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Algebraic study on the coefficient set of the 4-stage,

4th-order explicit Runge-Kutta methods

Syoichi Fujita

Abstract. In this paper, we study a set of conditions with
14 constants in the 4-stage, 4th-order explicit Runge-Kutta methods,
which contain four weights, four nodes and six components of the
Runge-Kutta matrix. For simplicity, we will simply call these con-
stants as coefficients in the paper. We prove that the set of coefficients
satisfying these conditions form an irreducible rational surface without
a singular point.

1. Introduction

The Runge-Kutta method is one of the numerical analysis methods developed

by mathematicians Carl David Tolme Runge and Martin Wilhelm Kutta around

1900 ([1, 11] are the original papers). For a first-order ordinary differential equation

dy

dt
= f(t, y),

the p-th stage Runge-Kutta methods (p = 1, 2, . . . ) is defined by

y(t0 + h) = y(t0) + h
( p∑

i=1

biKi

)
,

Ki = f
(
t0 + hci, y(t0) + h(

p∑

j=1

aijKj)
)
.

(1)

Here, t is a time parameter, h is a step size of time, aij , bi, and ci are constants

independent of (t, y). Also bi is called a weight, ci is called a node, and aij is

called a component of the Runge-Kutta matrix (a square matrix of order p). This

method is one of the most used approaches among the one-step method of numerical

analysis, and we know that a good approximation with less error can be obtained.
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Because of this, high-precision approximate solutions can be obtained for many

kinds of complex differential equations, and they are used for research in various

fields (see [3, 8]). In the recent past, the method “EVO-RUNGE-KUTTA” has been

proposed that minimizes the local error of the Runge-Kutta method in connection

with the problem of algebraic varieties (see [4]). On the other hand, there are

not many literatures in which the definition of Runge-Kutta method has been

mathematically considered. In this research, we focus on determinativeness of

constants “weights, nodes, components of the Runge-Kutta matrix” appearing in

this method, rather than estimation of the accuracy or errors of the Runge-Kutta

method. Specifically, we determine the set of constants satisfying conditions in

the 4-stage, 4th-order explicit Runge-Kutta methods, which contain four weights,

four nodes and six components of the Runge-Kutta matrix. (Here we consider

the explicit Runge-Kutta methods, we may assume that Runge-Kutta matrix (aij)

satisfies aij = 0 for i ≤ j.)∗ For simplicity, we will simply call these constants

coefficients in the following. Moreover we investigate geometric characteristics of

the space of constants satisfying conditions.

In Section 2, we compare the Taylor expansion of the approximate expression by

the 4-stage, 4th-order explicit Runge-Kutta methods and that of the exact solution,

and derive the conditions that coefficients should satisfy. In Section 3, we show that

the set of coefficients is an irreducible rational surface by considering the closure

of solution space that satisfies the conditions. In Sections 4, we prove that the set

of coefficients has no singular points in two ways. In Section 5, we show that there

is no coefficient that satisfies the condition derived in Section 2 when c1 ̸= 0.

The explicit Runge-Kutta methods having three or fewer stages can be obtained

as a corollary in the 4-stage. For example, we know that the 3-stage explicit Runge-

Kutta methods have 8 conditions to be satisfied for 9 coefficients. Also, we also

know that each coefficient can be represented by two parameters. Derivation of

conditions and geometric considerations are not as complicated as in the case of

the 4-stage.

∗We have another way of Runge-Kutta method, for example, implicit Runge-Kutta methods.
Here each component aij of the Runge-Kutta matrix is given as an unconditional constant.



Algebraic study on the coefficient of the Runge-Kutta method 5

2. Coefficient conditions and values of each coefficient of the 4-stage,

4th-order explicit Runge-Kutta methods

The results in this section are recalculations of the results shown in Hairer [3].

The 4-stage explicit Runge-Kutta methods with p = 4 in (1) is†

ỹ(t0 + h) = y(t0) + h
(
b1K1 + b2K2 + b3K3 + b4K4

)
,(2)

K1 = f
(
t0 + hc1, y

)
,

K2 = f
(
t0 + hc2, y + ha21K1

)
,

K3 = f
(
t0 + hc3, y + h(a31K1 + a32K2)

)
,

K4 = f
(
t0 + hc4, y + h(a41K1 + a42K2 + a43K3)

)
.

Comparing an approximation ỹ(t0 + h) and the exact solution y(t0 + h), we deter-

mine 14 coefficients bi (i = 1, 2, 3, 4), ci (i = 1, 2, 3, 4), and aij (1 ≤ j < i ≤ 4)

so that up to the fourth order terms of the Taylor expansions with respect to h of

these two terms coincide.

Up to the fourth order terms of the Taylor expansion of y(t0 + h) is given as

follows‡.

y(t0 + h) = y(t0) + hf +
h2

2
(ft + ffy)

+
h3

6
(ftt + 2ffty + ftfy + ff2

y + f2fyy)

+
h4

24
(fttt + 3fftty + 3ftfty + 5ffyfty + 3f2ftyy

+ fyftt + 3fftfyy + ftf
2
y + ff3

y + 4f2fyfyy + f3fyyy) + o(h4).

(3)

On the other hand, up to the third order terms of the Taylor expansion with respect

to h of K1, K2, K3, K4 is

K1 = f + hc1ft +
h2

2 c21ftt +
h3

6 c31fttt,

K2 = f + h
(
c2ft + a21K1fy

)
+ h2

2

(
c22ftt + 2c2a21K1fty + (a21K1)

2fyy
)

+ h3

6

(
c32fttt + 3c22a21K1ftty + 3c2(a21K1)

2ftyy + (a21K1)
3fyyy

)
,

†The corresponding term of y(t0 + h) in Runge-Kutta method is expressed as ỹ(t0 + h) to
distinguish from that in the Taylor expansion of the exact solution.

‡Let ft =
∂
∂t

f, fy = ∂
∂y

f , and so on.
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K3 = f + h
(
c3ft + (a31K1 + a32K2)fy

)

+ h2

2

(
c23ftt + 2c3(a31K1 + a32K2)fty + (a31K1 + a32K2)

2fyy
)

+ h3

6

(
c33fttt + 3c23(a31K1 + a32K2)ftty + 3c3(a31K1 + a32K2)

2ftyy

+ (a31K1 + a32K2)
3fyyy

)
,

K4 = f + h
(
c4ft + (a41K1 + a42K2 + a43K3)fy

)

+ h2

2

(
c24ftt + 2c4(a41K1 + a42K2 + a43K3)fty + (a41K1 + a42K2 + a43K3)

2fyy
)

+ h3

6

(
c34fttt + 3c24(a41K1 + a42K2 + a43K3)ftty

+ 3c4(a41K1 + a42K2 + a43K3)
2ftyy + (a41K1 + a42K2 + a43K3)

3fyyy
)
.

Substituting these K1, K2, K3, K4 into (2), and comparing the coefficients of

each term with those of (3), the following 19 conditions are derived.

f : b1 + b2 + b3 + b4 = 1(4)

ft : b1c1 + b2c2 + b3c3 + b4c4 = 1
2

(5)

ffy : b2a21 + b3(a31 + a32) + b4(a41 + a42 + a43) =
1
2

(6)

ftt : b1c
2
1 + b2c

2
2 + b3c

2
3 + b4c

2
4 = 1

3
(7)

ffty : b2c2a21 + b3c3(a31 + a32) + b4c4(a41 + a42 + a43) =
1
3

(8)

ftfy : b2c1a21 + b3(c1a31 + c2a32) + b4(c1a41 + c2a42 + c3a43) =
1
6

(9)

ff2
y : b3a21a32 + b4

(
a21a42 + a43(a31 + a32)

)
= 1

6
(10)

f2fyy : b2a
2
21 + b3(a31 + a32)

2 + b4(a41 + a42 + a43)
2 = 1

3
(11)

fttt : b1c
3
1 + b2c

3
2 + b3c

3
3 + b4c

3
4 = 1

4
(12)

fftty : b2c
2
2a21 + b3c

2
3(a31 + a32) + b4c

2
4(a41 + a42 + a43) =

1
4

(13)

ftfty : b2c2c1a21 + b3c3(c1a31 + c2a32) + b4c4(c1a41 + c2a42 + c3a43) =
1
8

(14)

ffyfty : b3(c2 + c3)a21a32 + b4
(
c2a21a42 + c3a43(a31 + a32)

+ c4(a21a42 + a43(a31 + a32))
)
= 5

24

(15)

f2ftyy : b2c2a
2
21 + b3c3(a31 + a32)

2 + b4c4(a41 + a42 + a43)
2 = 1

4
(16)

fyftt : b2c
2
1a21 + b3(c

2
1a31 + c22a32) + b4(c

2
1a41 + c22a42 + c23a43) =

1
12

(17)

fftfyy : b2c1a
2
21 + b3(a31 + a32)(c1a31 + c2a32)

+ b4(a41 + a42 + a43)(c1a41 + c2a42 + c3a43) =
1
8

(18)

ftf
2
y : b3c1a21a32 + b4

(
c1(a21a42 + a31a43) + c2a32a43

)
= 1

24
(19)

ff3
y : b4a21a32a43 = 1

24
(20)
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f2fyfyy : b3
(
a2
21a32 + 2a21a32(a31 + a32)

)

+ b4
(
a2
21a42 + (a31 + a32)

2a43 + 2
(
a21a42(a41 + a42 + a43)

+ a43(a31 + a32)(a41 + a42 + a43)
))

= 1
3

(21)

f3fyyy : b2a
3
21 + b3(a31 + a32)

3 + b4(a41 + a42 + a43)
3 = 1

4
(22)

Definition 2.1. Let the set W be the solution space of the coefficients satis-

fying the conditions of the 4-stage, 4th-order explicit Runge-Kutta methods. That

is,

W =

⎧
⎨

⎩

�
b1, b2, b3, b4, c1, c2, c3, c4,

a21, a31 a32, a41, a42, a43

� ������

bi, ci, aij ∈ R,
which satisfy equations

(4), . . . , (22)

⎫
⎬

⎭ ⊂ R14.

In the following, we will reduce these condition. From (20),

b4 ̸= 0, a21 ̸= 0, a32 ̸= 0, a43 ̸= 0

holds. From (19), (20),

c1
�
a21(b3a32 + b4a42 + b4a31a43)

�
+ b4a32a43(c2 − a21) = 0

is derived. Here, Oliver [5] shows that there is no solution of (4) to (22) unless

c1 = 0. We will show in Section 5 that in case c1 ̸= 0 there exists no solution.

In the following, the discussion will proceed under the assumption c1 = 0 until

Section 4. From this assumption, the relations

c2 = a21 ̸= 0
�
from (19), (20)

�
,(23)

c3 = a31 + a32
�
from (9), (10)

�
,(24)

c4 = a41 + a42 + a43
�
from (5), (6)

�
(25)

of coefficients are obtained. Using these expressions on c2, c3, c4, we have the

followings§.

§Here, while finding the coefficients, we do not use a simplifying assumption
p∑

i=j+1

biaij = bj(1− cj)

described in [3, Chapter II Lemma1.3], etc.
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b4(c4 − c3)(c2a42 + c3a43) =
1
8 − c3

6

(
from (14)− c3 × (9)

)
,(26)

b4c3a43(c2 − c3) =
c2
6 − 1

12

(
from c2 × (9)− (17)

)
,(27)

b4c4(c2 − c4)(c3 − c4) = c3
(
c2
2 − 1

3

)
−
(
c2
3 − 1

4

)
(28)

(
from c3 ×

(
c2 × (5)− (7)

)
−
(
c2 × (7)− (12)

))
,

b4
(
c2c4a32(c2 − c4)− c3(c2 − c3)(c2a42 + c3a43)

)

= c2a32
(
c2
2 − 1

3

)
− c3(c2−c3)

6

(29)

(
from a32c2 ×

(
c2 × (5)− (7)

)
− c3(c2 − c3)× (9)

)
.

Let (26) to (29) be simplified by c2 = t1, c3 = t2 as a parameter. Assuming

c4 ̸= 0, t1 ̸= c4, t2 ̸= c4, we get

b4 = 1
c4(t1−c4)(t2−c4)

(
t2(3t1−2)

6 − 4t1−3
12

)
(30)

from (28). We derived

a43 = 2t1−1
12t2(t1−t2)b4

(31)

from (27) assuming t2 ̸= 0, t1 ̸= t2. (From the two above formulas, we need to

assume c2 ̸= 4c3−3
2(3c3−2) , c2 ̸= 1

2 for b4 ̸= 0, a43 ̸= 0.) From (20),

a32 = 1
24t1b4a43

(32)

is obtained. Substituting (30), (31), and (32) into formula (26)×t2(t1 −
t2)+(29)×(c4 − t2) gives

t1c4(t1 − c4)(c4 − t2)b4a32

= (c4 − t2)
(
t1a32

(
t1
2 − 1

3

)
− t1(t1−t2)

6

)
+ t2(t1 − t2)

(
1
8 − t2

6

)
,

t1t2(t1 − t2)(c4 − 1)

12(2t1 − 1)
= 0.
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Here from t1 ̸= 0, t2 ̸= 0, t1 ̸= t2 we derive c4 = 1. Thus, the formulas of

b4, a43, a32 are obtained by substituting c4 for 1. Totally,

b1 = (6t2−2)t1−2t2+1
12t1t2

, b2 = 2t2−1
12t1(t1−1)(t1−t2)

,

b3 = − 2t1−1
12t2(t2−1)(t1−t2)

, b4 = (6t2−4)t1−4t2+3
12(t1−1)(t2−1) ,

c2 = t1 (parameter), c3 = t2 (parameter), c4 = 1,

a21 = t1, a31 =
t2(4t

2
1−3t1+t2)

2t1(2t1−1) , a32 = t2(t1−t2)
2t1(2t1−1) ,

a41 =
(12t22−12t2+4)t21+(−12t22+15t2−6)t1+4t22−5t2+2

2t1t2

(
(6t2−4)t1−4t2+3

) ,

(33)

a42 =
(t1−1)(t1−4t22+5t2−2)

2t1(t1−t2)
(
(6t2−4)t1−4t2+3

) , a43 = (t1−1)(t2−1)(2t1−1)

t2(t1−t2)
(
(6t2−4)t1−4t2+3

) .

Hence, we obtained¶ that all the coefficients are rational formula by the parameter

t1, t2 with the assumption

c4 ̸= 0, t2 ̸= 0, t1 ̸= c4, t2 ̸= c4, t1 ̸= t2.(34)

Definition 2.2. Let Wm the space of coefficients determined by (33) and

(34). That is,

Wm =

{(
b1, b2, b3, b4, c1, c2, c3, c4,

a21, a31 a32, a41, a42, a43

) ∣∣∣∣
t1, t2 ∈ R,
(33), (34)

}
⊂ W.

We call Wm “the main part” of W .

Next, we examine solutions in the exceptional cases other than the condition

(34). Here we consider the following seven cases :

case I : c2 = c3 and c2 ̸= c4

case II : c2 = c4 and c2 ̸= c3

case III : c3 = c4 and c3 ̸= 0

case IV : c3 = 0 and c4 = 0

case V : c2 = c3 and c3 = c4

case VI : c3 = 0, c2 ̸= 0, c4 ̸= 0, and c2 ̸= c4

case VII : c4 = 0, c2 ̸= 0, c4 ̸= 0, and c2 ̸= c3

¶As an auxiliary means, we used Risa/Asir to recalculation.
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In cases (I), (II), and (VI), there exists a solution space with non-zero parameter

s. In the other four cases, there is no solution. We omit the proof of this part,

however the proof is shown in the master thesis [9] by the author.

(I) c2 = c3 and c2 ̸= c4

b1 = 1
6 , b2 = 2−s

3 , b3 = s
3 , b4 = 1

6 ,

c2 = 1
2 , c3 = 1

2 , c4 = 1,

a21 = 1
2 , a31 = s−1

2s , a32 = 1
2s , a41 = 0, a42 = 1− s, a43 = s (parameter, s ̸= 0).

(II) c2 = c4 and c2 ̸= c3

b1 = 1
6 , b2 = 1−6s

6 , b3 = 2
3 , b4 = s (parameter, s ̸= 0),

c2 = 1, c3 = 1
2 , c4 = 1,

a21 = 1, a31 = 3
8 , a32 = 1

8 , a41 = 4s−1
4s , a42 = − 1

12s , a43 = 1
3s .

(VI) c3 = 0, c2 ̸= 0, c4 ̸= 0, and c2 ̸= c4

b1 = 2s−1
12s , b2 = 2

3 , b3 = 1
12s , b4 = 1

6 ,

c2 = 1
2 , c3 = 0, c4 = 1,

a21 = 1
2 , a31 = −s, a32 = s (parameter, s ̸= 0), a41 = −s−1

2s , a42 = 3
2 , a43 = 1

2s .

Definition 2.3. Define the set We,I , We,II , and We,VI as each solution space

of (I), (II), and (VI) represented as above, and the union of these three spaces

We = We,I ∪We,II ∪We,VI ⊂ W.

We call it “the exceptional part”.

Thus, we find that main part Wm of the coefficient space of the 4-stage, 4th-

order explicit Runge-Kutta methods can be represented by two parameters, and

that there is exceptional part We where the coefficient space are represented by

one parameter.

3. The limit point set of the main part of the coefficient space

In the previous section, we prove that the main part Wm can be expressed by

two parameters. The closure Wm of the main part in R14 is a rational surface.

Next, we prove that the exceptional part We is fully contained in Wm. That is,
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this section shows the following proposition.

Proposition 3.1.

We ⊂ Wm

We consider a linear open path t1 = p+ aϵ, t2 = q + bϵ, where a, b, and ϵ are

arbitrary real numbers such that (a, b) ̸= (0, 0). Here p and q are the values of c2
and c3 in each case (I) or (II) or (VI). We obtain the limit of coefficients when ϵ → 0

and observe whether the limit is contained in an exceptional coefficient space.

At first, we consider the case (I). Let an open path be

t1 = 1
2 + aϵ, t2 = 1

2 + bϵ(35)

where a, b is a fixed constant such that a ̸= b and a ̸= 0. Thus we have the

followings after substituting (35) into the formulae (33).

b1 = 12abϵ2+(2a+2b)ϵ+1
6(2aϵ+1)(2bϵ+1) , b2 = 2b

3(a−b)(2aϵ−1)(2aϵ+1) ,

b3 = − 2a
3(a−b)(2bϵ−1)(2bϵ+1) , b4 = 12abϵ2+(−2a−2b)ϵ+1

6(2aϵ−1)(2bϵ−1) ,

a31 = (2bϵ+1)(4a2ϵ+a+b)
4a(2aϵ+1) , a32 = (a−b)(2bϵ+1)

4a(2aϵ+1) ,

a41 = 2ϵ(24a2b2ϵ3+(2a2+6ba+2b2)ϵ−a+b)

(2aϵ+1)(2bϵ+1)
(
12abϵ2+(−2a−2b)ϵ+1

) ,

a42 = − (4b2ϵ−a−b)(2aϵ−1)

(a−b)(2aϵ+1)
(
12abϵ2+(−2a−2b)ϵ+1

) ,

a43 = 2a(2aϵ−1)(2bϵ−1)

(a−b)(2bϵ+1)
(
12abϵ2+(−2a−2b)ϵ+1

) .

We consider the limit with ϵ → 0 and we have

b1 = 1
6 , b2 = − 2b

3(a−b) , b3 = 2a
3(a−b) , b4 = 1

6 ,

a31 = a+b
4a , a32 = a−b

4a , a41 = 0, a42 = −a+b
a−b , a43 = 2a

a−b .

From the above formula, we found that all the coefficients converge. In particular,

if and only if we set s = 2a
a−b , then (33) converges to a point in We,I . In the case

We,II , if we set t1 = 1 + aϵ, t2 = 1
2 + bϵ, (a ̸= 2b, a ̸= 0) and s = a−2b

6a , then (33)

converges to a point in We,II . In fact,

b1 = 1
6 , b2 = b

3a , b3 = 2
3 , b4 = a−2b

6a ,

a31 = 3
8 , a32 = 1

8 , a41 = − a+4b
2(a−2b) , a42 = − a

2(a−2b) , a43 = 2a
a−2b .
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In the same way, if we set t1 = 1
2 + aϵ, t2 = bϵ, (a ̸= 0, b ̸= 0) and s = b

4a , then

(33) converges to a point in We,VI . In fact,

b1 = − 2a−b
6b , b2 = 2

3 , b3 = a
3b , b4 = 1

6 ,

a31 = − b
4a , a32 = b

4a , a41 = − 4a+b
2b , a42 = 3

2 , a43 = 2a
b .

Hence, we showed that the case of all point in We can be expressed by limits

of paths in Wm. Since Wm ⊂ W = Wm ∪We ⊂ Wm and W is closed, we have the

following proposition.

Proposition 3.2. The closure Wm of Wm in R14 satisfies

Wm = Wm ∪We = W.

Lemma 3.3. If k is an infinite field and V is a variety defined by the rational

parametrization

x1 =
f1(t1, . . . , tm)

g1(t1, . . . , tm)
,

...

xn =
fn(t1, . . . , tm)

gn(t1, . . . , tm)

where f1, . . . , fn, g1, . . . , gn ∈ k[t1, . . . , tm], then V is irreducible.

proof. See [2, p.208, Proposition 6]. �

Proposition 3.4. The algebraic variety formed by W is the irreducible ratio-

nal surface.

proof. From the previous section, it was found that all coefficients in Wm are

represented by a rational formula whose denominator is not 0 by two parameters

t1, t2. Hence, Lemma 3.3 shows that the algebraic variety formed by Wm is

irreducible. Since Wm is irreducible, closure Wm = W is also irreducible from

Proposition 3.2.

�
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4. Non-existence of singular points in W

Next, we show non-existence of singular points in W in two ways∥.

4.1. Proof using a Jacobian matrix

m and n are natural numbers. Let V be an algebraic variety defined by

V =
{
(x1, . . . , xn) ∈ Rn | f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0

}
,

and let p be a point in V . p is a non-singular point if and only if the rank of the

Jacobi matrix

J =

{(
∂fi
∂xj

)
(p)

∣∣∣∣ 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

satisfies

rank(J) = n− dim(V ).

Proposition 4.1. For any point p ∈ W , p is a non-singular point.

proof. In our case, there are 14 variables, b1, . . . , b4, c1, . . . , c4, a21, . . . , a43.

However, we assume c1 = 0 and we consider 13 variables. And there are 19 func-

tions from (4) to (22). The Jacobi matrix J is a 19 × 13 matrix and it is hard to

calculate the rank of J by hand. We uses Risa/Asir, a famous CAS in Japan and

checks that rank(J) = 11. This implies that J is a non-singular variety.

First, any point in Wm is a non-singular point since for all the coefficients is

represented by the rational formulae of t1 and t2 whose denominators is not 0.

Thus, it is sufficient to consider the point in We. As a result of consideration rank

in point of We, we showed that all points were rank(J) = 11. For the source code

of Asir and the calculation result, see [9].

Hence we show that any point in W is a non-singular point. �

4.2. Proof by a parameter replacement

In this section we show Proposition 4.1 by changing two parameters of the main

part. When we change parameters, it is important to take new parameters such

that points in We are contained in the new main part. Geometrically, we may

suppose changing the view of a rational surface.

First, we take (c2, b2) in place of (c2, c3) for parameters of the main part. We

∥We don’t consider singularity at infinite points here.



14 S. Fujita

have

b1 =
36s31s2−60s21s2+30s1s2−6s2+1

6(12s31s2−12s21s2+1)
, b2 = s2 (parameter),

b3 =
−2(6s21s2−6s1s2+1)3

3(12s31s2−24s21s2+12s1s2−1)(12s31s2−12s21s2+1)
,

b4 =
36s31s2−48s21s2+18s1s2−1

6(12s31s2−24s21s2+12s1s2−1)
,

c2 = s1 (parameter), c3 =
12s31s2−12s21s2+1

2(6s21s2−6s1s2+1)
, c4 = 1, a21 = s1,

a31 =
(12s31s2−12s21s2+1)(24s31s2−24s21s2+4s1−1)

8s1(6s21s2−6s1s2+1)2
,

a32 =
12s31s2−12s21s2+1

8s1(6s21s2−6s1s2+1)2
,

a41 =
(2s1−1)

(
432s61s

2
2−1080s51s

2
2+1152s41s

2
2−648s31s

2
2+(144s22+30s2)s

2
1−18s1s2+1

)

2s1(12s31s2−12s21s2+1)(36s31s2−48s21s2+18s1s2−1)
,

a42 = −
(
144s51s

2
2−432s41s

2
2+432s31s

2
2+(−144s22−18s2)s

2
1+18s1s2−1

)

2s1(36s31s2−48s21s2+18s1s2−1)
,

a43 =
2(6s21s2−6s1s2+1)2(12s31s2−24s21s2+12s1s2−1)

(12s31s2−12s21s2+1)(36s31s2−48s21s2+18s1s2−1)
.

(36)

Here, s1 and s2 are parameters with conditions s1 ̸= 0, and letW ′
m be the new main

part with respect to s1 and s2. We check that a point in We can be represented

by (36) of parameters s1 and s2. In fact, if we set s1 = 1
2 , s2 = 2−s

3 then a point

in We,I is contained in W ′
m (result of substituting s1 = 1

2 , s2 = 2−s
3 for (36) is the

same as (I)), if we set s1 = 1, s2 = 1−6s
6 then a point in We,II is included in W ′

m

(result of substitution is the same as (II)). However, all of the points in We,VI are

not contained in W ′
m. Because, c2, b2 at points in We,VI is c2 = 1

2 , b2 = 2
3 , but

the points in W ′
m diverges at this value.

Hence, if we take parameters (c2, b2), any point in (I) and (II) is included in

the main part W ′
m of new parameters. Therefore, we showed that any points in

We,I and We,II are non-singular.

Next, we take (c3, b3) in place of (c2, c3) for parameters of the main part.
Then,

b1 =
36r31r2−60r21r2+30r1r2−6r2+1

6(12r31r2−12r21r2+1)
, b2 = − 2(6r21r2−6r1r2+1)3

3(12r31r2−24r21r2+12r1r2−1)(12r31r2−12r21r2+1)
,

b3 = r2 (parameter), b4 =
36r31r2−48r21r2+18r1r2−1

6(12r31r2−24r21r2+12r1r2−1)
,

c2 =
12r31r2−12r21r2+1

2(6r21r2−6r1r2+1)
, c3 = r1 (parameter), c4 = 1, a21 =

12r31r2−12r21r2+1

2(6r21r2−6r1r2+1)
,

(37)
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a31 =
144r51r

2
2−288r41r

2
2+144r31r

2
2+18r21r

2
2−18r1r2+1

12r2(r1−1)(12r31r2−12r21r2+1)
, a32 = − (6r21r2−6r1r2+1)

12r2(r1−1)(12r31r2−12r21r2+1)
,

a41 =
(2r1−1)

(
432r61r

2
2−1512r51r

2
2+2232r41r

2
2−1800r31r

2
2+(792r22+30r2)r

2
1+(−144r22−42r2)r1+12r2+1

)

2(r1−1)(12r31r2−12r21r2+1)(36r31r2−48r21r2+18r1r2−1)
,

a42 =
(6r21r2−6r1r2+1)(12r31r2−24r21r2+12r1r2−1)

(
24r31r2−48r21r2+(24r2+4)r1−3

)

2(r1−1)(12r31r2−12r21r2+1)(36r31r2−48r21r2+18r1r2−1)
,

a43 = − 6r2(r1−1)(12r31r2−24r21r2+12r1r2−1)

36r31r2−48r21r2+18r1r2−1
.

Here, r1 and r2 are parameters with conditions r1 ̸= 1 and r2 ̸= 0. Let W ′′
m be the

main part with respect to r1 and r2. Substituting r1 = 0, r2 = 1
12s for (37) result

the same result as (VI), and we derive that if we set r1 = 0, r2 = 1
12s then a point

in We,VI is contained in W ′′
m.

Hence, if we take the parameter (c3, b3), any point in (VI) is included in the

main part W ′′
m of new parameters. Thus, we showed that any point in We,VI are

non-singular.

Now, we complete the proof of non-singularity of W by taking parameters in

three ways (c2, c3), (c2, b2), and (c3, b3).

5. The 4-stage, 4th-order explicit Runge-Kutta methods with c1 ̸= 0

Oliver [5] describes that “there is no solution that satisfies all conditions in

the 4-stage, 4th-order explicit Runge-Kutta methods when c1 ̸= 0”. However, the

proof was partially omitted due to complexity of the calculation. Here based on

[5], we show that non-existence of solution that satisfies the conditions (4) to (22)

when c1 ̸= 0.

[5, (5.1)] describes as the followings.

c2 = a21, c3 = a31 + a32, c4 = a41 + a42 + a43, b1 = 0.

Applying the above relations from (4) to (22), we obtain the following 12 conditions.

b2 + b3 + b4 = 1(38)

b2c2 + b3c3 + b4c4 = 1
2

(39)

b2c
2
2 + b3c

2
3 + b4c

2
4 = 1

3
(40)

b2c1c2 + b3(c1a31 + c2a32) + b4(c1a41 + c2a42 + c3a43) =
1
6

(41)

b3c2a32 + b4(c2a42 + c3a43) =
1
6

(42)

b2c
3
2 + b3c

3
3 + b4c

3
4 = 1

4
(43)

b2c
2
2c1 + b3c3

(
c1a31 + c2a32 + b4c4(c1a41 + c2a42 + c3a43)

)
= 1

8
(44)

b3(c2 + c3)c2a32 + b4
(
c22a42 + c23a43 + c4(c2a42 + c3a43)

)
= 5

24
(45)
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b2c
2
1c2 + b3

(
c21a31 + c22a32 + b4(c

2
1a41 + c22a42 + c23a43)

)
= 1

12
(46)

b3c1c2a32 + b4
(
c1(c2a42 + a31a43 + c2a32a43)

)
= 1

24
(47)

b4c2a32a43 = 1
24

(48)

b3c2a32(c2 + 2c3) + b4
(
c22a42 + c23a43 + 2(c2c4a42 + c3c4a43)

)
= 1

3
(49)

By combining the above equations, five equations

c1(b3a32 + b4a42 + b4a43 − 1
2 ) = 0

(
from(39), (41), (42)

)
,(50)

b3c
2
2a32 + b4c

2
2a42 + b4c

2
3a43 = 1

12

(
from (41), (42), (46)

)
,(51)

b3c2c3a32 + b4c2c4a42 + b4c3c4a43 = 1
8

(
from (49), (51)

)
,(52)

c1(b3c3a32 + b4c4a42 + b4c4a43 − 1
3 ) = 0

(
from (40), (44), (52)

)
,(53)

c1(b4a32a43 − 1
6 ) = 0

(
from (42), (47), (48)

)
(54)

are derived. We consider each coefficient using equations from (38) to (54).

First,

a32 ̸= 0, a43 ̸= 0, b4 =
1

6a32a43
, c2 =

1

4

holds from (48) and (54). From (52), (53),

b4c4a43(c2 − c3) =
c2
3

− 1

8
⇔ a32 = c4(4c3 − 1)(55)

can be derived. On the other side,

b4c3a43(c2 − c3) =
c2
6

− 1

12
⇔ a32 = c3(4c3 − 1)(56)

is obtained from (42), (51). Since a32 of (55) and (56) is uniquely determined and

a32 ̸= 0, c3 = c4 holds. From (53),

c1c4(b3a32 + b4a42 + b4a43 − 1
3 ) = 0

is obtained. Here, c1c4
6 = 0 by b3a32+b4a42+b4a43 = 1

2 from (50). The assumption

c1 ̸= 0 implies c4 = 0. However, this contradicts a32 ̸= 0 in (55).

Therefore, we showed that there was not a solution that satisfies the condition

of the 4-stage, 4th-order explicit Runge-Kutta methods when c1 ̸= 0.
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