, 214–221.

- 381 Note: This work was supported by the Grant-in-Aid for Scientific Research (C)
 382 (21580152) from the JPSP, Japan, and the Global Center of Excellence (COE) program
 383 from the MEXT, Japan.
- 384

385	Figure Captions
386	
387	Figure 1. Chemical structures of capsaicinoids (capsaicin and dihydrocapsaicin) and
388	long chain N-vanillyl-acylamides (LCNVAs).
389	
390	Figure 2. Comparison of the relative contents of LCNVAs (1—6) and the fatty acid
391	(FA) composition of the oil fraction in <i>Capsicum</i> oleoresins (A—C) and fruits
392	(Habanero and Takanotsume).

Tables

Table 1. Contents of capsaicinoids (CAP and DC) and LCNVAs (1—6) in *Capsicum* oleoresins and fruit extracts

	Oleoresins, µg/g			Fruit extracts, µg/g DW	
	А	В	С	Habanero	Takanotsume
CAP	5790	3.33	6490	90500	9020
	(100)	(100)	(100)	(100)	(100)
DC	4170	2.96	4750	33400	6670
	(72)	(89)	(73)	(37)	(74)
1	19.5	0.0060	4.21	36.1	4.41
	(0.34)	(0.18)	(0.07)	(0.04)	(0.05)
2	392	0.0025	1.05	2.80	0.578
	(6.80)	(0.08)	(0.02)	(<0.01)	(<0.01)
3	45.9	0.0016	0.13	0.0155	0.0025
	(0.79)	(0.05)	(<0.01)	(<0.01)	(<0.01)
4	544	0.0007	1.02	0.0346	0.0030
	(9.40)	(0.02)	(0.02)	(<0.01)	(<0.01)
5	1370	0.0037	3.15	nd	0.0017
	(24.0)	(0.10)	(0.05)		(<0.01)
6	17.4	0.0013	0.649	0.0530	0.0009
	(0.30)	(0.04)	(0.01)	(<0.01)	(<0.01)

nd: not detected; CAP: capsaicin; DC: dihydrocapsaicin

Parentheses show the percentage content of each compound against CAP.

	Oleoresins			Fruit extracts	
	А	В	С	Habanero	Takanotsume
C12:0	nd	3	nd	nd	nd
C14:0	5	8	6	4	nd
C16:0	200	82	78	96	110
C18:0	20	15	19	20	9
C18:1	150	150	140	96	57
C18:2	750	520	470	500	770
C18:3	nd	nd	nd	nd	nd

Table 2. Fatty acid composition (mg/g) of the oil fraction in *Capsicum* oleoresins and fruit extracts

nd: not detected; C12:0: lauric acid; C14:0: myristic acid; C16:0: palmitic acid; C18:0: stearic acid; C18:1: oleic acid; C18:2: linoleic acid; C18:3: linolenic acid

Figures

Figure 1.

