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AbstractAbstractAbstractAbstract   Hyaluronan (HA) is a well-known active ingredient for cosmetic and drug applications.  

However, based on its varying molecular size, HA may have limited skin permeation.  Therefore, 

the aim of the present study was to investigate the in vitro skin permeability of HA tetrasaccharide 

(HA4).  In addition, the effects of HA4 on in vivo skin barrier function were examined.  The 

cumulative amounts of HA4 through stratum corneum (SC)-stripped skin and full-thickness skin 

after 8 h were 2109.6 µg/cm2 and 0.8 µg/cm2, respectively.  Furthermore, the cumulative amounts 

of HA4 permeated after 8 h were 784.4 ng/cm2 for a HA4 solution with a pH 4 and 70.0 ng/cm2 with 

a pH 7 on full-thickness skin.  Next, the in vivo effects of HA4 on the water content of the SC and 

transepidermal water loss (TEWL) were investigated.  The dorsal skins of hairless mice were 

irradiated to a UVA dose of 22.3 J/cm2/d, 5 times a week.  In the control group, the water content of 

the SC was decreased and TEWL and epidermal thickness were increased with UVA irradiation than 

the normal group.  However, the water content of the SC was increased in the HA4 group than that 

of the control group in the non-UVA irradiation groups.  In addition, the water content of the SC 

was increased and TEWL and epidermal thickness were decreased in the HA4 group than those of 

the control and HA groups.  These results suggest that treatment with HA4 improved skin 

functional recovery after UVA irradiation by skin penetration of HA4. 

 

Keywords:  Hyaluronan oligosaccharide � Skin permeation � Barrier function � UVA � 

Transepidermal water loss � Water content of stratum corneum 
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Introduction 

 

The stratum corneum (SC), the uppermost layer of the skin, functions as a primary barrier against the 

penetration of compounds.  When formulations are applied on the skin surface, they are generally 

permeated through the skin barrier by passive diffusion. Generally, skin permeability of lipophilic 

compounds is higher than that of hydrophilic compounds.  Molecular weight is also an index which 

affects the skin permeation profiles of compounds.  Only low molecules, usually less than 500 Da, 

can penetrate the skin membrane [8].  However, tacrolimus (804.02 Da), used in the treatment of 

atopic eczema, is reported to have a low skin permeation [1]. 

   Hyaluronan (HA), which is composed of repeated β-1,4-glucuronic 

acid-β-1,3-N-acetylglucosamine disaccharide units, is a non-sulfated glycosaminoglycan with a 

molecular weight of over 1,000 kDa.  HA is abundant in the extracellular matrix of the skin.  HA 

exists freely in extracellular matrix spaces, but is also involved in many biological processes such as 

tissue homeostasis, cell proliferation, cell migration, cell differentiation, angiogenesis, tumor biology, 

and repair processes by the interface of each protein [23].  The amount of HA in the skin is 

equivalent to 50% or more of the total amount of HA in the body.   

   HA plays different biological roles, depending on its molecular weight.  High molecular weight 

HA elicits anti-inflammatory and anti-angiogenic responses [3, 20].  In contrast, low molecular 

weight HA has been implicated in several biological processes including angiogenesis, cell 

proliferation, maturation, migration, activation of protein tyrosine kinase cascades, and inflammatory 

gene expression [5, 6, 9, 17, 18, 21, 22].  HA oligosaccharides, which are smaller than low 

molecular weight HA, up-regulate heat shock protein 72 expression [27].   

   The amount of ultraviolet (UV) A radiation reaching the earth’s surface is approximately 20 

times greater than that of UVB radiation, and solar UVA radiation contributes to photoaging and 

photocarcinogenesis.  UVB irradiation to the skin induces a variety of responses including 

erythema, hyperproliferation of keratinocytes, and skin barrier function alterations.  UVB 

irradiation also induces disruptions in epidermal permeability barrier function.  Diminished 

permeability barrier function has been reported in response to UVB; combined UVA and UVB; or 

UVC.  UV irradiation of either human or rat skin results in increased percutaneous absorption of 

xenobiotics [7].   

   Due to its strong water binding potential, HA is a well-known active ingredient for cosmetic and 
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drug applications.  Cosmetics combined with HA impede transepidermal water loss from skin by 

forming a coated skin surface.  Additionally, injectable HA fillers are well known for improving 

skin contour defects related to aging (wrinkles and lines), depressed acne scars, and other traumatic 

or congenital conditions.  However, based on its varying molecular size, skin penetration of HA 

may be limited.   

Therefore, we focused our attention on a tetrasaccharide (HA4) containing two units, with a 

single unit being -β-1,4-glucuronic acid- β-1,3-N-acetylglucosamine, and the in vitro skin 

permeability of HA4 across hairless mice skins was assessed.  In addition, the in vivo effect of HA4 

on skin function was investigated. 
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Materials and methods 

 

Materials 

 

HA4 (99.14%) (776.3 Da) were provided by Glycoscience Laboratories Inc. (Tokyo, Japan).  

High-molecular weight hyaluronan (HA) (>1200 kDa) was used.  All other chemicals and solvents 

used were analytical grade. 

 

Animals 

 

Seven-week-old male hairless mice (HR-1) were purchased from Hoshino Experiment Animal 

Center (Ibaraki, Japan).  All experiment animals had free access to food and water, and were 

housed in rooms where the lighting was automatically regulated on a 12 hour light and dark cycle.  

All animal experiments and maintenance were performed under conditions approved by the animal 

research committee of Josai University.   

 

HA4 sample preparation 

 

A test solution was prepared with 1 mL of distilled water containing HA4 at three different 

concentrations: 0.02, 0.1, and 0.5%. Additionally, pH 4 and pH 7 adjustment of 0.5% HA4 solution 

was performed using formic acid and 1.5 M ammonium acetate. 

 

Skin membrane preparations 

 

   Permeation studies were conducted with excised intact hairless mouse skin (8-10 weeks old) as a 

diffusion membrane.  To obtain SC-stripped skin, adhesive tape was applied to hairless mouse skin 

with uniform pressure.  The procedure was repeated about 20 times, until the SC was entirely 

removed from the skin. 

 

In vitro permeation experiments 
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The diffusion cell used in this study was a modified Franz type diffusion cell.  The receiver 

compartment had a volume of 5 mL, and the effective surface area was 1.77 cm2.  Donner solution 

was applied with 1 mL of distilled water containing HA4.  The receiver solution was distilled water 

(5 mL) and was stirred by a magnetic bar. The receiver solution was maintained at a temperature of 

32ºC using a thermally controlled circulating water bath.  At appropriate intervals, 300 µL aliquots 

of the receiver medium were withdrawn and immediately replaced by an equal volume of fresh 

distilled water.  Samples were frozen at -18ºC prior to assay of HA4 using LC/MS. 

 

Determination of HA4 

 

Determination of HA4 was performed using a LC/MS system.  Mass spectra were obtained using 

an LCQ DECA XP plus (Thermo Fisher Scientific Inc., MA, USA).  The electrospray interface was 

set in negative ionization mode with 10 mM ammonium acetate containing methanol (8:2).  LC/MS 

separation was done using a Paradigm MS4 (Microm Bioresources Inc., CA, USA), and performed 

on a TSK-gel ODS-80Ts column (2.0×150 mm) from TOSOH (Tokyo, Japan).  The flow rate was 

remained at 100 µL/min throughout the assay. 

 

Animal treatment and UVA irradiation 

 

Hairless mice were topically treated with either 0.1% HA or HA4 in 70% ethanol or 70% ethanol 

alone after UVA irradiation.  Hairless mice were divided into the following 4 groups (n=3 in each 

group): group 1, no treatment and no UVA irradiation (Normal/UVA(-)); group 2, vehicle application 

after irradiated with UVA (Control/UVA(+)); group 3, application of HA after irradiated with UVA 

(HA/UVA(+)); group 4, application of HA4 after irradiated with UVA (HA4/UVA(+)).  The dorsal 

skin of adult hairless mice aged 8-10 weeks was irradiated using a high performance UV 

transilluminator UVP® (Funakoshi, Tokyo, Japan).  The distance between the UV lamps and the 

dorsal skin of mice was approximately 5 cm.  Hairless mice were exposed to a UVA dose of 22.3 

J/cm2/day five times a week for three weeks.   Hairless mice were sacrificed by cervical dislocation 

after the last measurement of transepidermal water loss (TEWL), water content of the SC, and skin 

viscoelasticity.  Full thickness dorsal skins were removed and stored at -80ºC for further analysis. 
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Evaluation of skin properties 

 

All measurements were performed in triplicate for each skin, and the mean values were obtained. 

Measurement of the water content of the SC: To measure the water content of the SC, a 

Cutometer® MPA 580 (Courage+Khazaka, Cologne, Germany) was used.  The procedure was 

performed five times a week for three weeks after the course of UVA irradiation.  Measurement of 

TEWL: To measure cutaneous water evaporation, a VAPO SCAN AS-VT100RS (Asahibiomed, 

Yokohama, Japan) was used.  The procedure was performed five times a week for three weeks after 

the course of UVA irradiation. 

 

Histological procedures 

 

Cryosections were prepared from tissue samples in optimal cutting temperature (OCT) embedding 

compound.  Hairless mice skin sections (6 µm) were stained with haematoxylin and eosin (HE), 

and analyzed for structural differences using light microscopy.  Epidermal thickness was defined as 

the distance (in µm) from the top of the stratum granulosum to the bottom of the stratum basale.  

Thickness of the SC was measured from the top of the SC to the bottom.  The thickness of the 

epidermis and SC was measured at the horizontal midpoint of each visual field.  Approximately 50 

individual measurements were made along the wound margin for each histological section, and the 

mean thickness was evaluated.   

 

Data analysis 

 

Analysis was performed using Statistical Analysis SAS statistical software ver. 9.2 (SAS Institute, 

Cary, NC).  Indicated P-values were derived from a Tukey’s post-hoc multiple comparison test.   
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Results 

 

Passive skin permeation of HA4 across stripped skin and full-thickness skin 

 

The effect of the SC on skin permeation of 0.5% HA4 solution was investigated in in vitro skin 

permeation experiments.  Figure 1 shows the permeation profile of the cumulative amount of HA4 

that permeated through SC-stripped skin and full-thickness skin, and Table 1 summarizes the 

calculated permeation parameters.  The cumulative amounts of HA4 through SC-stripped skin and 

full-thickness skin after 8 h were 2110 ± 176 µg/cm2 and 0.8 ± 0.3 µg/cm2, respectively (Fig. 1).  

The flux and permeability coefficient (P) was increased in SC-stripped skin than that of 

full-thickness skin (Table 1). 

 

Figure 1 

Table 1 

 

Comparison of the effects of HA4 concentrations on the skin permeation 

 

Three different HA4 solutions (HA4 concentration; 0.02, 0.1, 0.5%) were applied to SC-stripped 

skin and full-thickness skin.  Figure 2a and b show permeation profiles of the cumulative amounts 

of various concentrations of HA4 solutions that permeated through SC-stripped skin and 

full-thickness skin, and Table 2 summarizes the calculated permeation parameters.  As shown in 

Fig. 2a, the cumulative amounts of HA4 permeated after 8 h were 58.3 ± 10.7 µg/cm2 after 

application of a 0.02% HA4 solution, 392 ± 44 µg/cm2 for a 0.1% HA4 solution, and 2365 ± 47 

µg/cm2 for a 0.5% HA4 solution on SC-stripped skin.  Figure 2b shows that the cumulative 

amounts of HA4 permeated after 8 h were 12 ± 7 ng/cm2 after application of a 0.02% HA4 solution, 

22 ± 12 ng/cm2 for a 0.1% HA4 solution, and 815 ± 319 ng/cm2 for a 0.5% HA4 solution on 

full-thickness skin.  Flux and P showed similar increases (Table 2).   

 

Figure 2 

Table 2 
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Effect of solvent pH on the in vitro skin permeation of HA4 

 

The effect of pH on skin permeation of 0.5% HA4 solution was investigated in in vitro skin 

permeation experiments.  Different HA4 solutions (pH 4 and pH 7) were applied to full-thickness 

skin.  Figure 4 shows the permeation profile of the cumulative amount of HA4 solutions with a pH 

4 and pH 7 that permeated through full-thickness skin, and Table 3 summarizes the calculated 

permeation parameters.  Fig. 3 shows that the cumulative amounts of HA4 permeated after 8 h were 

784 ± 371 ng/cm2 for a HA4 solution with a pH 4 and 70 ± 13 ng/cm2 with pH 7 on full-thickness 

skin.  Flux and P were increased in the pH 4 HA4 solution than that of the pH 7 HA4 solution 

(Table 3). 

 

Figure 3 

Table 3 

 

Effect of HA or HA4 on the measurement of water content of the SC and TEWL 

 

The effect of HA or HA4 on skin in hairless mice was assessed by water content of the SC and 

TEWL.  Regarding changes in the water content of the SC, water content in the UVA irradiation 

groups was decreased than that of the non-UVA irradiation group with UVA irradiation.  However, 

the water content of the SC was significantly increased in the HA4/UVA(+) group than that of the 

Control/UVA(+) group and HA/UVA(+) group.  In addition, the water content of the SC was 

significantly increased in the HA4/UVA(-) group than that of the Control/UVA(-) group (Fig. 4).  

TEWL was increased in the UVA irradiation groups than that of the non-UVA irradiation group with 

UVA irradiation, but TEWL were significantly decreased in the HA4/UVA(+) group than that of the 

Control/UVA(+) group and HA/UVA(+) group (Fig. 5).   

 

Figure 4 and 5 

 

Effect of HA or HA4 on skin thickness 
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The effect of HA or HA4 on skin thickness in hairless mice was assessed by measurement of the 

thickness of the epidermis and SC.  Figure 6a and b show the measurement of epidermal thickness, 

and Fig. 6c-i shows histological sections with HE staining.  Epidermal thickness was significantly 

decreased in the HA4/UVA(-) group than that of the Control/UVA(-) group, and this level was 

similar to that in the Normal group (Figure 6a).  Furthermore, epidermal thickness was significantly 

incleased in the Control/UVA(+) group and HA/UVA(+) group than that of the Normal group.  In 

addition, epidermal thickness was significantly decreased in the HA4/UVA(+) group than that of the 

Control/UVA(+) group (Fig. 6b).   

 

Figure 6 
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Discussion 

 

The barrier function of the skin is principally attributed to the SC.  HA can’t penetrate into the skin 

membrane because of high water solubility and a high average molecular weight of 100 kDa.  The 

in vitro skin permeability of HA4 was initially investigated.  As a result, HA4 has been suggested 

to cross skin by passive diffusion. 

   Various investigations have already been conducted to improve skin permeation of drugs into or 

through the SC using techniques such as application of chemical enhancers [13, 19, 28], 

sonophoresis [12], iontophoresis [25], and electrophoration [16].  The small peptide like 

arginine-vasopressin (1084.23 Da) had negligible passive permeation through rat skin, while the 

permeation rate with application of iontophoresis was much increased than the passive permeation 

rate [14].  In addition, high-molecular compounds like fluorescein isothiocyanate (FITC) -dextrans 

(FD-10) (9.6 kDa) permeated through SC-stripped skin [26].  In our study, HA4 resulted in a 

concentration dependent increase in skin permeability through SC-stripped skin and full-thickness 

skin (Fig. 2).  The cumulative amount of HA4 permeated after 8 h was 815 ± 319 ng/cm2 after 

application of 0.5% HA4 solution on full-thickness skin.  At this time, P was 26 × 10-6 ± 0.5 × 10-6 

cm/s, and the lag time was 4.6 ± 0.04 h.  The cumulative amount of HA4 permeated after 8 h was 

2365 ± 47 µg/cm2 after application of 0.5% HA4 solution on SC-stripped skin.  At this time, P was 

26 × 10-6 ± 0.6 × 10-6 cm/s, and the lag time was 2.9 ± 0.1 h.  Skin permeability was about 

2600-fold decreased in full-thickness skin than that of SC-stripped skin (Fig. 1).  However, this 

study has demonstrated that HA4 permeated through skin by passive diffusion.  The skin 

permeation of HA4 was presumed to be rate-limiting in the SC because the cumulative amount of 

HA4 was significantly increased.  Nevertheless, the lag time through SC-stripped skin was not 

drastically increased.  Consequently, HA4 was presumed to have a slow partition and diffusion.   

   In general, drug percutaneous permeation conformed to the pH-partition theory, and only 

unionized forms of drugs are able to pass through skin.  The flux of salicylic acid was dependent 

upon the vehicle pH, and the amount of salicylic acid permeation was related to the degree of 

ionization of the solute [11].  The pKa of HA is 3 [10, 29].  The unionized form of HA was 

increased in HA4 solution with a pH 4 than that of HA4 solution with a pH 7.  HA4 percutaneous 

permeation also conformed to the pH-partition theory, and the cumulative amount of HA4 was 

increased with a pH 4 than that with a pH 7 (Fig. 3).  
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   Next, the effects of HA and HA4 treatment on in vivo skin properties were verified using the 

dorsal skins on hairless mice.  It has recently been shown that irradiation of UVA on hairless mice 

increased the water content of the SC [24].  In addition, it has been reported that chronic UVB 

irradiation induces an increase in TEWL in the dorsal skin of hairless mice [2, 5].  TEWL is the 

outward diffusion of water through the skin [15], and measurements are carried out to gauge skin 

water barrier function.  In our study, the water content of the SC decreased and TEWL increased 

with UVA irradiation (Fig. 4b and 5b).  In the group treated with HA4, the water content of the SC 

and TEWL was notably improved over that of the Control/UVA(+) and HA/UVA(+) groups.  The 

sample treatment and UVA irradiation caused no significant change in body weight in any of the 

groups (data not shown).  The water content of the SC increased with HA4 treatment in the without 

UVA irradiation group (Fig. 4a). 

Chronic UVA irradiation significantly increased epidermal thickness [2].  In this study, skin 

thickness was increased by chronic UVA irradiation (Fig. 6a).  The epidermal thickness of 

Control/UVA(+) and Control/UVA(-) groups was about 7.3- and 1.5-fold increased than that of the 

Normal group.  In contrast, the epidermal thickness level was similar to the HA4 treatment group 

than the Normal group (Fig. 6a).   

These results show that HA4 permeated through skin by passive diffusion, but presumed to have 

a slow partition and diffusion.  However, it was revealed that the HA4 of a small molecular weight 

penetrated skin with the water-soluble compound.  In addition, these results show that treatment of 

HA4 improved skin functional recovery after UVA irradiation.  Therefore, these data suggest that 

HA4 is involved in the healing process in the skin after UVA irradiation. In has been reported that 

high molecular weight hyaluronan-mediated CD44 activation regulates skin differentiation [4].  If 

the skin differentiation happens by HA4, it may be involved in the skin functional recovery after 

UVA irradiation.  Accordingly, it is necessary to clarify the mechanism of skin functional recovery. 
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Table 1   In vitro skin permeation of HA4 across SC-stripped skin and full-thickness skin 

 Cumulative amount  

of HA4 (µg/cm2) 

Flux  

(µg/cm2/h) 

× 10-7 P  

(cm/s) 
ER 

SC-stripped skin 2109.6±175.9  418.0±30.6 232.2±17.0 2587.5 

Full-thickness 

skin 

0.8±0.3  0.2±0.09 0.1±0.05 - 

ER = Enhancement ratio = cumulative amount of SC-stripped skin / cumulative amount of 

full-thickness skin 

 

Table 2   In vitro skin permeation of HA4 at different concentrations across SC-stripped skin and 

full-thickness skin 

 HA4 

concentratio

n (%) 

Cumulative amount 

of HA4 (µg/cm2) 

Flux 

(µg/cm2/h) 

× 10-6 P  

(cm/s) 
ER 

SC-stripped skin 0.50 2364.8±46.5 461.6±10.0 25.6±0.5 40.6 

 0.10 392.4±44.3 76.8±6.9 21.3±1.9 6.7 

 0.02 58.3±10.7 12.0±2.2 16.7±3.1 - 

 HA4 

concentratio

n (%) 

Cumulative amount 

of HA4 (µg/cm2) 

Flux 

(µg/cm2/h) 

× 10-7 P 

(cm/s) 
ER 

Full-thickness 

skin 
0.50 0.8±0.3 0.2±0.1 0.1±0.05 67.9 

 0.10 0.2±0.1 0.003±0.001 0.009±0.003 1.9 

 0.02 0.1±0.07 0.003±0.002 0.03±0.02 - 

ER = Enhancement ratio = cumulative amount of HA4 / cumulative amount of 0.02% HA4 

 

Table 3Table 3Table 3Table 3   In vitro skin permeation of HA4 at different pH across full-thickness skin 

pH 
Fraction 

unionized 

Cumulative amount 

of HA4 (µg/cm2) 

Flux  

(µg/cm2/h) 

× 10-7 P  

(cm/s) 
ER 

4 0.09 0.8±0.4 0.2±0.1  0.1±0.06  11.3  

7 0.0001 0.07±0.01  0.03±0.004  0.01±0.007  -  

Fraction un-ionized = 1 / (1 + antilog (pH – pKa)). 

ER = Enhancement ratio = cumulative amount of pH 4 HA4 / cumulative amount of pH 7 HA4 
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Fig. 1  Passive permeation of HA4.  Cumulative amount of HA4 permeated through SC-stripped 

skin.  Each point represents mean ± S.D. of 3 to 5 determinations.  Symbols: SC-stripped skin (●) 

and full-thickness skin (�). 

 

Fig. 2  Effect of HA4 concentrations on in vitro skin permeation of HA4 across SC-stripped skin 

and full-thickness skin.  Cumulative amount of HA4 permeated through SC-stripped skin (a) and 

full-thickness skin (b).  Each point represents mean ± S.D. of 3 to 5 determinations.  Symbols: 

0.02 (▲), 0.1 (�) and 0.5% (●) HA4 solutions. 

 

Fig. 3  Effect of pH on in vitro skin permeation of HA4.  Cumulative amount of HA4 permeated 

through full-thickness skin.  Each point represents mean ± S.D. of 3 to 5 determinations.  

Symbols: pH 4 (●) and pH 7 (�) HA4 solutions. 

 

Fig. 4  Changes in water content in the SC after HA4 treatment.  Water content in the SC was 

measured for 0-21 days in non-UVA-irradiated mice (a) and UVA-irradiated mice (b).  Values were 

the mean ± S.D. (n = 3).  *p < 0.05, **p < 0.01 (versus control), #p < 0.05, ##p < 0.01 (versus HA), 

Tukey’s post-hoc multiple comparison test.  Symbols: normal (△), control (�), HA (●) and HA4 

(■) groups. 

 

Fig. 5  Changes in TEWL after HA4 treatment.  TEWL was measured for 0-21 days in 

non-UVA-irradiated mice (a) and UVA-irradiated mice (b).  Values were the mean ± S.D. (n = 3).  

*p < 0.05, **p < 0.01 (versus control), #p < 0.05, ##p < 0.01 (versus HA), Tukey’s post-hoc multiple 

comparison test.  Symbols: normal (△), control (�), HA (●) and HA4 (■) groups. 

 

Fig. 6  Changes in epidermal thickness and skin morphology after HA4 treatment.  Epidermal 

thickness and skin morphology were treated for 21 days in non-UVA-irradiated mice (a, d-f) and 

UVA-irradiated mice (b, g-i).  Skin samples were fixed and stained with HE.  HE-stained sections 

were photographed, and epidermal thickness was assessed (a, b).  Non-UVA-irradiated skin 

specimens of normal (c), control (d), HA (e), and HA4 (f) groups after each sample treatment. 

UVA-irradiated skin specimens of control (g), HA (h), and HA4 (i) groups after each sample 

treatment and irradiation.  Values were the mean ± S.D. (n = 3).  *p < 0.05, **p < 0.01, Tukey’s 

post-hoc multiple comparison test. 
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