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Pseudo-Normal Random Number Generation via the 

Eulerian Numbers 

Nagatomo NAKAMURA 

Abstract. The di:>crctte probability distribution that appears in the 
sorting process of the Jlioditicd bucket sorting is t.hc' Eulerian dis1 rihutiou. 
The Eulerian distribution gives a good approximation to the normal distribu­
tion. We propose an algorithm to generate pseudo-normal random numbem 
by adopting the properties of the Eulerian distribution. The capability of ap­
proximation to the normal distribution and the computational efficiency of the 
propu:-;cd n1ethod are demon.':iLra.ted by numerical experiments. 

1. Introduction 

The distribution of the number of buckets (or bins) appearing in the process of 
the modified bncket sorting is thP Enlerian di~trihution (Tsuchiya cmcl Xakamura, 
2009; TsuchnL 2015). The Eulerian distribution ic-; good approximation to the 
normal distribmiun. It is just similar to a binomial distribution. The objective of 
this paper is to propose a method for a fast generation of a normal random number 
using the property of the approximation compared to the Box-Muller method (Box 
and l\Iuller_ 1958). 

The proof that a series of a random numbers follows to any probability distri­
bution relies 011 a theoretical background. All the random numbers following to 
any probability distribution can be considered a locally uniform distribution. Our 
proposal can be confirrned that they are the normal random numbers, because the 
shape of the distribution of the generated random numbers is normally distributed 
and the result of the hypothesis testing for the data is accepted. A theoretical basis 
of the psem~o-nonnal random number is proposed in this paper, that is the data 
have a global normal distribution and a locally uniform distribution. 

In the next section, the bucket sorting and the modified bucket sorting are 
described. The method of generation of the pseudo-normal random number is 
proposed in section 3. The effectiveness of the proposed method is verified through 
numerical experiments in section 1. 

2. The Bucket Sorting and the Modified bucket Sorting 

2.1. The bucket sorting (the bin sorting) 
The principle of the bucket sorting (or bin sorting) is described. 
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Sorting Procedure (Bucket Sorting or Bin Sorting): 
Suppose that there are n cards vvith m (m s;: 

labeled buckets. 
flistinct numbers and 111 empty 

STEP 1 Distribute thP cards into thP buckets according to their numbers. 

STEP 2 Sort tbe non-empty buckets. 

The performance of an average case for computational time of the bucket sorting 
is + k), where n is the size of data and k is the number of different buckets. 
The sorting method is rclati 1·ely faster than any other sorting algorithm. 

2.2. The Modified Bucket Sorting and Eulerian Numbers 
\Ve prepare a deck of well shuffied n cards from 1 to n. The following procedure 

is carried out in order to :c;ort a deck of cards in etscending order. At this time, 
Tsuchiya and Nakamura (2009) and Tsuchiya(2015) propose the modified algorithm 
of the bucket sorting as follows: 

Sorting Proc:ed ure (l\Iodified Bucket Sorting): 

STEP 1 If the top of a deck of cards at hand is a card k: and a card k + 1 is on 
the table, then we put the card k: on top of the card k + 1. 

STEP 2 If the card k + 1 is not on the table. then the card k is not on any card 
on the table but is put directly on the surface of the table. 

STEP 3 STEPs 1 and 2 are repeated until the cards at hand run out. 

STEP 4 vVe bundle all the sets of cards in ascending order. 

The differronces betwn-~n rhe bucket sorting ancl tlw modified ones are as follows: 
in the modified bucket sort, (i) it is as;;umed that none of the cards have the same 

numbers, ( ii) we do not need to know how many buckets we should set up in 
advance, and ( iii) if the card k + 1 is on the table. then the card k is put on top of 
it. The number of bunchc~ of cards in STEP 4 is the Eulerian numbers (Graham, 
Knuth and Pataslmik, 1994; Kimber, Hl89: Kunuth, 1997; Sloaue, online reference) 
and dividing by n! leads to the Eulerian distribution (Tsuchiya and Nakamura, 
2009: Tsuchiya. 2015). Hereafter, the "bunches" 1vill be called the "bins". 

All the sequences of cards in n 2. ;:) and 4 related to the number of bins are 
as follows: 

n= 2: l 2) <. < 2, (2, 1) < < L 

{ 2 3) 
• < < :t (1,3,2) 2. (2, 1, 3) 2, 

n= 3 : (2,3:1) < <. 2, (3,1,2) 2, (3,2,1) t 
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r (L2. '· 4) 
4, (2, L 3, 4) 3, (3,1,2,4) 3, (4,1,2.3) 3, 

(L 2. 4, :1) 3, (2, 1,4,3) 2, (3, 1. 4, 2) 3, (4,1,3,2) 2, 

n = -! 
(1. 3. 2. 4) 3, (2, :3, 1, 4) 3, (3, 2, 1, 4) 2, (4, 2, 1, :3) 2, l (1,:1.4.2) 

., 3, 4, 1) 3. 2, 4, 1) :2. 2, 3, 1) 2. ,). 

( 1' 4, 2. 3) ::l. 4, 1,3) 2. 4, 1, 2) ., :)1, 2) :2. c). 

(l. 4, 3. 2) .. 2, 4, 3, 1) 2 (3,4,2,1) 2 (4,3,2,1) 1. ' , 

The total number of bins i in any number of card::; n is obtained by the following 
recurrence relation (TsuchiYa and Nakamnra, 2009): 

{ Mn(l) = (n) = 1 (n :=:- 1), 

lVIn(i) =iMn-l(i) + {n- (i -1)}Aln-l(i -1) (n :=:- 3, i = 2, ... , n - 1), (l) 

where, let X be the random variable which denotes the number of bins and let 
J.Hn ( i) be the total number of case that X = i in n cards. 

The frequency distribution of Eulerian numbers until n = 7 is computed the 
formula. shmvn in Table 1. 

Table 1. Eulerian Numbers 

n\i 1 2 3 4 5 6 7 sum (= n!) 
1 

" 1 1 :2 "" 
:3 1 4 l 6 
4 1 11 ll 1 24 
5 1 26 66 26 1 120 
6 57 302 302 57 1 720 
7 1 120 1191 2416 1191 120 5040 

The discrete probabilitv distribution is obtained by n!. We call thic; 
distribution ·'Eulerian distribution." This distribution has statistically good prop­
erties, for example, its approximation to a normal distribution is excellent compared 
with a binomial distribution (Tsuchiya and Nakamura, 2009). 

3. The principle of the pseudo nonnal random number generation 

3.1. An Outline of Random Number Generation 
The idea of generation of a pseudo normal random number is as follows: Given 

distinct n numbers ov-er the range 1 to n, the total number of combinations is n!. 
\lYe choose an integer random number q from [1, n!]. The number of bins k (or 
the Eukrian numbers k) is by the sequence of the numbers t corresponcl.ing 
q. The r = n! is normalized by the interval (0, 1], so the Eulerian numbers are 

dispersed k + r in [k, k; + 1]. l\IIoreover, the Eulerian distribution approximately 
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follows the normal distribution N((n + 1) 12, (n + 1) 112) (Tsuchiya and Nakamura, 
2009), then 

(l+r)-(n+l)l2 

j(n + 1)112 

follows a standard normal distribution. It is assumed that q and k are statistically 
independent. The random numbers generated by this method will be called pseudo­
normal random numbers or Eulerian pseudo-normal random numbers. 

As an intuitive understanding, it can be said that (i) the Eulerian distribution 
is an asymptotically nurmal distribution, and (ii) any normal random number 
generated any methods, i.e. the Box-l\Iuller method, is assumed to locallv 

uniform distribution in a narrow interval. The proposed method gives us a normal 
distribution globally and a uniform distribution locally. If the number of bins is 
small and the data size large (Figure 1 (a)-( c)). the dio-;trilmtion shape is stepped. 
But. if the number of bins is more than one hundred (Figure l(e)-(h)). the shape 

is indistinguishable fi"om a normal distribution (Figure 1 ( i)). 

3.2. The relationship to the Eulerian distribution 
Yiore detailed description of the proposed method is as follows. 

The number of combination of n cards is nL and t is assumed to be a sequence 
of any cards. It can be written as: 

where a1 E [1, n]. aJ # aj', 1 <S: j,j' <S: n and j # j'. The number of bins k 
is uniquely determinerl. \Yhen t is given, and k is distributed in an approximatdy 
normal disni\mtion, which in this case is au Eulerian distribution. Using thic; 

relation, the integer value q is randomly sampled from [1, n!], the number of bins k 

is given by any card sequence t. Moreover, the q is transformed by r = qln!, and 
vvill be a uniform distrilmtion on (0, 1]. Next. the s computed by s = k + r follows 
approximatelY a normal distribution. Subsequently, a ranclorn number following 

to N(0.1) is obtained by an appropriate standardization. In this connection, the 
Eulerian distribution has an average (n + 1) 12 (n :2 1), and the variance ( n + 
1) I 12 (n 2:> :2). follows approximatelY a normal distributionS( ( n+ 1) /2, 1) I 

Q is the set of combinations T from 1 to n consisting of n! array. and each 

combination has the number of bins K. These situations can be illustrated in 

figure 2. 
The function h(-) transforms the sequence of card t into a q-th array of n!, and 

the function ·) transforms q to the number of bins k. Then the following relation 

holds: 

q = h(t). g(q) = g(h(t)) = k 
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(a) k = 9 (b)k=l6 (c) k = 32 

(e) k = 128 (f) k 2!)() 

(g) k = 'i12 (h) k = 102-1 (i) I\urmal 

1. Histograms for several P~eudo-Kormal Random Numbers 
and Normal Random Numbers. (a) to (h) are the distribution of the 
Eulerian normal random numbers, where the number of bin~ A: is from 
9 to 1024, respectively. ( i) is the distribution of the normal random 
numbers. The number of data for each figure i~ 10,000. 

3.3. The algorithm 
Base1l on t.he previous section. we can generate a pseudo-normal random number 

with the following procedures. 

STEP 1 Transformation Table: Preparing the transformation function k = 

g(p). 

STEP 2 Uniform Random Data: Generating an integer random number p 
from the uniform distribution U(l. n!). 

STEP 3 Number of Bins: Obtaining the number of bins k from k = g(p). 

STEP 4 Continuation: Computing s = k + r in order to get a continuation 
via computing 1 = pjn!. 



90 N. Nakamura 

T (t) 
Llj a.2 a3 an-2 an-l an 

1 2 ') 
.) (n-2)(n-l) n =c> 

1 2 (n- 2) n (n- 1) =? 

1 2 3 (n-l)(n-2) n =? 

2 3 (n- 1) n (n- 2) =? 

1 2 3 n (n- 2) - 1) =? 

1 2 3 n (n-l)(n-2) =? 

n(n-l)(n ·)\ 
~; 3 l 2 = 

n(n-l)(n - 2) 3 2 1 =';· 

n card numbers 

Q 
(q) 

-1-

2 
:3 
4 
5 
6 

n 1 - 1 
n! 

=? 

=? 

=? 

=? 

=? 

=? 

=? 

=? 

K 
(k) 
n 

n- 1 
n- 1 
n-1 
n- 1 n! array 
n-2 

1 

Figure 2. Transformation Tahle of the of the Numbers (T), 
Serial I\mnber (Q), and the Number of Bins ( 

STEP 5 Standardization: Standardizing s by (s- (n + 1)/2)/ J(n + 1)/12. 

STEP 6 Repcming as nece.;c-;ary from STEPs 2 to .5. 

3.4. The Computational Costs 
In this subsection, the operational costs among (i) the proposed method, (i·i) the 

I3ox--:\Iuller method and ( iii) the central limit theorem based generation method, 
are compared. 

The Bux-:\[nllcr method generates two normal random numbers. X and Y, by 
the indepcndc,nt two uniformly distributed raudom numbers, U and ·v, via the 
following ;;mnsformation: 

where, U, l-. L ]. 

X= V -2log U cos 21rV, 

Y = J -2log U sin 21rV, 

(2) 

(3) 

The central limit theorem based method is as follows: take the sum of 12 
independent uniform random numbers and subtract 6 then the generated data 
follows a normal distribution N(O, 1) (Shimizu, 1976). 

We nmY compare the computational costs for generating a normal random num­
ber. However, in general, if the dock multiplier (frequency) in many modern mi­
crocomputers of the four fundamental operations (addition, subtraction, multipli­
cation and division) is a:osurned to be one, the trigonometric cost is more than five 
times, the square root cost is at least four times or more. Although these costs are 
dependent on the performance of the compiler optimization. 
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First, the computational costs of generating the number of bins from the array 
in STEP 3 of the algorithm are zero. Arithmetic operation costs in STEP 1 are 
three. and in STEP 5 ar(' t-.,vo. The total costs an· 5 + 0 (arithmetic operations 
T mathematical functions). Second, in the Box-:\Iuller method, the numuer of 
arithmetic operations for generating the hvo normal random numbers are 3 x 2 = 6, 
and the number of operations of trigonometric functions is 1 x 2 = 2. For common 
coquare root, funr arithmetic operations is 1, the logarithm is l, the square root is 1. 

Computational cost per one normal random number is ( (6-1)+ (6- 2)) /2 = 2.5+ 2. 
Finally, in the central limit theorem, the arithmetic operations are 12. From the 
aboYe illustrations, when the cost of the mathematical function is assumed to be 
at least fom times more than the four arithmetic operations. the total cost of the 
proposed method is 4, the Box=~'luller method is 2.5 + 2 x 4 = 10.5, and the 
method by central limit theorem is 12. Clearly our proposal has the smallest cost. 

3.5. Simpilfication of the Algorithm 
In the preYious section, the strict algorithm for all of the combination for the 

card number has been shown. However, it must be considered a combination of 
nl = 3628800 when n = 10. l\Ioreover, it becomes necessary an astronomical 
lmmber for n = 64, i.e. 6"1! = 1.27 x 1089 , then it is not practical to obtain 
the number of bins for all cumbinatious. Thus, we adopt the ;;ubset of the true 
Eulerian distribution to generate the random numbers, that is, we sample the 
snbset randomly from the transformation table in STEP 1 of subsection 3.3. Then 
vYe generate the numbers with the suuset in the remained STEPs in the algorithm. 
Then. the sampling for obtaining the pseudo-normal random number from the 
pc;eudo-probability distribntion can help us to simplify the procedures and the 
computation. 

4. Numerical Experiments 

4.1. The purpose of the experiments 
We verify the performance of the proposed method through various numerical 

experiments. In the numerical experiments, four tests of normality are Rpplied to 
~he pseudo-normal random number,'i generated by the proposed method. Further­
more, the computational time of the proposed method and the Box-:'\Iuller methods 
are compared. 

The conditions for the numerical ccxperiments are as follmYs: 

• The numucr of bins : 9, 16, 32, 61, 128, 2S6, 512. 

• The number of generated data: 20, 50. 100, 200, 500, 1000, 10000, 100000. 

• The number of simulations: 100.000. 



92 N. Nakamura 

T~1.ble 2. Performance Comparison 

Eulerian-Normal 
Methods 1 (Pseudo-Normal) 

Kumber of Bins I 16 32 64 
A\erage Time--T 43.1 44.2 43.0 

Standard Deviation 0.946 0.628 0.812 

Normal 
(Box-Muller) 

78.0 
0.907 

The tabie shows the average time spent (miliisccconds) and its standard deviations in gener­
ating a random number of 106 via 10,000 simulations. The source codes are written in Visual 
Basic 2010. and the computer processor is Tntel(R) Core(TM) i?-2600 CPU@ 3.40GHz with 
8.00GBytc rnernury. 

• The methodt: for testing: (a) Anderson-Darling test, (b) Kolmogorov-Smirnov 
test, (c) Jarque-Bcra test, and (d) Kuiper test. 

On the other hand, the comparison experiments of the computational time by 
generating "'· l 06 of the normal nmdom number. The experimentc: were performed 
10,000 times, the the average times were compared. 

4.2. The results 
Figure 3 illustrates the contour maps of p-values with the number of bins 

and the number of daLa. The figures show the results of Amlerson-Darling test, 
KolmogoroY-Smirnov test, J arqnc-Bera test, an cl Kuiper test, respccti \·ely. The 
x-axis shuws the number of biu:; and y-axis shows the number of generated data. 
The white area of the nppf'r left of each figure is a rejection region of a p-value of 
lPss than five percent. 

The four simulation results show that (i) when the number of data is small 
( n < 1000). the hypothesis of normc1lity is not by five percent regardless of 
the number of (ii) when the number of bins is small and the number of data 
is large, the hvpothesis is and (iii) when the number of bins is larger, the 
hypothesis can be regarded as a normal random number. For conditions different 
to those of rejection, it was verified that the pseudo-normal random numbers can 
be used as a normal random number. 

On the; other hand, the results of computational time for generating llf' pseudo­
normal and normal random mm1her::> on different conditions are shown in table 2. 
Regardles;s of the uumher of the results obtained by the propo:sed method are 
almost a certain period of time. It is about 1.8 times faster than the Box-Muller 
method. 

5. Concluding Remarks 

The proposed method can be viewed as a kind of the inverse function method 
for generating a random number of arbitrary probability distribution. The key 

issue of the proposed method is that a uniform random number behaves in two 
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:-c~rru,...ofBins(xY) 

( n.) Anderson-Darling test (b) Kolmogorov-Smirnov test 

(c) J arque-Dcra test (d) Kuipcr test 

Figure 3. The Resuhs of Four Normality Tests. The x-axis indicates the 
number of bins, they-axis indicates the number of samples. The white area 
of the upper left of each figure is a rejection region of a p-value of less than 
five percent. 

ways. One i;.; that it serves to select the number of bins, and the other is that 
to scatter the data in the lJiu. 
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\Ve also now compare the tails truncation of the normal distribution 

for each generator. Since the most popular personal computer is equipped 
with 32-hit or 64-bit, mo:ximum values by the Box-1Tuller transform arc. 
y!-2ln(:2<12 )cos(21T'2- 32 ) ~ 6.o6 for 32-bit ancl J-2ln(2- 151 )coc;(21!'2-64 ) ~ 9.42 

for 64-bit. In the standaJ"d normal distribution, t\vofold probability of greatl;r thnn 

these values are shown in Table :3. On the other hand, the probabilities of the 
standard normal distribution obtained by changing the number of bins in the pro­

posed method are also shown in Table 3. From these facts, we could understand 

where the distribution is tnmcated. From this table, the counterpart of the pro­

posed method with 32 bins is 64-bit version of the Box-Muller method. When we 

increase tbc number of the truncation location of the distribution is away 
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Table 3. Probability of Tails Truncation 

z-value 
p--valuc 

\umber of Bin~ in Eulc:rian Distribution 
1() :2t :3:2 64 

6.30 7.9/ 9.35 13.53 
2.95xl0- 10 1.62xlo-Ls 9.03x10- 21 9.78x10- 42 

Sox-:\luller J\Icthod 
:3:2bit G..tbil 
6.66 9.42 

2.73xlo-n 4.54xl0- 21 

This table illustrates the twofold probability in a standard normal distribuLwn !J;iven by a 
rnaximum Ya1ue of each nunual randorn gen<Tator. The :::-value mea.n...:: the value of ::;tandard 
normal deviatcco, and the p-vaiue means the probabilit,· of outside ±z-values in a c0tandard 
normal distribution. For 32 bit or 64 bit computers, the smallest number that can be 
generated is 2-32 or 10-64 , respectively. When U and V of uniform random number on 
(0, 1] are equal to these values, the Box-Muller transformation in equation (2) produces a 
normal random variable equal to 6.66 or iJA2. respectively. 

from the average. 
When n is sufficiently large, the approximation accuracy for the normal dis­

tr1lmtion of the Euleriau distribution ico good enough. Since the proposed method 
generates uniform distributions in the bins, it cannot be approximated to the slope 
of the normal distribution. This effect appears when the number of bins is small, 
and a large size of random number generates. However, the effect of the nnifonn 
distribution has been reduced when the number of bins is large, and its width 
is narrmv. From the viewpoint of capability for approximation to a normal dis­
tribution and compntational costs of generating numbers, the effectiveness of the 
proposed m0thod was veriflc(l. The prnl!Osed method would he more effecti\"<' when 
large-scale experiments are performed and the required number of normal random 
numbers per one dataset i::; not so large (about lcsc; than 104 ). 

The remaining problem is to pron; the local uniformity of random rmmbers 
following to any probability distribution mathematically and/or statistically. 
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