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Abstract   The Goto-Kakizaki (GK) rat is widely used as animal model for spontaneous-onset 
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type 2 diabetes without obesity; nevertheless, little information is available on the metabolism of fatty 

acids and triacylglycerols (TAG) in their livers. We investigated the mechanisms underlying the 

alterations in the metabolism of fatty acids and TAG in their livers, in comparison with Zucker (fa/fa) 

rats, which are obese and insulin resistance. Lipid profiles, the expression of genes for enzymes and 

proteins related to the metabolism of fatty acid and TAG, de novo synthesis of fatty acids and TAG in 

vivo, fatty acid synthase activity in vitro, fatty acid oxidation in liver slices, and 

very-low-density-lipoprotein (VLDL)-TAG secretion in vivo were estimated. Our results revealed that 

(i) the TAG accumulation was moderate, (ii) the de novo fatty acid synthesis was increased by 

up-regulation of fatty acid synthase in a post-transcriptional manner, (iii) fatty acid oxidation was also 

augmented through the induction of carnitine palmitoyltransferase 1a, and (iv) the secretion rate of 

VLDL-TAG remained unchanged, in the livers of GK rats. These results suggest that, despite the fact 

that GK rats exhibit non-obese type 2 diabetes, the up-regulation of de novo lipogenesis is largely 

compensated by the up-regulation of fatty acid oxidation, resulting in only moderate increase in TAG 

accumulation in the liver. 
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ACC          Acetyl-CoA carboxylase 

ACLY         ATP-citrate lyase 

ACOT1       Acyl-CoA thioesterase 1 

ACOX1       Peroxisomal acyl-CoA oxidase 1 

ACSL         Long-chain acyl-CoA synthetase 

APOC3       Apolipoprotein CIII 

CE           Cholesteryl ester(s) 

CPT1a        Carnitine palmitoyltransferase 1a 

CYP          Cytochrome P450 

DAG         Diacylglycerol(s) 

DGAT        Diglyceride acyltransferase 

ELOVL       Fatty acid elongase 

FABP1        Fatty acid-binding protein 1 

FABPpm      Plasma membrane-associated fatty acid-binding protein 

FAS          Fatty acid synthase 

FAT/CD36     Fatty acid translocase 

FATP         Fatty acid transport protein 

FFA          Unesterified fatty acid(s) 

GCK         Glucokinase 

GK rat        Goto-Kakizaki rat 

GPAT        Glycerol-3-phosphate acyltransferase 

G6Pase       Glucose-6-phosphatase 

G6PD        Glucose-6-phosphate dehydrogenase 

HNF4α       Hepatic nuclear factor 4α 

LCAD        Long-chain acyl-CoA dehydrogenase 

LPK         L-type pyruvate kinase 
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LXRα        Liver X receptor α 

MCAD       Medium-chain acyl-CoA dehydrogenase 

MCD        Malonyl-CoA decarboxylase 

ME1         Malic enzyme 1 

MUFA        Monounsaturated fatty acid(s) 

P-ACC        Phospho-acetyl-CoA carboxylase 

PEPCK       Phosphoenolpyruvate carboxykinase 

PGC1α        Peroxisome proliferator-activated receptor gamma coactivator 1α 

PPAR        Peroxisome proliferator-activated receptor 

SCD         Stearoyl-CoA desaturase 

SREBP-1c    Sterol regulatory element-binding protein-1c 

TAG         Triacylglycerol(s) 

T2D         Type 2 diabetes 

TLC         Thin-layer chromatography 

UCP2        Uncoupling protein 2 

VLCAD      Very long-chain acyl-CoA dehydrogenase 

VLDL        Very low-density lipoprotein 

WI rat        Wistar rat, a control corresponding to the GK rat 

ZF rat         Obese Zucker (fa/fa) rat 

ZL rat         Lean Zucker (?/+) rat 

 

 

 

 

 

Introduction 
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Diabetes is a heterogeneous group of disorders characterized by high blood glucose levels, with type 2 

diabetes (T2D) being more common than type 1. The impaired life expectancy of patients with T2D 

has been linked not only to vascular complications and renal disease, but also to progressive liver 

disease [1]. Well-characterized and suitable animal models are indispensable for elucidating the 

molecular mechanisms underlying the pathogenesis of T2D and developing novel therapeutics against 

T2D. Several animal models of spontaneous T2D have been provided, most of which have 

hyperglycemia, hypertriglyceridemia, insulin resistance, fatty liver, and, in particular, obesity [2, 3]. 

Obesity is common in patients with T2D; however, not all diabetic patients are obese. In contrast to 

Western populations, the prevalence of T2D has increased in spite of the low prevalence of obesity in 

some populations, including Japanese [4, 5]. Therefore, animal models of non-obese T2D are required 

in order to investigate this type of diabetes. Unlike most animal models developed for T2D, the 

Goto-Kakizaki (GK) rat is an animal model of spontaneous-onset T2D without obesity. The GK rat 

exhibits mild hyperglycemia, impaired glucose tolerance, impaired insulin secretion, progressive 

reductions in the β-cell mass, and the development of long-term diabetic complications without 

obesity [6, 7]. Impaired insulin sensitivity has also been reported not only in the skeletal muscles and 

adipose tissues of GK rats, but also in their livers [8, 9]. 

T2D with obesity is generally associated with fatty liver [1, 10], a disorder characterized by the 

abnormal accumulation of lipids due to their overproduction and/or a defect in their disposal. A recent 

meta-analytical study revealed a two-fold higher risk of T2D with non-alcoholic fatty liver disease 

[11], and T2D has been shown to have an impact on the development and progression of liver disease, 

which may lead to steatohepatitis, cirrhosis, and eventual liver failure [1]. Previous studies 

demonstrated the dysregulation of lipid metabolism in the livers of rodents with defects in leptin or its 

receptor [2, 3]. We previously showed the aberrant regulation of fatty acid modifications (desaturation 

and elongation) in GK rats [12]; nevertheless, metabolic defect(s) in lipids have been poorly 

characterized in GK rats. It is conceivable that the liver plays a key role in regulating glucose and lipid 
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metabolism and that fatty liver is one of the major phenotypes of metabolic disorders closely 

associated with hepatic insulin resistance [1, 10, 13]. Therefore, information on disorders in lipid 

metabolism in the livers of GK rats is indispensable to understand molecular basis underlying 

pathogenesis of non-obese T2D and to develop novel therapeutics against non-obese T2D because GK 

rats is widely utilized as an animal model for T2D without obesity. In this context, the present study 

aimed (i) to determine whether lipid accumulation occurs and, if this is the case, (ii) to reveal the 

metabolic mechanisms underlying lipid accumulation in the livers of GK rats, in comparison with 

those in obese Zucker (fa/fa) (ZF) rats, an animal model that is a commonly studied as a model of fatty 

liver, hepatic insulin resistance, and obesity. Our findings show for the first time that de novo 

lipogenesis is increased while fatty acid degradation is also elevated, such that triacylglycerols (TAG) 

moderately accumulate in the livers of GK rats. 

 

 

Materials and Methods 

 

Materials 

 

The following materials were obtained from the indicated commercial sources: [1-14C] acetic acid (55 

Ci/mol) and [1-14C]palmitic acid (16:0) (56.0 Ci/mol), (American Radiolabeled Chemicals, Inc., St. 

Louis, MO. USA); acetyl-CoA and malonyl-CoA (Sigma-Aldrich, St. Louis, MO, USA); 

anti-acetyl-CoA carboxylase (ACC) rabbit monoclonal antibody, anti-carnitine palmitoyltransferase 1a 

(CPT1a) mouse monoclonal antibody, anti-fatty acid synthase (FAS) rabbit monoclonal antibody, 

anti-1TBP18 mouse monoclonal antibody, and anti-β-actin mouse monoclonal antibody (Abcam, 

Cambridge, UK); anti-phospho-acetyl-CoA carboxylase Ser78 and 80 (P-ACC) mouse monoclonal 

antibody, anti-sterol regulatory element binding protein-1c (SREBP-1c) mouse monoclonal antibody, 

goat anti-mouse IgG horseradish peroxidase-conjugated antibody, and goat anti-rabbit IgG horseradish 
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peroxidase-conjugated antibody (Santa Cruz Biotechnologies Inc., Santa Cruz, CA, USA). 

 

Animals 

 

All animal procedures were approved by the Institutional Animal Care Committee of Josai University 

in accordance with the Guidelines for the Proper Conduct of Animal Experiments (Science Council of 

Japan). Five-week-old male GK rats and their corresponding control Wistar (WI) rats were obtained 

from Clea Japan Inc. (Tokyo, Japan). Five-week-old male lean Zucker (?/+) (ZL) and ZF rats were 

obtained from Charles River Japan (Tokyo, Japan). Animals were fed a standard diet (CE-2, Clea 

Japan Inc.) ad libitum, allowed free access to water, and were killed in the fed state at the age of 10 

weeks. Animals were anesthetized with diethyl ether, and blood was withdrawn from the inferior vena 

cava. The liver was rapidly removed, washed with saline, and weighed. Livers were used for 

histopathological analyses, lipid analyses, and in the preparation tissue lysates, nuclear extracts, 

cytosol, and liver slices. One part of the liver was frozen in liquid nitrogen and then stored at –80 °C 

for the later determination of mRNA. The liver portions used to prepare the cytosol were perfused with 

ice-cold saline. 

 

Histopathological Analysis 

 

Isolated livers were fixed in 10 % neutral-buffered formalin, embedded in paraffin wax, sectioned 

(3–4-μm thick), and stained with hematoxylin and eosin. In order to visualize fat deposition in the liver, 

frozen sections (10–12-μm thick) were cut on a cryostat and stained with Oil Red O and hematoxylin. 

Sections were evaluated by scanning the entire tissue specimen under low-power magnification (× 40) 

and then confirmed under higher power magnification (× 100, × 200, and × 400). The severity of 

histopathological findings was scored as (0) normal, (1) minimal, (2) mild, (3) moderate, and (4) 

marked lipid deposition in hepatocytes. All histopathological scoring and evaluations were carried out 

 7 



in a blind evaluation without knowledge of the treatment. Images were obtained under a light 

microscope (Olympus BX53; Olympus, Tokyo, Japan) equipped with a DP72 digital camera 

(Olympus). 

 

Biochemical Analysis of Serum Parameters 

 

Serum glucose, TAG, unesterified fatty acids (FFA), and total cholesterol were measured using 

colorimetric enzymatic assay kits from Wako Pure Chemicals (Osaka, Japan). Serum insulin was 

measured using a rat RIA kit from Millipore Corp. (Billerica, MA, USA). 

 

Lipid Analysis 

 

Total lipids were extracted from a piece of the liver by the reported method [14]. Cholesterol and 

phospholipid phosphorus were measured using previously reported methods [15, 16]. In order to 

analyze fatty acid profiles, cholesteryl ester (CE), TAG, diacylglycerol (DAG), FFA, and phospholipid 

were separated by thin-layer chromatography (TLC) on silica gel G plates, which were developed with 

n-hexane/diethyl ether/acetic acid (80:30:1, v/v), as described previously [17]. Fatty acid methyl esters 

were prepared using sodium methoxide/methanol for TAG and phospholipids, and HCl/methanol for 

DAG and FFA. CE, which was extracted from silica gel, was saponified once, and the fatty acids 

released were then extracted separately from cholesterol and converted into methyl esters using 

HCl/methanol. The composition of fatty acid methyl esters was determined by gas–liquid 

chromatography as described previously [12]. 

  

Real-Time Quantitative PCR  

 

mRNA expression was analyzed by real-time PCR as described previously [12, 18]. The sequences of 
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primers used in this study are listed in Table 1. 

 

Western Blot Analysis 

 

Western bolt analyses of FAS, ACC1, P-ACC1, and CPT1a were performed using the tissue lysates 

prepared as described previously [18]. Proteins (15 µg each) were separated by sodium dodecyl 

sulfate–polyacrylamide gel electrophoresis on 10 % (for CPT1a) or 7.5 % (for ACC1, P-ACC1 and 

FAS) gels. Proteins were transferred to polyvinylidene difluoride membranes, incubated with the 

primary antibody, incubated with the secondary antibody, visualized using the ECL Prime Western 

Blotting Detection Reagent (GE Healthcare Japan, Tokyo, Japan), and then detected using a 

luminoimage analyzer. A Western bolt analysis of SREBP-1c was performed using nuclear extracts 

(20 µg of protein) of livers as reported previously [19] with some modifications as described 

previously [3]. 

 

Measurement of the In Vivo Synthesis of Fatty Acids and TAG in the Liver 

 

The hepatic synthesis of fatty acids and TAG was estimated by measuring the incorporation in vivo of 

[1-14C]acetic acid into fatty acid and TAG in the liver as reported previously [20] with some 

modifications. In brief, [14C]acetic acid was dissolved in 0.9 % NaCl (40 µCi/mL). Under light 

anesthesia with diethyl ether, [14C]acetic acid at a dose of 160 µCi/kg of body weight was 

intraperitoneally injected. Five minutes after the injection, livers were immediately isolated and frozen 

in liquid nitrogen. Acetyl-CoA was extracted from one portion of the liver and determined using the 

reported method [21]. Lipids were extracted from another portion of the liver [14]. One portion of the 

extracted lipids was saponified with 10 % methanolic KOH at 80 °C for 60 min under a nitrogen 

atmosphere. After being diluted with water, unsaponifiable matter was extracted with n-hexane three 

times, samples were acidified with 6 M HCl, and fatty acids were extracted with n-hexane three times. 
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The unsaponifiable matter and fatty acids were mixed with scintillation fluid, and radioactivities were 

measured using a liquid scintillation counter (Aloka LSC 6100; Hitachi–Aloka, Tokyo, Japan). Lipids 

were separated into lipid classes by TLC, and the separated lipids were extracted from silica gel [17]. 

The extract was mixed with scintillation fluid, and radioactivity was measured. 

 

Assay for FAS 

 

One portion of the perfused liver was homogenized in 1.5 volumes of a phosphate-bicarbonate buffer 

(70 mM KHCO3, 85 mM K2HPO4, 9 mM KH2PO4, and 1 mM dithiothreitol) (pH 8.0) in a Potter 

glass–Teflon homogenizer. The homogenates were centrifuged at 20,000 × g for 10 min. The 

supernatant obtained was centrifuged at 105,000 × g for 60 min, and the resulting supernatant was 

stored at –80 °C until used. Protein concentrations were determined by the reported method [22] using 

bovine serum albumin (BSA) as a standard. FAS activity was determined spectrophotometrically as 

reported previously [23]. The assay mixture contained 33 µM acetyl-CoA, 100 µM malonyl-CoA, 

100µM NADPH, 1 mM EDTA, 1 mM 2-mercaptoethanol, 50–100 μg cytosolic protein, and 100 mM 

phosphate buffer (pH 7.0) in a total volume of 1 mL. NADPH oxidation was followed at 340 nm at 

30 °C. A correction was made for the rate of NADPH oxidation in the absence of malonyl-CoA. 

 

Ex Vivo Fatty Acid Oxidation in Liver Slices 

 

Fatty acid oxidation was measured utilizing liver slices as reported previously [24]. Rats were killed 

and their livers were quickly removed. The left lobe was separated, and precision-cut liver slices 

(600-µm thick; 75–85 mg) were prepared with a Krumdieck tissue slicer (Alabama Research 

Development, Munford, AL, USA). [1-14C] 16:0 was purified just before use by TLC on silica gel G 

plates, which were developed with n-hexane/diethyl ether/acetic acid (80:30:1, v/v). Liver slices were 

incubated in glass vials that contained 2 mL of Krebs–Henseleit buffer (pH 7.4) containing 5 mM 
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glucose, 0.25 mM [1-14C]16:0 (0.3 μCi), and 0.6 % BSA (essentially fatty acid-free) at 37 oC for 30 

and 90 min under an O2–CO2 atmosphere (95:5, by vol.) with shaking (90 oscillations/min). The vials 

were capped with rubber stoppers, from which plastic center-wells were suspended. The incubation 

was terminated by an injection of 1 mL of 0.6 M HClO4 into the vial, and 0.2 mL of 1 M 

benzethonium hydroxide in methanol was injected into the center well. The vials were shaken (60 

oscillation/min) at room temperature for 45 min in order to trap radio-labeled CO2 in benzethonium 

hydroxide. The contents of the center well were transferred to a counting vial and mixed with 

scintillation fluid, and radioactivity was then measured using a liquid scintillation counter. Liver slices 

were homogenized with the incubation mixture that was acidified with HClO4. After centrifugation at 

1,500 × g for 10 min, the supernatant was neutralized with 5 M KOH, and its pH was adjusted to 4 

using 3 M acetate buffer (pH 4.0); the aqueous phase obtained was extracted five times with petroleum 

ether to remove traces of [14C]16:0. An aliquot of the aqueous phase was mixed with scintillation fluid, 

and radioactivity was determined as acid-soluble oxidation products. The slope between 30 and 90 min 

of the incubation was used to calculate the rate of 16:0 oxidation. 

 

Very Low-Density Lipoprotein (VLDL)–TAG Secretion 

 

Rats that had been starved for 12 h were intravenously injected with 20 % (w/v) Triton WR-1339 

(Sigma-Aldrich) in saline at a dose of 300 mg/kg body weight. Blood was collected from the 

retro-orbital plexus under diethyl ether anesthesia 1, 2, 3, 4 and 6 h after this administration. Serum 

was obtained from the blood by centrifugation (at 1,200 × g for 15 min). The VLDL secretion rate was 

determined by measuring changes in serum TAG levels [25]. The amount of total blood was calculated 

as one-twelfth of the body weight. 

 

Statistical Analysis 
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Data are presented as mean ± standard deviation (SD). The significance of differences between two 

groups was analyzed using the Student’s t-test. 

 

 

Results 

 

Comparison with ZF Rats 

 

In order to gain a better understanding of pathophysiological characteristics of GK rats, general 

features were compared between GK and ZF rats. 

The pathophysiological parameters of GK and ZF rats were compared (Table 2). The body 

weights of GK rats were 86 % those of WI rats, whereas no significant difference was found in relative 

liver weights between WI and GK rats. On the other hand, the body weights of ZF rats were 161 % 

those of ZL rats, and the relative liver weights of ZF rats were 1.24-fold higher than those of ZL rats. 

Regarding white adipose tissues, the relative weight of mesenteric fat was1.12-fold greater in GK rats 

than in WI rats, whereas the relative weight of epididymal fat did not differ between these rats. The 

relative weights of epididymal and mesenteric fat were 3.16-fold and 2.55-fold greater, respectively, in 

ZF rats than in ZL rats. Serum glucose and insulin levels in the fed state were 1.92-fold and 1.79-fold 

higher, respectively, in GK rats than in WI rats. No significant differences were observed in serum 

glucose levels between ZL and ZF rats, whereas serum insulin levels were 7.16-fold higher in ZF rats 

than in ZL rats. Regarding serum lipid parameters, TAG concentrations in GK and ZF rats were 59 % 

and 610 %, respectively, those in their respective controls. Serum levels of cholesterol and FFA were 

1.66-fold and 1.88-fold higher, respectively, in GK rats than in WI rats, while cholesterol and FFA 

levels in ZF rats were 183 % and 207 %, respectively, those in ZL rats.  

The hepatic lipid profiles of GK rats were shown in Table 2. TAG and DAG contents were 

1.48-fold and 1.17-fold higher, respectively, in GK rats than in WI rats. TAG and DAG contents were 
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5.72-fold and 1.19-fold greater, respectively, in ZF rats than in ZL rats. Hepatic FFA concentrations 

did not significantly differ between GK and WI rats, or between ZF and ZL rats. Although no 

significant differences were observed in the hepatic contents of phospholipids and cholesterol between 

GK and WI rats, their contents in ZF rats were 91 % and 79 %, respectively, those in ZL rats. Hepatic 

CE contents did not significantly differ between WI and GK rats, or between ZL and ZF rats. The 

histopathological features of Oil Red O-stained sections of livers from WI, GK, ZL, and ZF rats were 

shown in Figure 1. In WI and ZL rats, neither vacuolation nor lipid accumulation was observed in 

hepatocytes, whereas several sinusoidal cells such as stellate cells were stained by Oil Red O (Fig. 1a, 

c). Mild to moderate lipid accumulation in peripheral hepatocytes was detected in GK rats (Fig. 1b). In 

contrast, ZF rats revealed moderate to severe diffuse fatty deposition in hepatocytes (Fig. 1d). The 

intensity of lipid deposition in the hepatocytes of each animal was scored (Fig. 1e). The fatty acid 

profiles of hepatic TAG in GK and ZF rats were compared with those in the respective controls (Table 

3). The proportions of palmitoleic acid (16:1n-7) (4.10-fold), oleic acid (18:1n-9) (1.67-fold), and 

cis-vaccenic acid (18:1n-7) (1.80-fold) were markedly higher in ZF rats than those in ZL rats. In 

contrast, the proportion of linoleic acid (18:2n-6) in ZF rats was 34.9 % that in ZL rats. The 

proportions of 16:1n-7 (1.50-fold) and 18:1n-7 (1.33-fold) were moderately higher in GK rats than in 

WI rats, whereas no significant differences were observed in the proportion of 18:1n-9 between GK 

and WI rats. The proportion of 18:2n-6 was slightly reduced in GK rats (84.0 % that in WI rats). 

Changes in the proportions of monounsaturated fatty acids (MUFA) in phospholipids, DAG, FFA and 

CE of GK and ZF rats were similar to those in TAG, whereas the changes observed in these lipid 

classes were less than those in TAG (Table 3). It is noteworthy that the proportion of arachidonic acid 

(20:4n-6) increased in phospholipids in GK rats, and the proportion of 8, 11, 14-eicosatrienoic acid 

(20:3n-6) proportion increased, whereas that of 20:4n-6 decreased in phospholipids in ZF rats. These 

alterations may have been due to the enhanced expression of genes encoding ∆6 fatty acid desaturase 

and ∆5 fatty acid desaturase in the livers of GK rats, but not ZF rats [12]. 

In order to gain an insight into the molecular mechanisms underlying the accumulation of TAG 
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in the livers of GK rats, the mRNA levels of key enzymes and proteins involved in the metabolism of 

fatty acids and TAG were measured and compared with those in the livers of ZF rats (Table 4). The 

levels of mRNAs encoding enzymes related to de novo fatty acid synthesis [FAS, ACC1, 

glucose-6-phsphate dehydrogenase (G6PD), ATP-citrate lyase (ACLY), and malic enzyme 1 (ME1)] 

and glycerolipid synthesis [glycerol-3-phosphate acyltransferase (GPAT) 1 and diacylglycerol 

acyltransferase (DGAT) 2] were significantly up-regulated in the livers of ZF rats, whereas mRNAs 

for GPAT4, lipin 2, lipin 3, and DGAT1 remained unchanged. Among the enzymes related to de novo 

fatty acid synthesis, the expression of mRNAs for FAS and ACC1 was unchanged in the livers of GK 

rats, whereas the mRNA levels of G6pd, Acly, and Me1 were significantly up-regulated. Regarding 

glycerolipid synthesis, the mRNA level of Lipin2 was up-regulated, the expression of mRNAs for 

GPAT4, lipin 3, DGAT1, and DGAT2 was unchanged, and the mRNA level of Gpat1 was considerably 

down-regulated. It is noteworthy that the levels of mRNAs encoding the enzymes involved in fatty 

acid modifications [stearoyl-CoA desaturase 1 (SCD1) and fatty acid elongase (ELOVL6)] were 

markedly up-regulated in the livers of ZF rats, and also that the mRNA level of SCD1 was 

up-regulated (1.93-fold) while that of ELOVL6 was unchanged in the livers of GK rats. The 

expression of Elovl5 was up-regulated in GK rats, but not in ZF rats. Regarding the levels of proteins 

participating in the trafficking of fatty acids, fatty acid translocase (FAT/CD36) and long-chain 

acyl-CoA synthetase (ACSL) 5, were significantly higher in ZF rats than in ZL rats, whereas no 

significant differences were observed in the levels of mRNAs encoding fatty acid transport protein 

(FATP) 2, FATP4, FATP5, plasma membrane-associated fatty acid-binding protein (FABPpm), fatty 

acid-binding protein 1 (FABP1), ACSL1, or ACSL3 between ZL and ZF rats. The expression of the 

genes for FAT/CD36 and FATP5 was down-regulated in GK rats, whereas no significant difference 

was observed in the expression of other genes involved in the trafficking of fatty acids between WI 

and GK rats. Regarding fatty acid degradation, the level of mRNAs encoding CPT1a and uncoupling 

protein 2 (UCP2) were significantly higher in GK rats than in WI rats, whereas the expression of these 

genes was slightly down-regulated or unchanged in ZF rats. On the other hand, no significant 
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differences were detected in the levels of mRNAs for medium-chain acyl-CoA dehydrogenase 

(MCAD), very long-chain acyl-CoA dehydrogenase (VLCAD), or peroxisomal acyl-CoA oxidase 1 

(Acox1) between WI and GK rats, or between ZL and ZF rats, except for the mRNA levels of 

long-chain acyl-CoA dehydrogenase (LCAD) being slightly higher in ZF rats, but not in GK rats than 

in their respective controls. The expression of genes for ACC2 and malonyl-CoA decarboxylase 

(MCD) was unchanged in the livers of GK and ZF rats. As for lipoprotein metabolism, apolipoprotein 

CIII (APOC3) mRNA levels were lower in GK rats than in WI rats, and higher in ZF rats than in ZL 

rats. The levels of mRNA encoding microsomal triglyceride transfer protein (MTP) did not differ 

between WI and GK rats, or between ZL and ZF rats. Concerning glucose metabolism, the level of 

mRNA for L-type pyruvate kinase (LPK) was markedly up-regulated in the livers of ZF rats, whereas 

that for phosphoenolpyruvate carboxykinase (PEPCK) was significantly down-regulated; no 

significant differences were observed in the levels of mRNAs for glucokinase (GCK), 

glucose-6-phosphatase (G6Pase), or glucose transporter type 2 (GLUT2) between ZL and ZF rats. The 

expression of Pepck and G6pase was up-regulated in the livers of GK rats; no significant differences 

were observed in the expression of Lpk, Gck, or Glut2 between GK and WI rats. The expression of 

genes for IRS-1 and IRS-2 in the livers in ZF rats were 79 % and 34 %, respectively, those in ZL rats. 

The levels of mRNA for IRS-1 in the liver were 1.27-fold higher in GK rats than in WI rats and no 

significant difference was found in the expression of irs-2 between WI and GK rats. 

The expression of the genes for peroxisome proliferator-activated receptor α (PPARα), 

peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α), and lipin 1 were 

significantly higher in GK rats than in WI rats (Fig. 2a). Moreover, the expression of the gene for 

acyl-CoA thioesterase 1 (ACOT1), a typical PPARα target gene, was up-regulated in GK rats (Table 4). 

The level of mRNA for sterol regulatory element-binding protein-1c (SREBP-1c) in the liver was 

significantly higher in ZF rats than in ZL rats (Fig. 2b), whereas this level in GK rats was 60 % that in 

WI rats (Fig. 2a). The nuclear content of the mature 68-kDa form of SREBP-1c in the liver was 

2.45-fold higher in ZF rats than in ZL rats, whereas no significant difference was observed between 
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WI and GK rats (Fig. 2c). No significant differences were noted in the expression of genes for 

carbohydrate response element-binding protein (ChREBP), liver X receptor α (LXRα), or hepatic 

nuclear factor 4α (HNF4α) between WI and GK rats, or between ZL and ZF rats (Fig. 2a, b). The 

expression of Lpk, a typical target gene of ChREBP, was elevated in ZF rats, while that of lipin1, a 

direct target gene of HNF4α, was up-regulated in GK and ZF rats; however, the expression of the gene 

for cytochrome (CYP) 7A1, a typical LXRα target gene, was unchanged in GK and ZF rats (Table 4). 

 

De Novo Fatty Acid Synthesis in GK Rat Livers 

 

In order to estimate de novo fatty acid synthesis, [1-14C]acetate was intraperitoneally injected into WI 

and GK rats, and its incorporation into fatty acids in the liver was compared. The radioactivity found 

in fatty acids was 1.48-fold higher in GK rats than in WI rats (Fig. 3a). Since the hepatic content of 

acetyl-CoA was 1.46-fold greater in GK rats than in WI rats (Fig. 3b), the amount of fatty acids 

synthesized de novo in the liver was calculated to be 1.72-fold higher in GK rats than in WI rats (Fig. 

3c). FAS activity in the hepatic cytosol was 2.10-fold higher in GK rats than in WI rats; this activity 

was 44 % that in ZF rats (Fig. 3d). FAS and ACC1 protein levels in the liver were 2.29-fold and 

1.77-fold, respectively, higher in GK rats than in WI rats (Fig. 3e, f). FAS protein levels in GK rats 

were 21 % those in ZF rats, and ACC protein levels in GK rats were 30 % those in ZF rats. 

 

TAG Synthesis in GK Rat Livers 

 

The distribution of radioactivity from [14C]acetate, which was administered in vivo to rats, among lipid 

classes in the liver was compared between WI and GK rats (Fig. 4a). The proportion of radioactivity 

found in TAG in the liver was 1.72-fold greater in GK rats than in WI rats, while that residing in 

cholesterol in GK rats was 26 % that in WI rats (Fig. 4a). The amount of [14C]acetate incorporated into 

TAG in the liver was 2.77-fold higher in GK rats than in WI rats, while that incorporated into 
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cholesterol in the livers of GK rats was 42 % that in the livers of WI rats (Fig. 4b). No significant 

differences were observed in the amounts of [14C]acetate incorporated into DAG, phospholipids, FFA, 

or CE between WI and GK rats (Fig. 4b). Since the hepatic content of acetyl-CoA was 1.46-fold 

greater in GK rats than in WI rats (Fig. 3b), the amounts of acetyl-CoA incorporated into TAG, DAG, 

phospholipids, and FFA in the liver were calculated to be 2.74-fold, 1.75-fold, 1.36-fold, and 1.63-fold 

higher, respectively, in GK rats higher than in WI rats; the amount of acetyl-CoA incorporated into 

cholesterol was 41 % that in WI rats (Fig. 4c).  

 

Fatty Acid Oxidation in GK Rat Livers 

 

In order to confirm the functional significance of changes in the gene expression and protein contents 

of the enzymes involved in fatty acid degradation, [1-14C]16:0 oxidation rates in the livers of WI and 

GK rats were compared using liver slices (Fig. 5). The rates of formation of CO2 and acid-soluble 

oxidation products in liver slices were 2.22-fold and 2.52-fold higher, respectively, in GK rats than in 

WI rats (Fig. 5a, b); total β-oxidation products formed in liver slices were 2.48-fold greater in GK rats 

than in WI rats (Fig. 5c). The results of the Western bolt analysis revealed that the content of the 

CPT1a protein in the liver was 1.39-fold greater in GK rats than in WI rats (Fig. 5d); moreover, the 

ratio of protein content of P-ACC to that of ACC was 1.91-fold higher in GK rats than in WI rats (Fig. 

5e). 

 

VLDL–TAG Secretion in GK Rats 

 

The rates of hepatic VLDL–TAG secretion were compared between WI and GK rats utilizing Triton 

WR-1339, which prevents TAG from lipolysis by lipoprotein lipase. No significant difference was 

observed in this rate between WI and GK rats (Fig. 5f). 
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Discussion 

 

Hepatic lipid profiling revealed that the hepatic content of TAG was moderately higher in GK rats 

(1.48-fold), and markedly greater (5.72-fold) in ZF rats than in their respective controls. Although the 

close relationship between hepatic lipid accumulation and insulin resistance has already been 

established, recent studies have indicated that DAG rather than TAG itself is the direct cause for 

insulin resistance [26, 27]. The result of the present study showed that, despite the marked difference 

in TAG accumulation, the hepatic content of DAG was elevated to largely the same extent in GK and 

ZF rats. Previous studies demonstrated that GK and ZF rats both exhibited hepatic insulin resistance [9, 

28]. In addition to increases in DAG levels in the livers of ZF rats, the expression of Irs-2 was 

markedly lower, whereas that of Irs-1 was slightly reduced. Moreover, the nuclear content of the 

mature form of SREBP-1c was significantly increased in their livers. These results coincide with 

previous findings showing that high SREBP-1c activity resulting from hyperinsulinemia negatively 

correlated with IRS-2 expression in ob/ob mice [29]. Under such conditions, an insulin signal may fail 

to suppress the transcription of gluconeogenic enzymes through IRS-2; however, an insulin signal 

through IRS-1 may continually stimulate the cleavage of SREBP-1c, thereby activating the expression 

of lipogenic genes. The expression of Pepck was reduced while that of lipogenic enzymes was entirely 

up-regulated in ZF rats. On one hand, the expression of Irs-1 was slightly high while that of Irs-2 was 

unchanged in the livers of GK rats. Therefore, the expression of genes for the gluconeogenic enzymes, 

PEPCK and G6Pase, was increased, likely because of moderately high insulin levels in GK rats. 

However, the nuclear content of the mature form of SREBP-1c was unchanged, and the expression of 

Fas and Acc1 was not altered in the liver. Taken together, the present results imply that the mechanism 

underlying hepatic TAG accumulation in GK rats is evidently distinct from that operating in the livers 

of ZF rats. 

Since the liver does not serve as a storage depot for TAG, the steady-state concentration of TAG 
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in the liver is kept low under physiological conditions. Therefore, TAG accumulation in the liver arises 

from an imbalance between lipid acquisition (de novo lipogenesis and fatty acid uptake from the 

circulation) and disposal (fatty acid oxidation and the export of TAG as a component of VLDL) [30]. 

The present study showed the up-regulated expression of genes for key enzymes involved in de novo 

fatty acid synthesis in the livers of ZF rats. It is widely known that most lipogenic enzymes are 

regulated by SREBP-1c and ChREBP. Serum insulin levels in ZF rats were markedly high, and the 

gene expression of Srebp-1c and nuclear level of the mature form of SREBP-1c were elevated in their 

livers. Therefore, SREBP-1c appears to play a central role in the development of TAG accumulation in 

ZF rats because insulin markedly increases the expression of Srebp-1c and nuclear content of the 

mature form of SREBP-1c in the liver [31]. Since the expression of Lpk is under the regulation of 

ChREBP [32] and was found to be up-regulated in the livers of ZF rats, ChREBP may also induce 

genes for de novo fatty acid synthesis in the livers of ZF rats. In addition to the genes for enzymes 

related to de novo fatty acid synthesis, the expression of Dgat2, Scd1, Elovl6, Gpat1, and Acsl5, which 

were up-regulated in the livers of ZF rats, are also known to be elevated by insulin and SREBP-1c [33, 

34]. DGAT2 co-localizes with SCD, suggesting that it may be linked with the esterification of 

endogenously formed MUFA in order to produce TAG [35]. This appears to be causal for the markedly 

increased proportion of 18:1n-9 in TAG in ZF rats. Importantly, apoptosis was enhanced in 

hepatocytes loaded with saturated fatty acids, but not unsaturated fatty acids, and this was found to be 

mediated by endoplasmic reticulum stress [36]. Therefore, TAG, which contains 18:1n-9 at high 

proportions, may serve as a protective reservoir in the pathogenesis of fatty liver [37, 38]. GPAT1 

resides on the outer mitochondrial membrane and plays a role in diverting fatty acids towards the 

formation of TAG for storage and away from β-oxidation [39]. ACSL5 also acts as a branch-point for 

directing fatty acids into the pathways of complex lipid synthesis and away from β-oxidation [34]. 

Hyperinsulinemia has been shown to increase serum levels of FFA, which are taken up by the liver 

through FAT/CD36, FATP2, and FATP5, thereby driving the production of TAG [30, 40]. Therefore, 

increase in the expression of the Fat/Cd36 gene in ZF rats may contribute to the hepatic accumulation 
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of TAG [41]. In contrast to increases in lipid acquisition, a marked elevation was not observed in the 

expression of the genes encoding enzymes involved in the degradation of fatty acids in the livers of ZF 

rats; the expression of the Cpt1a genes, the products of which paly crucial roles in degrading fatty 

acids [42, 43], was slightly reduced. Previous studies demonstrated that fatty acid oxidation was 

down-regulated in the livers of ZF rats [44, 45]. Since ZF rats are in leptin-related hyperphagia [2], the 

liver may convert surplus nutrients into TAG, which are increasingly secreted into the circulation as 

VLDL [30, 46]. Consequently, the changes occurring in fatty acid oxidation, but not VLDL secretion, 

appear to be causal for the accumulation of TAG in the livers of ZF rats. In contrast to ZF rats, the 

livers of GK rats exhibited no considerable up-regulation in the expression of genes encoding enzymes 

and proteins related to lipogenesis and fatty acid trafficking, except for significant increases in the 

expression of G6pd, Acly, and Me1 and significant decreases in that of Gpat1, Fat/Cd36, and Fatp5. In 

contrast, the expression of genes for key enzymes and transcription factors participating in fatty acid 

degradation, CPT1a, UCP2, PPARα, PGC1α, and lipin 1, was significantly up-regulated in the livers 

of GK rats. PGC1α is known to increase the expression of lipin 1, which physically associates with 

PGC1α and PPARα in the nucleus in order to stimulate the transcription of PPARα target genes [47]. 

CPT1a, and UCP2 are considered to be under the control of PPARα [48, 49]. In the livers of GK rats, 

the expression of the Srebp-1c gene was markedly reduced and nuclear content of the mature form of 

SREBP-1c was unchanged. In GK rats, the expression of Scd1 was up-regulated because this gene is 

under the control of not only SREBP-1c, but also PPARα; on one hand, the expression of Elovl6 was 

unchanged. As a result, the proportion of 18:1n-9, which is synthesized by the concerted actions of 

SCD1 and ELOVL6, in hepatic TAG was markedly less than in ZF rats. We previously demonstrated 

that the activity of SCD was elevated, whereas that of ELOVL6 was not changed in the livers of GK 

rats, and that the activities of SCD and ELOVL6 were significantly augmented in the livers of ZF rats 

[12]. The present results, taken together, suggest that lipid acquisition (de novo lipogenesis and fatty 

acid uptake from the circulation) in the livers of GK rats is not as active as that in ZF rats and also that 

lipid degradation, one of lipid disposal processes, actively operates. 
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    Since the changes that occurred in the expression of genes related to lipid acquisition and 

disposal did not clearly explain the moderate increase observed in TAG accumulation in the livers of 

GK rats, functional analyses were conducted on FAS activity in vitro, de novo synthesis of fatty acids 

and TAG in vivo, fatty acid oxidation in liver slices, and VLDL-TAG secretion in vivo in GK rats. 

Regarding lipid acquisition, the activity and protein level of FAS were significantly higher in GK rats 

than in control rats. Since the expression of the Fas gene was unchanged in the livers of GK rats, this 

induction of FAS is most likely to be responsible for a post-transcriptional regulation, such as an 

increase in translation or a decrease in degradation [50]. The levels of ACC protein in the liver were 

also significantly increased in the livers of GK rats, although the ratio of P-ACC to ACC in the livers 

of GK rats was higher than that of control rats. Moreover, serum glucose levels were higher, and the 

expression of Acly, Me1, and G6pd was elevated in their livers, implying increased supply of 

acetyl-CoA and NADPH from glucose through the glycolysis and pentose phosphate pathways. In fact, 

hepatic concentrations of acetyl-CoA were significantly higher in GK rats than in control rats. 

Collectively, these findings strongly suggest that de novo fatty acid synthesis is up-regulated in vivo in 

the livers of GK rats. As expected, the in vivo incorporation of [14C]acetate into fatty acids increased 

and the formation of TAG, DAG, phospholipids and FFA from [14C] acetate in vivo was confirmed to 

be significantly elevated in the livers of GK rats. Serum levels of FFA in GK rats were high and almost 

the same as those in ZF rats, indicating that the chronically increased FFA flux from the circulation 

may result in the storage of excess TAG within the liver irrespective of the reduced expression of 

Fat/Cd36 in GK rats. Thus, lipid acquisition appears to be enhanced in the livers of GK rats. 

Regarding lipid disposal, [14C]16:0 oxidation, which was measured using liver slices of GK rats, was 

markedly higher than that of control rats. In accordance with the results of gene expression, the hepatic 

level of the CPT1a protein was higher in GK rats than in control rats. The increase observed in the 

ratio of P-ACC to ACC may reduce the conversion of acetyl-CoA to malonyl-CoA and, moreover, the 

elevation of FAS activity may increase the utilization of malonyl-CoA for the synthesis of 16:0 in the 

livers of GK rats. These states may reinforce the activation of CPT1a by decreasing malonyl-CoA 
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concentrations [51]. Moreover, decreases in the expression of Gpat1 may lead to increases in fatty acid 

oxidation because GPAT1 and CPT1 compete for the same long-chain acyl-CoA substrates, 

particularly newly synthesized fatty acyl-CoAs, and channel them toward either glycerolipid synthesis 

or β-oxidation [39]. The export of TAG as a VLDL component is the only means by which to reduce 

hepatic TAG concentrations other than fatty acid oxidation. Since serum concentrations of TAG were 

lower in GK rats than in control rats, impairments in TAG secretion by VLDL may worsen TAG 

accumulation. However, no significant reduction was observed in the rate of VLDL−TAG secretion in 

GK rats. The low level of serum TAG may be due to a decrease in the gene expression of 

apolipoprotein CIII, which inhibits lipoprotein lipase [52]. These findings, taken together, suggest that 

an increase in TAG accumulation due to elevated de novo lipogenesis and, possibly, a flux of FFA 

from the circulation is predominant and that the TAG accumulation is partially offset by increased 

fatty acid oxidation in the livers of GK rats. 

Previous studies demonstrated that FAS was required in order to generate an endogenous ligand 

for PPARα in the liver [50, 53, 54], and this transcription factor promotes fatty acid oxidation and 

gluconeogenesis in the liver [55]. Moreover, insulin resistance in the liver increases glucose 

production [56]. These findings coincide with our present results; the expression of genes for fatty acid 

oxidation, Cpt1a, and gluconeogenesis, Pepck and G6pase, was up-regulated in the livers of GK rats. 

Although the increase observed in Cpt1a expression in the livers of GK rats was moderate (1.67-fold), 

it is important to note that the stimulation of fatty acid oxidation achieved by a moderate increase in 

the expression of Cpt1a gene is sufficient to markedly reduce hepatic TAG accumulation [57, 58]. 

In conclusion, the present study revealed that, in the livers of GK rats, (i) the accumulation of 

TAG was moderate, (ii) the de novo synthesis of fatty acids was increased by elevating the protein 

levels of FAS, apparently in a post-transcriptional manner, (iii) the promotion of the gene expression 

of PPARα concomitant with PGC1α and lipin 1contributed to suppressing the further accumulation of 

TAG by enhancing fatty acid oxidation through CPT1a induction, and (iv) the VLDL−TAG secretion 

rate remained unchanged. The present study demonstrated for the first time that de novo lipogenesis 
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was up-regulated, while fatty acid degradation was also elevated, such that TAG moderately 

accumulated in the livers of GK rats. The detailed molecular mechanisms underlying these aberrant 

metabolic alterations, particularly the non-transcriptional up-regulation of FAS, in the livers of GK rats 

still remain to be investigated. 
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Figure legends 

  

Fig. 1   Representative images showing the histology of liver sections. Liver sections from the WI 

rat (a), GK rat (b), ZL rat (c) and ZF rat (d) were stained with Oil Red O. Scale bars indicate 200 µm. 

Inserts show a higher magnification of the respective figure; scale bars in the inserts indicate 20 µm.  

(e) The intensity of fat accumulation in hepatocytes. The severity of histopathological findings was 

scored as (0) normal, (1) minimal, (2) mild, (3) moderate, and (4) marked lipid deposition in 

hepatocytes. 

WI, Wistar rat; GK, Goto-Kakizaki rat, ZL, Lean Zucker (?/+) rat; ZF, Obese Zucker (fa/fa) rat. 

  

Fig. 2   Gene and protein expression of transcription factors related to the synthesis and degradation 

of lipids in the liver. (a) The levels of mRNA in the livers of GK rats relative to those in the livers of  

WI rats. (b) The levels of mRNA in the livers of ZF rats relative to those in the livers of ZL rats. (c) 

The protein levels of the mature form (68 kDa) of SREBP-1c in the nucleus. Immunoblots were 

carried out on nuclear extracts from livers. Values represent means ± SD (n = 4−14). *, **, *** 

Significantly different from WI rats (*P < 0.05; **P < 0.01; ***P < 0.001). #, ## Significantly 

different from ZL rats (#P < 0.05; ##P < 0.01). 

WI, Wistar rat; GK, Goto-Kakizaki rat, ZL, Lean Zucker (?/+) rat; ZF, Obese Zucker (fa/fa) rat. 

 

Fig. 3   De novo fatty acid synthesis in GK rat livers. GK and WI rats were intraperitoneally injected 

with [14C]acetic acid, and the hepatic synthesis of fatty acids was estimated by measuring the 

incorporation of [14C]acetic acid into fatty acids in vivo. Five minutes after the injection, rats were 

killed and livers were immediately isolated (a, b, c). (a) The incorporation of [14C]acetic acid into fatty 

acids. Lipids were extracted from one portion of the liver; saponified once, and fatty acids were 

obtained by removing unsaponifiable matter. (b) Acetyl-CoA concentrations in the liver. Acetyl-CoA 

was extracted from one portion of the liver and determined. (c) The amount of acetyl-CoA 
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incorporated into fatty acids. This value was calculated from the data in Figures a and b. (d) FAS 

activity. The cytosol was prepared from the liver and FAS activity in the cytosol was assayed. 

Immunoblots were performed using extracts from the livers (e, f). (e) The FAS protein in the liver; the 

visible bands represent FAS and β-actin as indicated. (f) The ACC protein in the liver; visible bands 

represent ACC and β-actin as indicated. Values represent means ± SD (n = 4). *, **** Significantly 

different from WI rats (*P < 0.05; ***P < 0.001). #, ### Significantly different from ZL rats (#P < 0.05; 

###P < 0.001). 

WI, Wistar rat; GK, Goto-Kakizaki rat, ZL, Lean Zucker (?/+) rat; ZF, Obese Zucker (fa/fa) rat. 

 

Fig. 4   De novo lipogenesis in GK rat livers. Rats were intraperitoneally injected with [14C]acetic 

acid, and lipogenesis was estimated by measuring the incorporation of [14C]acetic acid into hepatic 

lipids in vivo. Five minutes after the injection, livers were immediately isolated; lipids were extracted 

and separated into TAG, DAG, PL, FFA, CE, and C by TLC. (a) The proportion (%) of radioactivity 

distributed among lipid classes. (b) Radioactivity incorporated into lipid classes. (c) The amount of 

acetyl-CoA incorporated into lipid classes. This value was calculated from the data in Figures 4b and 

3b. Values represent means ± SD (n = 4). *, **, *** Significantly different from WI rats (*P < 0.05; **P < 

0.01; ***P < 0.001). 

WI, Wistar rat; GK, Goto-Kakizaki rat; TAG, triacylglycerols; DAG, diacylglycerols; PL, 

phospholipids; FFA, free fatty acids; CE, cholesteryl esters; C, cholesterol. 

 

Fig. 5   Fatty acid disposal processes, fatty acid oxidation and VLDL–TAG secretion, in GK rat 

livers. Liver slices were incubated with [14C] 16:0; 14CO2 produced was trapped and [14C]-labeled 

acid-soluble products were extracted (a, b, c). (a) 14CO2 production. (b) [14C]-labeled acid-soluble 

products. (c) The sum of 14CO2 and [14C]-labeled acid-soluble products. Immunoblots for CPT1a, ACC, 

and P-ACC were performed using liver extracts (d, e). (d) The protein levels of CPT1a; (e) The 

protein level ratio of P-ACC/ACC. (f) The VLDL–TAG secretion rate. Rats that had been starved for 
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12 h were intravenously injected with Triton WR1339. Blood was collected 1, 2, 3, 4, and 6 h after this 

administration. The VLDL secretion rate was determined by measuring changes in serum TAG levels. 

Values represent means ± SD (n = 4−6). *, **, *** Significantly different from WI rats (*P < 0.05; **P < 

0.01; ***P < 0.001). 

WI, Wistar rat; GK, Goto-Kakizaki rat. 
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Table 1   Sequences of primers used for real-time PCR. 
Gene Forward primer ( 5'－3' ) Reverse primer ( 5'－3' ) Accession No. 
Fas CGCCGACCAGTATAAACCCA GTTGTAATCGGCACCCAAGTC M76767 
Acc1 AACGCCTTCACACCACCTTG AGTCGCAGAAGCAGCCCAT J03808 
G6pd CTTTGGACCCATCTGGAATCG TCAAAATAGCCCCCACGACC NM_017006 
Acly AAACTGTATCGCCCAGGCAGT GTAACGCAGCACGTGATCCAT J05210 
Me1 ACAATACAGTTTGGCATTCCG AGGATTCGCTCTCCATCAGTCA NM_012600 
Gpat1 AGACACAGGCAGGGAATCCAC AATTCCCGGAGAAGCCCAG AF021348 
Gpat4 TTGGAGTCCTGGAATTTGCTGA GGCTAATCCCTGTGAATGCCA NM_001047849 
Lipin2 ACCCTGTTCCCAGCCCATCAG GGTGCTGGCTTCTTTTGTGA NM_001108236 
Lipin3 ATCCTGAGTTCTCGTTGGTC GATCTCAAAGTGTCCACGCC NM_001014184 
Dgat1 CCGTGGTATCCTGAATTGGT GGCGCTTCTCAATCTGAAAT NM_053437 
Dgat2 ATCTTCTCTGTCACCTGGCT ACCTTTCTTGGGCGTGTTCC NM_001012345 
Scd1 TCACCTTGAGAGAAGAATTAGCA TTCCCATTCCCTTCACTCTGA J02585 
Elovl5 ACCACCATGCCACTATGCTCA GGACGTGGATGAAGCTGTTG AB071985 
Elovl6 AGAACACGTAGCGACTCCGAA CAAACGCGTAAGCCCAGAAT AB071986 
Fat/Cd36 CGAAGGCTTGAATCCTACCG TGTTGACCTGCAGTCGTTT NM_031561 
Fatp2 TTCAACAGTGGCGATCTCCTG ACCGGAAGGTGTCTCCAACT NM_031736 
Fatp4 CCTGGTGTACTATGGATTCCGC GCTGAAAACTTCTTCCGGATCA NM_001100706 
Fatp5 TTGCGAACGTACGGCAAGTAG AAGGCGGTCTCGGAAGTAGAAG NM_024143 
Fabppm TCTGCCAATCCTATGCCAA CACCCTTTTGGCTTCTTC NM_013177 
Fabp1 CGGCAAGTACCAAGTGCAGAG CTGACACCCCCTTGATGTCCT BC086947 
Acsl1 TCAGAGCAGTTCATCGGCATC GTCGGTTCCAAGCGTGTCATA NM_012820 
Acsl3 GGTGGCCAAAATGTGACAATG AAACTCTCCAATATCGCCAGT NM_057107 
Acsl5 CAAACATGGCTGCTTTCCTCA ACCCTGGACAAGCCTCTCAAA NM_053607 
Cpt1a AAGGCAGCGTTCTTCGTGA GTCAAAGCATCTTCCATGC NM_031559 
Mcad CTTTGCCTCTATTGCGAAGGC TCCGAAAATCTGCACAGCATC J02791 
Lcad TGTATTGGTGCCATAGCCATGA CCCAGACCTTTTGGCATTTGT L11276 
Vlcad ACAGCTTTCGTAGTGGAACGGA CTGGCACCTTGACTCCATCAA D30647 
Acox1 ACTACGACGACCTCCCCAAGA TGGCCACGCAGGTAGTTCA NM_031315 
UCP2 CAAGACCATTGCACGAGAGGA CAGTTGACAATGGCATTTCGG NM_019354.2 
Acc2 AGAGCGGCCGGGTGAACTA CGCGTGCACTTTTGAAGGG NM_053922.1 
Mcd CGGGAAATGAACGGAGTGCTAA CAGCCTCACAATCGCTGATCTT NM_053447.1 
Apoc3 GACAATCGCTTCAAATCCCT CGGCTCAAGAGTTGGTGTTG NM_012501 
Mtp ACGTGGTATTCCCGCCTCA CGTCAAAGCATTTCGTTCTCG BC012686 
Gck TGTCACCGACTGCGACATTG GCATGCGATTTATGACCCCA M25807 
G6pase CAGCCTCTTCAAAAACCTGG GAGCGACTTGCGGAGTTCTC L37333 
Pepck TGGCTGGATGAAGTTTGATG GCCCGGAGCAACTCCAAAAA NM_198780 
Lpk TGTGTACCACCGCCAGTTGTT AGCACTTGAAGGAAGCCTCCA M17685 
Glut2 CACACCAGCACATACGACACC ACTGCAAAGCTGGACACAGA NM_012879 
Pparα AATGCCCTCGAACTGGATGAC CACAATCCCCTCCTGCAACTT NM_013196 
Pgc1α CGATGACCCTCCTCACAC TTGGCTTGAGCATGTTGCG NM_031347 
Lipin1 AGGGAGGGAGATGGTGGTTT CTCTCCGGTATTGTGGCCCTT NM_001012111 



   

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

   

Srebp1c GGAGCCATGGATTGCACATT   AGGAAGGCTTCCAGAGAGGA AF286469 
Chrebp AATAGAGGAGCTCAATGCT   CCCAGAACTTCCAGTTGTGC AB074517 
Lxrα CCACAGCTCAGCCCAGAA   GGCGTGACTCGAAGTCGGT NM_031627 
Hnf4α CATCTTCTTTGACCCAGATGCC   CATACTGCCGGTCGTTGATGT NM_022180.1 
Irs-1 TACATCCCAGGTGCTACCAT   CCAGCCGAGTGAGTTCTCTT NM_012969.1 
Irs-2 TGCTACAGCACATTGCCCCG   TTCCAAAATCCGACCCACAG NM_0101168633.1 
Acot1 ACTACGACGACCTCCCCAAGA   TGGCCACGCAGGTAGTTCA NM_031315.1 
Cyp7a1 GAATTGCCGTGTTGGTGAG   AGGTACGGAATCAACCCGTTC NM_012942.2 
β-Actin TGCAGAAGGAGATTACTGCC   CGCAGCTCAGTAACAGTCC V01217 



Table 2   Physiological, serum and hepatic measurements 

  WI GK ZL ZF 

Body weight (g) 311 ± 3 266 ± 19** 281 ± 8 452 ± 42### 

                          

Organ weights (g/100 g body weight) 

 Liver 4.21 ± 0.23 4.43 ± 0.11 3.80 ± 0.07 4.72 ± 0.30### 

 Epididymal fat 0.99 ± 0.11 0.95 ± 0.06 0.86 ± 0.10 2.72 ± 0.30### 

 Mesenteric fat 0.67 ± 0.04 0.75 ± 0.05* 0.62 ± 0.07 1.58 ± 0.10## 

  

Serum parameters 

 Glucose (mmol/L) 9.99 ± 1.17 19.15 ± 2.39*** 10.66 ± 0.72 12.21 ± 2.11 

 TAG (μmol/L) 1.94 ± 0.62 1.14 ± 0.36* 1.46 ± 0.38 8.91 ± 1.37### 

 Cholesterol (μmol/L) 1.64 ± 0.09 2.72 ± 0.13*** 1.65 ± 0.10 3.02 ± 0.34### 

 FFA (mmol/L) 0.26 ± 0.04 0.49 ± 0.10*** 0.29 ± 0.06 0.60 ± 0.11# 

 Insulin (pmol/L) 407.2 ± 172.5 728.1 ± 146.7** 448.6 ± 113.9 3212.6 ± 4118.4## 

                          

Hepatic lipids (µmol/g liver) 

 TAG 9.16 ± 1.06 13.53 ± 1.87*** 6.01 ± 1.03 34.36 ± 10.60## 

 DAG 1.74 ± 0.17 2.03 ± 0.21* 1.76 ± 0.23 2.10 ± 0.17# 

 FFA 1.55 ± 0.21 1.57 ± 0.21 1.55 ± 0.14 1.51 ± 0.19 

 Phospholipids 37.78 ± 1.14 36.33 ± 2.14 39.27 ± 0.97 35.54 ± 1.79## 

 Total cholesterol 5.60 ± 0.36 5.37 ± 0.29 6.25 ± 0.75 4.94 ± 0.65## 

 CE 1.56 ± 0.36 1.32 ± 0.21 1.68 ± 0.31 1.54 ± 0.45 

Values represent means ± SD (n = 4–8). *, **, *** Significantly different from WI rats (*P < 0.05; ** P < 

0.01; *** P < 0.001). #, ##, ### Significantly different from ZL rats (#P < 0.05; ## P < 0.01; ### P < 0.001). In 

the absence of a superscript, the difference in the means is not significant (P > 0.05). 

WI, Wistar rat; GK, Goto-Kakizaki rat; ZL, Lean Zucker (?/+) rat; ZF, Obese Zucker (fa/fa) rat. TAG, 

triacylglycerols; DAG, diacylglycerols; FFA, unesterified fatty acids; CE, cholesteryl esters. 

 



Table 3   Fatty acid profiles of hepatic lipids in GK and ZF rats 
Fatty acids WI GK ZL ZF 

TAG (mol%) 
16:0 29.27 ± 1.67 30.62 ± 0.76 27.78 ± 1.08 37.89 ± 1.90### 
16:1n-7 2.87 ± 0.45 4.31 ± 0.46*** 2.25 ± 0.43 9.22 ± 0.69### 
18:0 9.25 ± 1.57 7.81 ± 1.10* 4.91 ± 0.77 2.67 ± 0.63### 
18:1n-9 15.44 ± 1.26 16.06 ± 0.64 18.44 ± 1.00 30.85 ± 1.20### 
18:1n-7 3.90 ± 0.39 5.18 ± 0.43*** 3.08 ± 0.36 5.55 ± 0.93### 
18:2n-6 26.13 ± 1.83 21.96 ± 1.71** 30.03 ± 1.62 10.49 ± 1.54### 
18:3n-3 1.03 ± 0.13 0.82 ± 0.05** 1.34 ± 0.12 0.63 ± 0.15### 
20:3n-9 0.24 ± 0.04 0.22 ± 0.03 0.38 ± 0.06 0.19 ± 0.09### 
20:3n-6 0.52 ± 0.08 0.48 ± 0.04 0.38 ± 0.04 0.19 ± 0.04### 
20:4n-6 4.60 ± 0.77 5.56 ± 0.44* 2.20 ± 0.32 0.34 ± 0.05### 
20:5n-3 1.35 ± 0.14 1.50 ± 0.19 1.70 ± 0.26 0.39 ± 0.07### 
22:5n-3 1.99 ± 0.38 2.07 ± 0.30 2.77 ± 0.28 0.58 ± 0.14### 
22:6n-3 3.40 ± 0.60 3.41 ± 0.28 4.74 ± 0.32 1.03 ± 0.26### 
Total (µmol/g liver) 27.48 ± 3.20 40.59 ± 5.60*** 18.02 ± 3.02 103.1 ± 31.81### 

Phosapholipids (mol%) 
16:0 21.24 ± 0.75 19.49 ± 0.70*** 20.71 ± 0.95 20.32 ± 0.89 
16:1n-7 0.85 ± 0.11 1.15 ± 0.15** 0.67 ± 0.12 2.30 ± 0.21### 
18:0 21.17 ± 0.58 21.89 ± 0.26** 22.14 ± 0.73 24.59 ± 1.47## 
18:1n-9 3.47 ± 0.22 2.94 ± 0.20*** 3.62 ± 0.17 5.31 ± 0.32### 
18:1n-7 4.10 ± 0.36 5.00 ± 0.19*** 3.17 ± 0.44 3.26 ± 0.68 
18:2n-6 18.34 ± 0.82 11.96 ± 0.52*** 20.24 ± 0.98 19.43 ± 1.18 
18:3n-3 0.21 ± 0.13 0.07 ± 0.01* 0.12 ± 0.01 0.09 ± 0.02## 
20:3n-9 0.15 ± 0.03 0.16 ± 0.02 0.42 ± 0.11 0.35 ± 0.06 
20:3n-6 1.34 ± 0.19 1.19 ± 0.17 1.10 ± 0.12 3.29 ± 0.21### 
20:4n-6 21.40 ± 1.03 27.47 ± 1.30*** 21.21 ± 0.99 13.51 ± 0.40### 
20:5n-3 1.16 ± 0.11 0.74 ± 0.17*** 1.01 ± 0.13 1.48 ± 0.25## 
22:5n-3 1.30 ± 0.14 1.53 ± 0.09** 1.20 ± 0.13 1.10 ± 0.18 
22:6n-3 5.29 ± 0.43 6.43 ± 0.32*** 4.40 ± 0.49 4.97 ± 0.84 
Total (μmol/g liver) 54.58 ± 2.08 49.41 ± 1.20*** 63.02 ± 3.00 60.58 ± 2.20 

DAG (mol%) 
16:0 11.25 ± 1.25 11.69 ± 1.82 10.65 ± 1.57 16.83 ± 2.96### 
16:1n-7 1.82 ± 0.36 3.66 ± 0.54*** 1.15 ± 0.17 6.13 ± 0.55### 
18:0 8.84 ± 1.06 7.71 ± 1.39 8.15 ± 0.71 7.50 ± 0.67 
18:1n-9 4.75 ± 0.61 5.52 ± 0.47* 4.61 ± 1.09 8.86 ± 0.66### 
18:1n-7 6.93 ± 0.44 9.23 ± 0.35*** 6.97 ± 0.55 7.18 ± 0.55 
18:2n-6 57.14 ± 1.37 51.49 ± 2.91*** 59.78 ± 2.95 45.85 ± 2.91### 
18:3n-3 0.34 ± 0.05 0.27 ± 0.05* 0.36 ± 0.03 0.28 ± 0.07# 
20:3n-9 0.91 ± 0.26 1.01 ± 0.22 0.65 ± 0.13 0.60 ± 0.06 



20:3n-6 1.52 ± 0.31 1.83 ± 0.21* 0.95 ± 0.10 2.59 ± 0.28### 
20:4n-6 5.32 ± 0.51 6.12 ± 0.40** 5.61 ± 0.61 3.29 ± 0.22### 
20:5n-3 0.39 ± 0.16 0.43 ± 0.12 0.27 ± 0.07 0.26 ± 0.13 
22:5n-3 0.26 ± 0.22 0.33 ± 0.14 0.29 ± 0.17 0.22 ± 0.18 
22:6n-3 0.55 ± 0.29 0.71 ± 0.16 0.56 ± 0.37 0.40 ± 0.26 
Total (μmol/g liver) 3.48 ± 0.34 4.05 ± 0.41* 3.52 ± 0.46 4.20 ± 0.33## 

FFA (mol%) 
16:0 40.32 ± 2.93 39.02 ± 2.35 44.59 ± 4.66 42.48 ± 5.87 
16:1n-7 1.21 ± 0.24 1.36 ± 0.29 0.87 ± 0.10 2.32 ± 0.26### 
18:0 25.01 ± 1.13 25.46 ± 1.60 24.89 ± 1.30 26.40 ± 3.43 
18:1n-9 4.49 ± 0.72 4.09 ± 0.15 4.22 ± 0.95 5.78 ± 2.05 
18:1n-7 3.02 ± 0.83 4.32 ± 0.35** 2.30 ± 0.19 2.36 ± 0.56 
18:2n-6 12.37 ± 0.59 10.20 ± 0.71** 11.66 ± 1.16 9.86 ± 1.34# 
18:3n-3 0.76 ± 0.40 0.54 ± 0.15 0.93 ± 0.22 1.14 ± 0.43 
20:3n-9 0.81 ± 0.72 0.80 ± 0.42 0.33 ± 0.09 1.06 ± 1.23 
20:3n-6 0.93 ± 0.20 0.70 ± 0.08* 0.42 ± 0.09 1.45 ± 0.21### 
20:4n-6 8.27 ± 1.28 10.58 ± 0.58** 8.02 ± 1.13 5.32 ± 0.81## 
20:5n-3 0.77 ± 0.16 0.48 ± 0.06*** 0.49 ± 0.09 0.76 ± 0.28# 
22:5n-3 0.55 ± 0.23 0.78 ± 0.15* 0.38 ± 0.29 0.24 ± 0.32 
22:6n-3 1.51 ± 0.26 1.68 ± 0.27 0.88 ± 0.51 0.83 ± 0.50 
Total (μmol/g liver) 1.51 ± 0.21 1.57 ± 0.21 1.55 ± 0.14 1.51 ± 0.19 

CE (mol%) 
16:0 45.40 ± 3.02 41.70 ± 7.46 47.86 ± 7.89 52.61 ± 5.30 
16:1n-7 3.74 ± 0.58 5.81 ± 1.13** 2.36 ± 0.40 6.50 ± 1.64## 
18:0 14.75 ± 2.95 13.16 ± 2.55 13.43 ± 1.91 15.35 ± 4.88 
18:1n-9 13.27 ± 2.28 13.38 ± 1.80 12.44 ± 3.30 10.60 ± 2.61 
18:1n-7 2.32 ± 0.31 3.10 ± 0.26** 1.84 ± 0.28 1.99 ± 0.64 
18:2n-6 12.02 ± 1.03 11.41 ± 1.61 14.17 ± 3.21 7.84 ± 2.34## 
18:3n-3 1.24 ± 0.28 0.77 ± 0.20** 0.45 ± 0.23 0.09 ± 0.17## 
20:3n-9 2.25 ± 0.71 2.06 ± 0.68 2.76 ± 2.66 2.17 ± 0.69 
20:3n-6 0.16 ± 0.10 0.14 ± 0.13 0.05 ± 0.11 0.03 ± 0.07 
20:4n-6 3.59 ± 0.48 7.01 ± 3.01* 4.26 ± 1.16 2.37 ± 0.81## 
20:5n-3 1.27 ± 0.26 1.46 ± 0.48 0.38 ± 0.20 0.45 ± 0.30 
22:5n-3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
22:6n-3 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
Total (μmol/g liver) 1.56 ± 0.36 1.32 ± 0.21 1.68 ± 0.31 1.54 ± 0.45 

Values represent means ± SD (n = 4–6). *, **, ***Significantly different from WI rats (*P < 0.05; ** P < 

0.01; *** P < 0.001).  #, ##, ### Significantly different from ZL rats (#P < 0.05, ##P < 0.01, ###P < 0.001). In 

the absence of a superscript, the difference in the means is not significant (P > 0.05). 

Fatty acids are designated by the numbers of carbon atoms and double bonds; palmitic acid, 16:0; 



palmitoleic acid, 16:1n-7; stearic acid, 18:0; oleic acid, 18:1n-9; cis-vaccenic acid, 18:1n-7; linoleic acid, 

18:2n-6; α-linolenic acid, 18:3n-3; 5,8,11-eicosatrienoic acid, 20:3n-9; 8,11,14-eicosatrienoic acid, 

20:3n-6; arachidonic acid, 20:4n-6; 5,8,11,14,17-eicosapentaenoic acid, 20:5n-3; 

7,10,13,16,19-docosapentaenoic acid, 22:5n-3; 4,7,10,13,16,19-docosahexaenoic acid, 22:6n-3. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  
  
  
  



Table 4   Gene expression in the liver 
Gene WI GK ZL ZF 
Lipogenesis 
 Fas 1.00 ± 0.36 0.72 ± 0.24 1.00 ± 0.42 8.96 ± 2.30### 
 Acc1 1.00 ± 0.23 0.94 ± 0.10 1.00 ± 0.25 4.34 ± 0.85 ### 
 G6pd 1.00 ± 0.31 1.98 ± 0.36 *** 1.00 ± 0.15 1.94 ± 0.59 ## 
 Acly 1.00 ± 0.29 1.60 ± 0.49** 1.00 ± 0.08 4.19 ± 0.92### 
 Me1 1.00 ± 0.28 1.98 ± 0.55** 1.00 ± 0.36 4.07 ± 0.80### 
Gpat1 1.00 ± 0.14 0.73 ± 0.09** 1.00 ± 0.14 3.31 ± 0.29### 
Gpat4 1.00 ± 0.20 0.87 ± 0.09 1.00 ± 0.21 0.95 ± 0.24 
Lipin2 1.00 ± 0.28 1.50 ± 0.11** 1.00 ± 0.21 0.88 ± 0.13 
Lipin3 1.00 ± 0.57 0.65 ± 0.10 1.00 ± 0.24 1.25 ± 0.20 

 Dgat1 1.00 ± 0.22 1.08 ± 0.30 1.00 ± 0.34 1.61 ± 0.59 
Dgat2 1.00 ± 0.24 0.84 ± 0.11 1.00 ± 0.05 1.78 ± 0.35## 

          
Fatty acid modification 
 Scd1 1.00 ± 0.29 1.93 ± 0.29*** 1.00 ± 0.91 8.88 ± 1.37### 
 Elovl5 1.00 ± 0.16 1.60 ± 0.23*** 1.00 ± 0.12 1.19 ± 0.26 
 Elovl6 1.00 ± 0.50 1.21 ± 0.34 1.00 ± 0.36 29.32 ± 11.70## 
          

Fatty acid trafficking 
Fat/Cd36 1.00 ± 0.29 0.72 ± 0.15* 1.00 ± 0.22 1.97 ± 0.47### 

 Fatp2 1.00 ± 0.19 0.99 ± 0.15 1.00 ± 0.08 0.94 ± 0.19 
 Fatp4 1.00 ± 0.18 1.27 ± 0.32 1.00 ± 0.29 1.07 ± 0.34 
 Fatp5 1.00 ± 0.17 0.78 ± 0.04* 1.00 ± 0.18 1.04 ± 0.39 
Fabppm 1.00 ± 0.21 1.02 ± 0.14 1.00 ± 0.18 0.93 ± 0.36 

 Fabp1 1.00 ± 0.21 0.97 ± 0.19 1.00 ± 0.18 0.75 ± 0.22 
Acsl1 1.00 ± 0.14 0.96 ± 0.07 1.00 ± 0.16 0.91 ± 0.12 

 Acsl3 1.00 ± 0.19 0.89 ± 0.16 1.00 ± 0.26 0.95 ± 0.45 
Acsl5 1.00 ± 0.26 0.73 ± 0.26 1.00 ± 0.32 1.74 ± 0.30## 

          
Fatty acid degradation 

 Cpt1a 1.00 ± 0.41 1.58 ± 0.34* 1.00 ± 0.51 0.53 ± 0.29 
 Mcad 1.00 ± 0.14 1.06 ± 0.09 1.00 ± 0.12 0.94 ± 0.16 
Lcad 1.00 ± 0.13 1.09 ± 0.10 1.00 ± 0.07 1.21 ± 0.20# 

 Vlcad 1.00 ± 0.20 1.06 ± 0.18 1.00 ± 0.10 1.08 ± 0.12 
 Acox1 1.00 ± 0.23 1.10 ± 0.11 1.00 ± 0.22 1.01 ± 0.12 
Ucp2 1.00 ± 0.24 1.43 ± 0.19** 1.00 ± 0.11 0.99 ± 0.19 
Acc2 1.00 ± 0.19 1.07 ± 0.12 1.00 ± 0.32 1.01 ± 0.32 
Mcd 1.00 ± 0.33 1.09 ± 0.07 1.00 ± 0.14 0.85 ± 0.13 

          
Lipoprotein metabolism 



Values represent means ± SD (n = 6–14). *, **, *** Significantly different from WI rats (*P < 0.05; ** P < 
0.01; *** P < 0.001). #, ##, ### Significantly different from ZL rats (#P < 0.05; ## P < 0.01; ### P < 0.001). In 
the absence of a superscript, the difference in the means is not significant (P > 0.05). 

Apoc3 1.00 ± 0.17 0.76 ± 0.11* 1.00 ± 0.15 1.37 ± 0.15## 
 Mtp 1.00 ± 0.09 0.92 ± 0.11 1.00 ± 0.34 1.23 ± 0.16 
          
Glucose metabolism  
Gck 1.00 ± 0.39 1.27 ± 0.45 1.00 ± 0.29 1.34 ± 0.55 
G6pase 1.00 ± 0.59 1.74 ± 0.30* 1.00 ± 0.47 0.78 ± 0.26 

 Pepck 1.00 ± 0.27 1.39 ± 0.12** 1.00 ± 0.11 0.54 ± 0.12### 
Lpk 1.00 ± 0.18 1.19 ± 0.20 1.00 ± 0.28 3.52 ± 0.41### 

 Glut2 1.00 ± 0.19 1.18 ± 0.10 1.00 ± 0.34 1.23 ± 0.05 
  
Others 

        

Irs-1 1.00 ± 0.26 1.27 ± 0.09* 1.00 ± 0.05 0.79 ± 0.19# 
 Irs-2 1.00 ± 0.21 0.86 ± 0.25 1.00 ± 0.45 0.34 ± 0.08## 

Acot1 1.00 ± 0.24 1.48 ± 0.36** 1.00 ± 0.15 1.17 ± 0.23 
Cyp7a1 1.00 ± 0.51 1.11 ± 0.25 1.00 ± 0.79 1.05 ± 0.26 
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