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Pseudo-Normal Random Number Generation via the
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Abstract. The discrete probability distribution that appears in the
sorting process of the modified bucket sorting is the Eulerian distribution.
The Eulerian distribution gives a good approximation to the normal distribu-
tion. We propose an algorithm to generate pseudo-normal random numbers
by adopting the properties of the Eulerian distribution. The capability of ap-
proximation to the normal distribution and the computational efficiency of the
proposed method are demonstrated by numerical experiments.

1. Introduction

The distribution of the number of buckets (or bins) appearing in the process of
the modified bucket sorting is the Eulerian distribution (Tsuchiya and Nakamura,
2009; Tsuchiya, 2015). The Eulerian distribution is a good approximation to the
normal distribution. It is just similar to a binomial distribution. The objective of
this paper is to propose a method for a fast generation of a normal random number
1sing the property of the approximation compared to the Box-Muller method (Box
and Muller, 1958).

The proof that a series of a random numbers follows to any probability distri-
bution relies on a theoretical background. All the random numbers following to
any probability distribution can be considered a locally uniform distribution. Our
proposal can be confirmed that they are the normal random numbers, because the
shape of the distribution of the generated random numbers is normally distributed
and the result of the hypothesis testing for the data is accepted. A theoretical basis
of the pseudo-normal random number is proposed in this paper, that is the data
have a global normal distribution and a locally uniform distribution.

In the next secrion, the bucket sorting and the modified bucket sorting are
described. The method of generation of the pscudo-normal random number is
proposed in section 3. The effectiveness of the proposed method is verified through
numerical experiments in section 4.

2. The Bucket Sorting and the Modified bucket Sorting

2.1. The bucket sorting (the bin sorting)
The principle of the bucket sorting (or bin sorting) is described.
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Sorting Procedure (Bucket Sorting or Bin Sorting):
Suppose that there are n cards with m (m < n) distinct numbers and m empty
labeled buckets.

STEP 1 Distribute the cards into the buckets according to their numbers.

STEP 2 Sort the non-empty buckets.

The performance of an average case for computational time of the bucket sorting
is O{n + k), where n is the size of data and % is the number of different buckets.
The sorting method is relatively faster than any other sorting algorithm.

2.2. The Modified Bucket Sorting and Eulerian Numbers
We prepare a deck of well shuffled n cards from 1 to n. The following procedure
is carried out in order to sort a deck of cards in ascending order. At this time,
Tsuchiva and Nakamura (2009) and Tsuchiya(2015) propose the modified algorithm
of the bucket sorting as follows:

Sorting Procedure (Modified Bucket Sorting):

STEP 1 If the top of a deck of cards at hand is a card k¥ and a card k£ + 1 is on
the table, then we put the card k on top of the card k& + 1.

STEP 2 If the card k£ + 1 is not on the table, then the card % is not on any card
on the table but is put directly on the surface of the table.

STEP 3 STEPs 1 and 2 are repeated until the cards at hand run out.
STEP 4 We bundle all the sets of cards in ascending order.

The differences between the bucket sorting and the modified ones are as follows:
in the modified bucket sort, (7) it is assumed that none of the cards have the same
numbers, (i) we do not need to know how many buckets we should set up in
advance, and (z¢) if the card &+ 1 is on the table, then the card & is put on top of
it. The number of bunches of cards in STEP 4 is the FEulerian numbers (Graham,
Knuth and Patashnik, 1994; Kimber, 1989; Kunuth, 1997; Sloane, online reference)
and dividing by n! leads to the Eulerian distribution (Tsuchiya and Nakamura,
2009; Tsuchiya, 2015). Hereafter, the “bunches” will be called the “bins”.

All the sequences of cards in n = 2,3 and 4 related to the number of bins are
as follows:

n=2: (1,2) -2, (2,1) --- 1,
s, (1,2,3) --- 3, (1,3,2) --- 2, (2,1,3) --- 2,
e (2,3,1) -+~ 2, (3,1,2) --- 2, (3,2,1) --- 1,
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(1,2,3,4) -~ 4, (2,1,3.4) --- 3, (3,1,2.4) --- 3, (4,1.2.3) --- 3,
(1,2,4,3) --- 3, (2,1.4.3) --- 2, (3,1.4,2) -~ 3, (4,1,3,2) --- 2,
Ly )32 8 23014 3 (3,214 2 (4,21,3) - 2,
(1,3,4,2) --- 3, (2,3,4,1) --- 3, (3,2,4,1) --- 2, (4,2,3,1) --- 2,
(1,4,2,3) --- 3, (2,4,1,3) --- 2, (3,4,1,2) --- 3, (4,3,1,2) - 2,
(1,4,3,2) -~ 2, (2,4,3.1) -+~ 2, (3,4.2,1) --- 2, (4,3.2,1) --- 1

The total number of bins ¢ in any number of cards n is obtained by the following
recurrence relation (Tsuchiya and Nakamura, 2009):

{J[n(l) =M,(n)=1 (n>1), (1)

My@)=iM, (i) +{n—-(C-1)}M,_1(i—-1) (n>3,i=2..n-1),

where, let X be the random variable which denotes the number of bins and let
M, (%) be the total number of case that X =1 in n cards.

The frequency distribution of Eulerian numbers until n = 7 is computed by the
formula, shown in Table 1.

Table 1. Eulerian Numbers

n\t | 1 2 3 4 5 6 7| sum(=n!)
1 1 1
2 1 1 2
3 i 1 6
4 1 11 11 1 24
5 1 26 66 26 1 120
6 1 57 302 302 57 1 720
7 1 120 1191 2416 1191 120 1 5040

The discrete probability distribution is obtained by dividing n!. We call this
distribution “Eulerian distribution.” This distribution has statistically good prop-
erties, for example, its approximation to a normal distribution is excellent compared
with a binomial distribution (Tsuchiya and Nakamura, 2009).

3. The principle of the pseudo normal random number generation

3.1. An QCutline of Random Number Generation
The idea of generation of a pseudo normal random number is as follows: Given
distinct » numbers over the range 1 to n, the total number of combinations is nl.
We choose an integer random number ¢ from [1,n!]. The number of bins & (or
the Eulerian numbers k) is given by the sequence of the numbers ¢ corresponding
q. The r = g/n! is normalized by the interval (0, 1]. so the Eulerian vumbers are
dispersed by k +r in [k, k + 1]. Moreover, the Eulerian distribution approximately
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follows the normal distribution N{(n+1)/2,(n+1}/12) (Tsuchiya and Nakamura,
2009), then

(k+r)—(n+1)/2

follows a standard normal distribution. It is assumed that ¢ and k are statistically
independent. The random numbers generated by this method will be called pseudo-
normal random nuwmbers or Eulerian pseudo-normal random numbers.

As an intuitive understanding, it can be said that (i) the Eulerian distribution
is an asymptotically normal distribution, and (i4) any normal random number
generated by any methods, i.e. the Box-Muller method, is assumed to locally
uniform distribution in a narrow interval. The proposed method gives us a normal
distribution globally and a uniform distribution locally. If the number of bins is
small and the data size is large (Figure 1 (a)—(c)), the distribution shape is stepped.
But, if the number of bins is more than one hundred (Figure 1{e)—(h)), the shape
is indistinguishable from a normal distribution (Figure 1(7)).

3.2. The relationship to the Eulerian distribution
More detailed description of the proposed method is as follows.
The number of combination of n cards is n!, and ¢ is assuined to be a sequence
of any cards. It can be written as:

t=01a003 " Qp_10y,

where a; € [1,n], a; # ajp, 1 < j,7 <n and j # j'. The number of bins k&
is uniquely determined when t is given, and k is distributed in an approximately
normal distribution, which in this case is an Eulerian distribution. Using this
relation, the integer value ¢ is randomly sampled from [1, nl], the number of bins &
is given by any card sequence t. Moreover, the ¢ is transformed by r = ¢/n!, and
will be a uniform distribution on (0, 1]. Next, the s computed by s = k + r follows
approximately a normal distribution. Subsequently, a random number following
to N(0,1) is obtained by an appropriate standardization. In this connection, the
Eulerian distribution has an average (n + 1)/2 (n > 1), and the variance (n +
1)/12 (n > 2), follows approximately a normal distribution N((n+1)/2, (n+1)/12).

() is the set of combinations 7" from 1 to n consisting of n! array, and each
combination has the number of bins K. These situations can be illustrated in
figure 2.

The function A(:) transforms the sequence of card ¢ into a ¢-th array of nl, and
the function g(-) transforms ¢ to the number of bins k. Then the following relation
holds:

a="h(t), glg)=ght) =k
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Figure 1. Histograms for several Pseudo-Normal Random Numbers
and Normal Random Numbers. (a) to (k) are the distribution of the
Eulerian normal random numbers, where the number of bins k& is from
9 to 1024, respectively. (i) is the distribution of the normal random
numbers. The number of data for each figure is 10,000.

As a result, we could obtain & from ¢ without ¢.

3.3. The algorithm
Based on the previous section, we can generate a pseudo-normal random number
with the following procedures.

STEP 1 Transformation Table: Preparing the transformation function k =
9(p)-

STEP 2 Uniform Random Data: Generating an integer random number p
from the uniform distribution U(1,nl).

STEP 3 Number of Bins: Obtaining the number of bins &k from k = g(p).

STEP 4 Continuation: Computing s = k + r in order to get a continuation
via computing r = p/nl.
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T @) Q i
ay az as Gn-2 Gn-1 On (q) (k)
1.2 3 m-2)(n—-1) n = 1 = n
1 2 3 n-2 n (n-1 = 2 = n -1
1 2 3 n—-Dn-2) n = 3 = n—1
12 3 n=1) n (-2 = 4 = n—1
12 3 n (n—2{n-1) = 5 = n—1 nl array
1 2 3 n (n- l)(u -2) = 6 = n—2
nin—1){n-2) - 3 1 2 = nl-1 = 2
nn—1)(n-2) - 3 2 1 = n! = 1

n card numbers

Figure 2. Transformation Table of the Sequence of the Numbers (T'),
Serial Number (Q), and the Number of Bins (K).

STEP 5 Standardization: Standardizing s by (s — (n+1)/2)//(n +1)/12.

STEP 6 Repeating as necessary from STEPs 2 to 5.

3.4, The Computational Costs
In this subsection, the operational costs among (¢) the proposed method, (i) the
Box-Muller method and (i47) the central limit theorem based generation method,
are compared.
The Box-Muller method generates two normal random numbers, X and Y, by
the independent two uniformly distributed random numbers, U and V, via the
following transformation:

X =+/—2logUcos 2V, (2)
Y =+/—2logUsin 27V, (3)

where, U,V € (0,1].

The central limit theorem based method is as follows: take the sum of 12
independent uniform random numbers and subtract 6 then the generated data
follows a normal distribution N (0,1) (Shimizu, 1976).

We now compare the computational costs for generating a normal random num-
ber. However, in general, if the clock multiplier (frequency) in many modern mi-
crocomputers of the four fundamental operations (addition, subtraction, multipli-
cation and division) is assumed to be one, the trigonometric cost is more than five
times, the square root cost is at least four times or more. Although these costs are
dependent on the performance of the compiler optimization.
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First, the computational costs of generating the number of bins from the array
in STEP 3 of the algorithm are zero. Arithmetic operation costs in STEP 4 are
three, and in STEP 5 are two. The total costs are 5+ 0 (arithmetic cperations
+ mathematical functions). Second, in the Box-Muller method, the number of
arithmetic operations for generating the two normal random numbers are 3x 2 = 6,
and the number of operations of trigonometric functions is 1 x 2 = 2. For common
square root, four arithmetic operations is 1, the logarithm is 1, the square root is 1.
Computational cost per one normal random number is ((6—1)+(6—2))/2 = 2.5+2.
Finally, in the central limit theorem, the arithmetic operations are 12. From the
above illustrations, when the cost of the mathematical function is assunied to be
at least four times more than the four arithmetic operations, the total cost of the
proposed method is 4, the Box=Muller method is 2.5 + 2 x 4 = 10.5, and the
method by central limit theorem is 12. Clearly our proposal has the smallest cost.

3.5. Simpilfication of the Algorithm

In the previous section, the strict algorithm for all of the combination for the
card number has been shown. However, it must be considered a combination of
n! = 3628800 when n = 10. Moreover, it becomes necessary an astronomical
number for n = 64, i.e. 64! = 1.27 x 1089, then it is not practical to obtain
the number of bins for all combinations. Thus, we adopt the subset of the true
Eulerian distribution to generate the random numbers, that is, we sample the
subset randomly from the transformation table in STEP 1 of subsection 3.3. Then
we generate the numbers with the subset in the remained STEPs in the algorithm.
Then, the sampling for obtaining the pseudo-normal random number from the
pseudo-probability distribution can help us to simplify the procedures and the
computation.

4. Numerical Experiments

4.1. The purpose of the experiments
We verify the performance of the proposed method through various numerical
experiments. In the numerical experiments, four tests of normality are applied to
the psendo-normal random numbers generated by the proposed method. Further-
more, the computational time of the proposed method and the Box-Muller methods
are compared.
The conditions for the numerical experiments are as follows:

e The number of bins : 9, 16, 32, 64, 128, 256, 512.
e The number of generated data: 20,50, 100, 200, 500, 1000, 10000, 100000.

e The number of simulations: 100,000.
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Table 2. Performance Comparison

Eulerian-Normal Normal
Methods (Pseudo-Normal) (Box-Muller)
Number of Bins 16 32 64 —_
Average Time 43.1 44.2 43.0 78.0
Standard Deviation | 0.946 0.628 0.812 0.907

The table shows the average time spent {millisecconds) and its standard deviations in gener-
ating a random number of 108 via 10,000 simulations. The source codes are written in Visual
Basic 2010, and the computer processor is Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz with
8.00GByte memory.

e The methods for testing: (a) Anderson-Darling test, (b) Kolmogorov-Smirnov
test, (c) Jarque-Bera test, and (d) Kuiper test.

On the other hand, the comparison experiments of the computational time by
generating a 10% of the normal random number. The experiments were performed
10,000 times, the the average times were compared.

4.2. The results

Figure 3 illustrates the contour maps of p-values with the number of bins
and the number of data. The figures show the results of Anderson-Darling test,
Kolmogorov-Smirnov test, Jarque-Bera test, and Kuiper test, respectively. The
z-axis shows the number of bins and y-axis shows the number of generated data.
The white area of the upper left of each figure is a rejection region of a p-value of
less than five percent.

The four simulation results show that (i) when the number of data is small
(n < 1000), the hypothesis of normality is not rejected by five percent regardless of
the number of bins, (74) when the number of bins is small and the number of data
is large, the hypothesis is rejected, and (i:1) when the number of bins is larger, the
hypothesis can be regarded as a normal random number. For conditions different
to those of rejection, it was verified that the pseudo-normal random numbers can
be used as a normal random number.

On the other hand, the results of computational time for generating 10° pseudo-
normal and normal random numbers on different conditions are shown in table 2.
Regardless of the number of bins, the results obtained by the proposed method are
almost a certain period of time. 1% is about 1.8 times faster than the Box-Muller
method.

5. Concluding Remarks

The proposed method can be viewed as a kind of the inverse function method
for generating a random number of arbitrary probability distribution. The key
issue of the proposed method is that a uniform random number behaves in two
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(a) Anderson-Darling test (b) Kolmogorov-Smirnov test
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Figure 3. The Results of Four Normality Tests. The z-axis indicates the
number of bins. the y-axis indicates the number of samples. The white area
of the upper left of each figure is a rejection region of a p-value of less than
five percent.

ways. One is that it serves to select the number of bins, and the other is that helps
to scatter the data in the bin.

We also now compare the tails truncation of the normal distribution
for each generator. Since the most popular personal computer is equipped
with 32-bit or 64-bit, maximum values by the Box-Muller transform are,

—21n(2-32) cos(272732) ~ 6.66 for 32-bit and y/—2In(2-54) cos(2727%4) ~ 9.42
for 64-bit. In the standard normal distribution, twofold probability of greater than
these values are shown in Table 3. On the other hand, the probabilities of the
standard normal distribution obtained by changing the number of bins in the pro-
posed method are also shown in Table 3. From these facts, we could understand
where the distribution is truncated. From this table, the counterpart of the pro-
posed method with 32 bins is 64-bit version of the Box-Muller method. When we
increase the number of bins, the truncation location of the distribution is away
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Table 3. Probability of Tails Truncation

Number of Bing in Eulerian Distribution Box-Muller Method

16 24 32 64 32bit 64bit
z-value 6.30 7.97 9.35 13.53 6.66 9.42
p-value | 2.95x 10710 1.62x107% 9.03x 1072 9.78x107%? | 2.73x10™ " 4.54x 10~

This table illustrates the twofold probability in a standard normal distribution given by a
maximum value of each normal random generator. The z-value means the value of standard
normal deviates, and the p-value means the probability of outside +z-values in a standard
normal distribution. For 32 bit or 64 bit computers, the smallest number that can be
generated is 2732 or 10784 respectively. When U and V of uniform random number on
(0,1] are equal to these values, the Box-Muller transformation in equation (2) produces a
normal random variable equal to 6.66 or 9.42, respectively.

from the average.

When n is sufficiently large, the approximation accuracy for the normal dis-
tribution of the Eulerian distribution is good enough. Since the proposed method
generates uniform distributions in the bins, it cannot be approximated to the slope
of the normal distribution. This effect appears when the number of bins is small,
and a large size of random number generates. However, the elfect of the uniform
distribution has been reduced when the number of bins is large, and its width
is narrow. From the viewpoint of capability for approximation to a normal dis-
tribution and computational costs of generating numbers, the effectiveness of the
proposed method was verified. The proposed method would be more effective when
large-scale experiments are performed and the required number of normal random
numbers per one dataset is not so large (about less than 10%).

The remaininz problem is to prove the local uniformity of random numbers
following to any probability distribution mathematically and/or statistically.
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