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On Oshima’s middle convolution

Yoshishige Haraoka

Abstract. Oshima’s middle convolution operation for scalar
higher order differential equations is a powerful tool in the study of lin-
ear ordinary differential equations in the complex domain. We rephrase
its definition so that the reader can directly apply it. We also study the
middle convolution from analytic viewpoint. An application to Appell’s
hypergeometric function F4 is given.

1. Introduction

After Nicolas M. Katz [5], Toshio Oshima [7] defined the middle convolution

operation for scalar higher order linear ordinary differential equations, and obtained

a lot of remarkable basic results. In this note, we focus on a theorem ([7, Theorem

5.2]) that describes the change of the Riemann scheme by the middle convolution.

The theorem is shown by calculus on the Weyl algebra, and we shall study it from

analytic viewpoint.

Analytic realization of the middle convolution is the Riemann-Liouville trans-

form. The Riemann-Liouville transform is an integral transformation, and deter-

mined by a complex parameter together with an end point of the integral. We will

explain how to choose the end point, which will give another proof of Oshima’s

theorem.

In the last section, we apply the middle convolution to Appell’s hypergeometric

function F4. It is expected that F4 gives an algebraic solution to Painlevé VI

equation, however, we have not yet obtained it. We explain where the difficulty is.

2. Oshima’s middle convolution

The book [7] is full of beautiful results, however, it may be somewhat difficult

to take a particular notion or result in a plenty of notions and results. Then, in
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this section, we will rephrase the definition of the middle convolution, which is the

central notion, so that the reader can immediately apply it. Also we discuss its

analytic aspect.

Let W [x] be the Weyl algebra in one variable x. Then W [x] is the set of

polynomials in non-commutative variables x and ∂ with coefficients in C, where
the commutation relation between x and ∂ is given by

(1) [∂, x] = 1.

By using (1), any P ∈ W [x] can be expressed in the normal form

P =
n∑

j=0

aj(x)∂
j (aj(x) ∈ C[x]).

Also we can express P in the form

P =
n∑

j=0

∂jbj(x) (bj(x) ∈ C[x]),

which we call the transposed form.

We define the weight w of x and ∂ by

w(x) = 1, w(∂) = −1,

and set

w(c) = 0 (c ∈ C \ {0}).

Since the relation (1) is compatible with this weight, we can define the weight of

every monomial in W [x]. Then, for any P ∈ W [x], we can define the weight w(P )

by the maximum of the weights of the monomials in P .

Example 2.1.

w(x∂) = w(x) + w(∂) = 1− 1 = 0,

w(∂x− 1) = max{w(∂x), w(−1)} = max{0, 0} = 0,

w(x∂2 + x4∂ + x) = max{1− 2, 4− 1, 1} = 3.

Let µ ∈ C be a parameter, and c ∈ C ∪ {∞} a point. The Riemann-Liouville
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transform (the Euler transform) Iµc is defined by

(2) (Iµc u)(x) =
1

Γ(µ)

∫ x

c

u(t)(x− t)µ−1 dt

for a function u(x) holomorphic in a neighborhood of L\{c}, where L is a compact

one chain from c to x:

L : [0, 1] → C (L(0) = c, L(1) = x).

We understand that the integral in (2) is regularized at the end points if necessary.

We take small positive numbers ϵ1 and ϵ2, and set

L1 = L|[0,ϵ1], L2 = L|[ϵ1,1−ϵ2], L3 = L|[1−ϵ2,1].

The regularization at x is defined as follows. Put a = L(1− ϵ2), and consider the

integral

J =

∫ a

c

u(t)(x− t)µ−1 dt− 1

e2πiµ − 1

∫

C

u(t)(x− t)µ−1 dt,

where C is the circle with center x of radius |a − x|. The integral over C is

determined so that the branch of the integrand at the starting point a of C coincides

with the branch at a on L2. Symbolically we denote the right hand side by

L1 · L2 ·
(
− 1

e2πiµ − 1

)
C.

Namely, for one chains A,B such that the starting point of B coincides with the

end point of A and for scalars α, β, we denote by αA · βB the integral

α

∫

A

f(t) dt+ β

∫

B

f(t) dt,

where the branch of f(t) at the starting point of B coincides with that at the end

point of A. It is shown that, if ℜµ > 0 and if µ ̸∈ Z, the integral J coincides with

the integral from c to x:

J =

∫ x

c

u(t)(x− t)µ−1 dt.

The integral of the right hand side is defined for ℜµ > 0, and the left hand side

is defined for µ ̸∈ Z. Thus the equality shows that the integrals are defined for
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µ ∈ C \ Z≤0. This analytic continuation with respect to µ is the regularization at

x. Moreover, also for µ ∈ Z≤0, the transform (2) is defined thanks to the gamma

factor. Namely, by the formula

1

Γ(µ)
· 1

1− e2πiµ
→ (−1)n+1n!

2πi
(µ → −n ∈ Z≤0),

the right hand side of (2) with the integral replaced by J gives n-th derivative of

u(x) when µ = −n ∈ Z≤0. (Note that the limit becomes the Cauchy integral for

u(n)(x).) Hence we obtain

(3) (I−n
c u)(x) = ∂nu(x) (n ∈ Z≥0).

The regularization at c is similar. We assume that u(x) takes the form

u(x) = (x− c)λϕ(x)

in a neighborhood of c, where λ ∈ C and ϕ(x) is holomorphic at x = c. Put

a = L(ϵ1). Then, if ℜλ > 0 and λ ̸∈ Z<0, we have

1

e2πiλ − 1

∫

C

(t− c)λϕ(t)(x− t)µ−1 dt =

∫ a

c

(t− c)λϕ(t)(x− t)µ−1 dt,

where C is the circle with center c of radius |a− c|. By using this identity, we can

extend the domain of λ to C \ Z<0. Note that, if we regularize the integral in (2)

at both c and x, we get an integral over a compact chain.

The Riemann-Liouville transform Iµc satisfies the identities

I0c = id.,(4)

Iλc ◦ Iµc = Iλ+µ
c .(5)

(Remark that these identities hold under some generic condition.) These identities

together with (3) may allow us to regard the pseudo-differential operator ∂−µ as a

formal Riemann-Liouville transform. Note that the Riemann-Liouville transform

Iµc depends on the point c, while ∂−µ does not.

A function f(x) is called regularizable at x = a if there exist a function ϕ(x)

holomorphic at x = a and λ ∈ C \ Z such that

f(x) = (x− a)λϕ(x).

We give fundamental properties of regularized integrals.
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Proposition 2.2. (i) Let γ be a path from a to b, and D a neighborhood of

γ. Suppose that f(t) (resp. g(t)) is holomorphic in D \ {a} (resp. D \ {b}), and is

regularizable at t = a (resp. t = b). Then we have

∫ b

a

f(t)g′(t) dt = −
∫ b

a

f ′(t)g(t) dt.

(ii-i) Let D be a simply connected domain, and c ∈ D. Suppose that u(t) is holo-

morphic in D. If µ ̸∈ Z, we have

d

dx

∫ x

c

u(t)(x− t)µ−1 dt = u(c)(x− c)µ−1 +

∫ x

c

u′(t)(x− t)µ−1 dt.

(ii-ii) Suppose that u(t) is holomorphic in D \ {c} and is regularizable at t = c. If

µ ̸∈ Z, we have

d

dx

∫ x

c

u(t)(x− t)µ−1 dt =

∫ x

c

u′(t)(x− t)µ−1 dt.

Proof. (i) Let γa, γb be circles centered at a and b, respectively, with small radii

so that these are contained in D. By the assumption, there exist α, β ∈ C \Z such

that

(γa)∗f(t) = f(t)α, (γb)∗g(t) = g(t)β,

where (γa)∗ denotes the analytic continuation along γa. Note that

(γb)∗g
′(t) = g′(t)β

also holds. Take a point a1 (resp. b1) on γa (resp. γb), and set a1 = a+p, b1 = b+q.

We regularize the integral of f(t)g′(t) on γ as

∫ b

a

f(t)g′(t) dt =
1

α− 1

∫

γa

f(t)g′(t) dt+

∫ b1

a1

f(t)g′(t) dt− 1

β − 1

∫

γb

f(t)g′(t) dt

By the parametrization t = a+ peiθ (θ ∈ [0, 2π]) of γa, we have

∫

γa

f(t)g′(t) dt =

∫ 2π

0

f(a+ peiθ)g′(a+ peiθ)ipeiθ dθ

=

∫ 2π

0

f(a+ peiθ)
d

dθ
g(a+ peiθ) dθ
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=
[
f(a+ peiθ)g(a+ peiθ)

]2π
0

−
∫ 2π

0

d

dθ
f(a+ peiθ) · g(a+ peiθ) dθ

= [f(t)g(t)]
a+pe2πi

a+p −
∫ 2π

0

f ′(a+ peiθ)g(a+ peiθ)ipeiθ dθ

= [f(t)g(t)]
a+pe2πi

a+p −
∫

γa

f ′(t)g(t) dt

= (α− 1)f(a1)g(a1)−
∫

γa

f ′(t)g(t) dt.

Similarly we have

∫ b1

a1

f(t)g′(t) dt = [f(t)g(t)]b1a1
−
∫ b1

a1

f ′(t)g(t) dt,

∫

γb

f(t)g′(t) dt = (β − 1)f(b1)g(b1)−
∫

γb

f ′(t)g(t) dt.

Combining these equalities, we get

∫ b

a

f(t)g′(t) dt = f(a1)g(a1)−
1

α− 1

∫

γa

f ′(t)g(t) dt

+ f(b1)g(b1)− f(a1)g(a1)−
∫ b1

a1

f ′(t)g(t) dt

− f(b1)g(b1) +
1

β − 1

∫

γb

f ′(t)g(t) dt

= −
(

1

α− 1

∫

γa

f ′(t)g(t) dt+

∫ b1

a1

f ′(t)g(t) dt

− 1

β − 1

∫

γb

f ′(t)g(t) dt

)

= −
∫ b

a

f ′(t)g(t) dt.

(ii-i) By the assumption µ ̸∈ Z, we can regularize the integral as

∫ x

c

u(t)(x− t)µ−1 dt =

∫ b

c

u(t)(x− t)µ−1 dt− 1

β − 1

∫

S

u(t)(x− t)µ−1 dt,

where S is a circle surrounding t = x, b a point on S and β = e2πiµ. We see that
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there exists a constant M > 0 such that
∣∣∣∣
1

h

∫

S

u(t)
{
((x+ h)− t)µ−1 − (x− t)µ−1 − h(µ− 1)(x− t)µ−2

}
dt

∣∣∣∣ ≤ M |h|

holds for sufficiently small h. Then we have

d

dx

∫

S

u(t)(x− t)µ−1 dt =

∫

S

u(t)(µ− 1)(x− t)µ−2 dt.

Therefore we get

d

dx

∫ x

c

u(t)(x− t)µ−1 dt =

∫ b

c

u(t)(µ− 1)(x− t)µ−2 dt

− 1

β − 1

∫

S

u(t)(µ− 1)(x− t)µ−2 dt

= −
∫ b

c

u(t)
∂

∂t
(x− t)µ−1 dt

+
1

β − 1

∫

S

u(t)
∂

∂t
(x− t)µ−1 dt

= −
[
u(t)(x− t)µ−1

]b
c
+

∫ b

c

u′(t)(x− t)µ−1 dt

+
1

β − 1

[
u(t)(x− t)µ−1

]b̃
b

− 1

β − 1

∫

S

u′(t)(x− t)µ−1 dt

= −u(b)(x− b)µ−1 + u(c)(x− c)µ−1

+

∫ b

c

u′(t)(x− t)µ−1 dt

+ u(b)(x− b)µ−1 − 1

β − 1

∫

S

u′(t)(x− t)µ−1 dt

= u(c)(x− c)µ−1 +

∫ x

c

u′(t)(x− t)µ−1 dt,

where b̃ is the point on S with arg(b̃− x) = arg(b− x) + 2π.

We can show (ii-ii) in a similar argument. �

The middle convolution with parameter µ is an operation that sends a differ-

ential operator P ∈ W [x] to a differential operator Q ∈ W [x] satisfied by Iµc (u)
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for any u with Pu = 0. This operation can be obtained by taking the adjoint of

the formal Riemann-Liouville transform ∂−µ. Namely, for u with Pu = 0, we set

v = ∂−µu, and then have

P∂µv = 0 ⇔ ∂−µP∂µv = 0 ⇔ Ad(∂−µ)(P )v = 0

as long as P∂µv ̸∈ Ker ∂−µ. However, the result Ad(∂−µ)(P ) does not necessarily

belong to W [x]. We have

(6) Ad(∂−µ)xm =

m∑

ν=0

(−1)ν(µ)ν

(
m

ν

)
xm−ν∂−ν ,

where

(7) (µ)ν =
Γ(µ+ ν)

Γ(µ)
=

{
1 (ν = 0),

µ(µ+ 1) · · · (µ+ ν − 1) (ν ≥ 1),

and hence a negative power of ∂ appears if P contains a monomial of positive

weight. In order to avoid this, we replace P by ∂kP before operating the adjoint

of ∂−µ, if the weight k of P is positive. Then, if we set

(8) k0 = max{w(P ), 0},

the result Q = Ad(∂−µ)(∂k0P ) belongs to W [x]. Now we consider the algebra

W (x) = C(x)[∂]. We decompose Q into irreducible elements in W (x):

Q = Q1Q2 . . . Ql.

It would be natural to define that the rightmost factor Ql were the result of the

middle convolution. If Ql ∈ W (x) \W [x], we multiply a polynomial ψ(x) ∈ C[x]
so that ψ(x)Ql ∈ W [x]. This operation is denoted by R(Ql) ([7, Definition 1.1]).

Thus we would have the operation on W [x]

P �→ R(Ql)(= ψ(x)Ql).

However, there are several problems. First, the irreducible decomposition in

W (x) is not unique. Second, the definition of the middle convolution (for local

systems) by Katz is independent of the irreducibility. The assertion that the result

of the middle convolution is irreducible if the source is irreducible is one of the

main results in the Katz theory. Then we want to get an effective definition of the

middle convolution not using the irreducibility.
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In [7], the middle convolution mcµ is first defined in Chapter 1, (1.36) as a

composition of R and Ad(∂−µ), and algorithmically defined for Fuchsian case in

Chapter 5, Theorem 5.2. We rephrase the latter definition.

Let µ be a complex number. Let P ∈ W [x] be a Fuchsian operator with

Riemann scheme

(9)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = c1 x = c2 · · · x = cp x = ∞
[λ1,1](m1,1) [λ2,1](m2,1) · · · [λp,1](mp,1) [λ0,1](m0,1)

[λ1,2](m1,2) [λ2,2](m2,2) · · · [λp,2](mp,2) [λ0,2](m0,2)

...
...

...
...

[λ1,n1 ](m1,n1
) [λ2,n2 ](m2,n2

) · · · [λp,np ](mp,np )
[λ0,n0 ](m0,n0

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

where we set

[λ](m) = (λ, λ+ 1, . . . , λ+m− 1)T .

Also we set c0 = ∞. Let n be the order of P . Then we have

nj�

ν=1

mj,ν = n (0 ≤ j ≤ p).

Although it is not assumed in [7, Theorem 5.2], we assume the followings in order

to make the argument simple:

(A1) there is no integral difference among {λj1 , λj,2, . . . , λj,nj} for each j =

0, 1, . . . , p,

(A2) for each j = 1, . . . , p, if some of λj,ν are integers, then one of them is 0.

If there is λj,ν ∈ Z \ {0}, we operate the addition

Ad((x− cj)
−λj,ν )(P )

to reduce λj,ν to 0, so that the assumption (A2) is satisfied. Later, we will discuss

the cases where the assumptions are not satisfied. We may assume that, for every

1 ≤ j ≤ p,

λj,1 = 0;

if there is ν such that λj,ν = 0, we change the indices ν and 1, and if there is no
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such ν, we set λj,1 = 0 with mj,1 = 0. Similarly, we may assume

λ0,1 = µ+ 1,

where µ is the parameter of the middle convolution. We rewrite the Riemann

scheme of P under this convention:

(10)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = c1 x = c2 · · · x = cp x = ∞
[0](m1,1) [0](m2,1) · · · [0](mp,1) [µ+ 1](m0,1)

[λ1,2](m1,2) [λ2,2](m2,2) · · · [λp,2](mp,2) [λ0,2](m0,2)

...
...

...
...

[λ1,n1 ](m1,n1 )
[λ2,n2 ](m2,n2 )

· · · [λp,np ](mp,np )
[λ0,n0 ](m0,n0 )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Then P can be written in the normal form

(11) P =

p�

j=1

(x− cj)
n−mj,1∂n + a1(x)∂

n−1 + · · ·+ an−1(x)∂ + an(x),

where

deg ak(x) ≤
p�

j=1

(n−mj,1)− k (1 ≤ k ≤ p).

The last inequalities come from Fuchs’s criterion for regular singularity at x = ∞.

Therefore we have

w(P ) = (p− 1)n−
p�

j=1

m1,j .

Define k0 by (8). Now we give an algorithmic definition of the middle convolu-

tion.

Definition 2.3. Retain the notation above. Namely we consider a Fuchsian

differential operator P given by (11) with Riemann scheme (10). Since the weight

of ∂k0P is non-positive, we can write it as a polynomial in ∂ and the Euler operator

ϑ = x∂:

∂k0P = F (∂, ϑ)
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with F (X,Y ) ∈ C[X,Y ]. Then replace ϑ in F (∂, ϑ) by ϑ− µ:

Q = F (∂, ϑ− µ).

Write Q in transposed form, and divide it by ∂ from the left as many times as

possible:

Q = ∂qQ1.

The operation

P �→ Q1

is the middle convolution with parameter µ, and we denote

mcµ(P ) = Q1.

Here we introduce the result of [7, Theorem 5.2]. We set

δ =

p∑

j=0

mj,1 − (p− 1)n.

Theorem 2.4. ([7, Theorem 5.2]) Retain the notation above. We do not

assume (A1) nor (A2), but instead assume

(B1) mj,1 ≥ δ (0 ≤ j ≤ p),

for j = 0 and ν ≥ 1, in the case m1,1m2,1 · · ·mp,1 ̸= 0,

(B2) λ0,ν ̸∈ {0,−1, . . . , 2− (m0,ν −m0,1 + δ)} if m0,ν −m0,1 + δ ≥ 2,

and for 1 ≤ j ≤ p and ν ≥ 2, in the case mj,1 ̸= 0,

(B3) λj,ν ̸∈ {0,−1, . . . , 2− (mj,ν −mj,1 + δ)} if mj,ν −mj,1 + δ ≥ 2.

Then the order of mcµ(P ) = Q1 becomes n− δ, and the Riemann scheme of Q1 is
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given by

(12)⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = c1 x = c2 · · · x = cp x = ∞
[0](m1,1−δ) [0](m2,1−δ) · · · [0](mp,1−δ) [1− µ](m0,1−δ)

[λ1,2 + µ](m1,2) [λ2,2 + µ](m2,2) · · · [λp,2 + µ](mp,2) [λ0,2 − µ](m0,2)

...
...

...
...

[λ1,n1 + µ](m1,n1
) [λ2,n2 + µ](m2,n2

) · · · [λp,np + µ](mp,np )
[λ0,n0 − µ](m0,n0

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Moreover,

mcµ(P ) = ∂−δAd(∂−µ)(P )

holds.

We explain the reason why, in Definition 2.3, we replace ϑ by ϑ− µ. By using

the relation (6) with m = 1, we have

(13) Ad(∂−µ)(ϑ) = Ad(∂−µ)(x)∂ = ϑ− µ,

and of course Ad(∂−µ)(∂m) = ∂m. Thus we get

Ad(∂−µ)F (∂, ϑ) = F (∂, ϑ− µ).

Note that we may use any integer k greater than k0 instead of k0, because ∂ is

commutative with Ad(∂−µ).

The result mcµ(P ) = Q1 is expected to be irreducible in W (x) when P is

irreducible in W (x). For this problem, an answer is given in [7, Theorem 10.10].

Also a good criterion is obtained in [4, Proposition 3.3]. For rigid P , an exact

result for irreducibility is obtained in [7, Theorem 10.13] and [6].

2.1. On assumptions (A1) and (A2)

Let P ∈ W [x] be a Fuchsian operator with Riemann scheme (9). First we

consider what happens if (A1) is not satisfied.

Suppose that λj,ν − λj,ν′ ∈ Z for some ν ̸= ν′. Without loss of generality, we

may set λj,ν′ − λj,ν = k ∈ Z≥0. Then, in general, solutions at x = cj of exponents

λj,ν , λj,ν + 1, . . . , λj,ν + min{mj,ν − 1, k} have logarithmic terms. When there is

no logarithmic term in these solutions, we call the case apparent. Notice that,

in some literatures, the term apparent may be used only when the exponent is a

non-negative integer.

We assume λj,1 = 0 with mj,1 > 0, λj,ν ∈ Z≥0 for some ν > 1, and there is
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no other exponent in Z at cj . Theorem 2.4 can be applied in this case, and then

in the result of a middle convolution with parameter µ ̸∈ Z, the integral difference

between λj,1 and λj,ν disappears. This implies that, if there is a logarithmic term

in the solutions of exponent λj,1, it disappears by the middle convolution. On the

other hand, if it is apparent, the solutions of exponent λj,1 = 0 and of exponent λj,ν

are both holomorphic at x = cj . However, by a middle convolution with parameter

µ ̸∈ Z, it seems that the former remains holomorphic while the latter is sent to a

singular solution. We shall explain the reason of this curious phenomenon in the

next section.

Second, we shall see, by two examples, what occurs if the assumption (A2) is

not satisfied.

Example 2.5. Let

(14) P = x(1− x)∂2 + (c− (a+ b+ 1)x)∂ − ab

be the differential operator for the Gauss hypergeometric differential equation. The

Riemann scheme is given by

⎧
⎨

⎩

x = 0 x = 1 x = ∞
0 0 a

1− c c− a− b b

⎫
⎬

⎭ .

In order to increase the exponent 0 at x = 0 by 1, we operate the addition Ad(x)

to get

P1 = x2(1− x)∂2 + ((c− 2)− (a+ b− 1)x)x∂ − (a− 1)(b− 1)x+ 2− c.

The Riemann scheme for P1 is given by

⎧
⎨

⎩

x = 0 x = 1 x = ∞
1 0 a− 1

2− c c− a− b b− 1

⎫
⎬

⎭ .

We compute the middle convolution mcµ(P1). Noting that w(P1) = 1, we have

Q1 = mcµ(P1)

= Ad(∂−µ)(∂P1)

= x2(1− x)∂3 + x((c− 2µ)− (a+ b+ 2− 3µ)x)∂2

+ ((1− a− b− ab+ (1 + 2a+ 2b)µ− 3µ2)x+ µ(1− c+ µ))∂
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− (a− 1− µ)(b− 1− µ)(1− µ).

The Riemann scheme for Q1 is

⎧
⎪⎪⎨

⎪⎪⎩

x = 0 x = 1 x = ∞
0 [0](2) 1− µ

1 + µ a− 1− µ

2− c+ µ c− a− b+ µ b− 1− µ

⎫
⎪⎪⎬

⎪⎪⎭
,

whose spectral type is (111, 21, 111). Then Q1 is the operator for the generalized

hypergeometric series 3F2, and we have the irreducibility condition [7, (10.58)].

Since (1 + µ) + (1− µ) ∈ Z, Q1 is reducible. We can decompose Q1 in W (x):

Q1 = K1L1

with

K1 =
x

x− y
∂ − µ

x− y
,

L1 = x(1− x)(x− y)∂2 + f1(x)∂ + f2(x),

where

y =
(γ − 2)µ

(α− 1)(β − 1)
,

f1(x) = (2µ− α− β + 1)x2

− 2(γ − 2)µ2 + ((1 + α)(1 + β)− γ(α+ β))µ− (α− 1)(β − 1)(γ − 2)

(α− 1)(β − 1)
x

− (γ − 2)(γ − µ− 1)µ

(α− 1)(β − 1)
,

f2(x) = −(α− µ− 1)(β − µ− 1)

�
x− (γ − 2)(µ− 1)

(α− 1)(β − 1)

�
.

According to Definition 2.3, the operator Q1 is the result of the middle convolution.

However, as we have discussed, it may be natural to define that L1 is the result of

the middle convolution.

The Riemann scheme for L1 is

⎧
⎨

⎩

x = 0 x = 1 x = y x = ∞
0 0 0 a− µ− 1

2− c+ µ c− a− b+ µ 2 b− µ− 1

⎫
⎬

⎭ ,
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and x = y is an apparent singular point.

Example 2.6. We take the same P as Example 2.5, and operate the addition

Ad(x−1). Then we get

P2 = x2(1− x)∂2 + ((c+ 2)− (a+ b+ 3)x)x∂ − (a+ 1)(b+ 1)x+ c,

whose Riemann scheme is

⎧
⎨

⎩

x = 0 x = 1 x = ∞
−1 0 a+ 1

−c c− a− b b+ 1

⎫
⎬

⎭ .

We operate the middle convolution mcµ to get

Q2 = mcµ(P2)

= Ad(∂−µ)(∂P2)

= x2(1− x)∂3 + (q10 + q11x)x∂ + (q20 + q21x)∂ + q3,

where

q10 = c+ 4− 2µ,

q11 = 3µ− a− b− 6,

q20 = 2c+ 2− (c+ 3)µ+ µ2,

q21 = −3a− 3b− ab− 7 + (2a+ 2b+ 9)µ− 3µ2,

q3 = (µ− 1)(µ− a− 1)(µ− b− 1).

The Riemann scheme of Q2 is

⎧
⎪⎪⎨

⎪⎪⎩

x = 0 x = 1 x = ∞
0 [0](2) 1− µ

−1 + µ a+ 1− µ

−c+ µ c− a− b+ µ b+ 1− µ

⎫
⎪⎪⎬

⎪⎪⎭
,

and we see that Q2 is reducible. In fact, Q2 is decomposed as

Q2 = K2L2
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with

K2 = x(1− x)∂2 + f(x)∂ − (µ− a− 1)(µ− b− 1),

L2 = x∂ − (µ− 1),

where

f(x) = (2µ− a− b− 3)x+ c+ 1− µ.

According to Definition 2.3, Q2 is the result of the middle convolution, but is

reducible. In this case, the right factor is of order one.

As the above examples shows, if we use Definition 2.3, the result of a middle

convolution of an irreducible equation is not necessarily irreducible if the assump-

tion (A2) is not satisfied.

3. Analytic aspects of middle convolution

Oshima’s theorem (Theorem 2.4) tells the change of the Riemann scheme by a

middle convolution. We are interested in whether the Riemann-Liouville transform

actually sends a solution to the equation before middle convolution to a solution to

the equation after middle convolution. Oshima [7, Proposition 3.1] already showed

that this holds for a class of solutions. In this section, we review Oshima’s result,

and then study the Riemann-Liouville transform in a little more detail. Throughout

this section, we assume µ ̸∈ Z.
Let P be a Fuchsian operator (11) with the Riemann scheme (10). We assume

(A2). We consider a local solution at a finite singular point x = c of exponent λ.

(Namely c is one of cj with j ̸= 0 and λ ∈ [λj,ν ](mj,ν) with some λj,ν .) We set

ϑc = (x− c)∂.

Let k0 be given by (8). Then we can write

(15) ∂k0P =
∑

j,k≥0

ajk∂
jϑk

c

with ajk ∈ C. Then, since ϑc = ϑ − c∂, the result of the middle convolution

Q = mcµ(P ) is obtained from

∂qQ =
∑

j,k≥0

ajk∂
j(ϑc − µ)k.
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We study three cases.

(i) λ ̸∈ Z and λ+ µ ̸∈ Z.
This case is studied in [7, Proposition 3.1].

First we consider a solution to P of the form

u(x) = (x− c)λϕ(x),

where

ϕ(x) =
∞∑

l=0

ϕl(x− c)l, ϕ0 = 1.

We take a Riemann-Liouville transform with parameter µ and with end point c

v(x) = Iµc (u)(x)

=
1

Γ(µ)

∫ x

c

u(t)(x− t)µ−1 dt

=
1

Γ(µ)

∫ x

c

(t− c)λϕ(t)(x− t)µ−1 dt.

Since the exponent of the integrand at t = c is not an integer, we can regularize

the integral at t = c. Then by Proposition 2.2 (ii-ii), we have

∂(Iµc (u)(x)) = Iµc (∂u)(x).

Moreover, by the help of Proposition 2.2 (i), we further have

ϑc(I
µ
c (u)(x)) = (x− c)

1

Γ(µ)

∫ x

c

u′(t)(x− t)µ−1 dt

=
1

Γ(µ)

∫ x

c

(x− t+ t− c)u′(t)(x− t)µ−1 dt

=
1

Γ(µ)

(∫ x

c

u′(t)(x− t)µ dt+

∫ x

c

(t− c)u′(t)(x− t)µ−1 dt

)

=
1

Γ(µ)

∫ x

c

u(t)µ(x− t)µ−1 dt+ Iµc (ϑcu)(x)

= µIµc (u)(x) + Iµc (ϑcu)(x),

and then

(16) (ϑc − µ)(Iµc (u)(x)) = Iµc (ϑcu)(x).
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These relations yields

∂j(ϑc − µ)k(Iµc (u)(x)) = Iµc ((∂
jϑk

cu)(x)),

from which we obtain

∂qQv = 0.

By putting the Taylor expansion of ϕ(t) into the integral, we get

(17)

v(x) =
1

Γ(µ)

∫ x

c

∞∑

l=0

ϕl(t− c)λ+l(x− t)µ−1 dt

=
1

Γ(µ)

∞∑

l=0

ϕl

∫ x

c

(t− c)λ+l(x− t)µ−1 dt (t− c = (x− c)s)

=
1

Γ(µ)

∞∑

l=0

ϕl

∫ 1

0

((x− c)s)λ+l((x− c)(1− s))µ−1(x− c) ds

= (x− c)λ+µ 1

Γ(µ)

∞∑

l=0

ϕlB(λ+ l + 1, µ)(x− c)l

= (x− c)λ+µ
∞∑

l=0

Γ(λ+ l + 1)

Γ(λ+ µ+ l + 1)
ϕl(x− c)l.

Thus v(x) has the exponent λ + µ. By the assumption λ + µ ̸∈ Z, we get Qv = 0

([7, Proposition 3.1]). Hence in this case, the Riemann-Liouville transform sends

the solution u to P of exponent λ at x = c to the solution to Q of exponent λ+ µ

at x = c.

Next we consider a solution of exponent λ with logarithmic terms

(18) u(x) = (x− c)λ
r∑

j=0

ϕj(x)(log(x− c))j ,

where ϕj(x) are holomorphic at x = c. Such solution appears only when there is

another exponent λ + k at x = c with k ∈ Z≥0. We shall study the Riemann-

Liouville transform of this u(x).

Note that the method of the regularization we have used so far does not work

for logarithmic case. Nevertheless, we see that such integral can be regularized in

the sense of Hadamard’s finite part of divergent integral.

Let ϕ(x) be holomorphic in a neighborhood U of c, and b a point in U \ {c}.
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We consider the integral

L(λ) =

∫ b

c

ϕ(t)(t− c)λ log(t− c) dt

for λ ∈ C. It is seen that the integral L(λ) converges uniformly on any compact

subset in {λ ∈ C | ℜλ > 0}. By integration by parts, we obtain

L(λ) =
1

λ+ 1
(b− c)λ+1ϕ(b) log(b− c)

− 1

λ+ 1

∫ b

c

(t− c)λ+1

{
ϕ′(t) log(t− c) + ϕ(t) · 1

t− c

}
dt

=
1

λ+ 1
(b− c)λ+1ϕ(b) log(b− c)

− 1

λ+ 1

∫ b

c

(t− c)λ+1ϕ′(t) log(t− c)− 1

λ+ 1

∫ b

c

(t− c)λϕ(t) dt

=
1

λ+ 1
(b− c)λ+1ϕ(b) log(b− c)− 1

(λ+ 1)2
(b− c)λ+1ϕ(b)

− 1

λ+ 1

∫ b

c

(t− c)λ+1ϕ′(t) log(t− c) +
1

(λ+ 1)2

∫ b

c

(t− c)λ+1ϕ′(t) dt.

The integrals in the last side converge in ℜ(λ + 1) > 0. Thus L(λ) is analyti-

cally continued to {ℜλ > −1}. Continuing this process, we see that L(λ) can be

analytically continued to C \ Z<0. For r ≥ 1, we set

Lr(λ) =

∫ b

c

ϕ(t)(t− c)λ(log(t− c))r dt.

This integral is also holomorphic in {ℜλ > 0}. Again by integration by parts, we

get

Lr(λ) =
1

λ+ 1
(b− c)λ+1ϕ(b)(log(b− c))rp

− 1

λ+ 1

∫ b

c

ϕ′(t)(t− c)λ+1(log(t− c))rp dt− r

λ+ 1
Lr−1(λ).

Thus Lr(λ) can be analytically continued to {ℜλ > −1} if Lr−1(λ) can be. Then

the problem is reduced to L1(λ) = L(λ), and hence Lr(λ) is also analytically

continued to C \ Z<0.

Therefore, when we consider the Riemann-Liouville transform Iµc (u) for u in



38 Y. Haraoka

(18), we may assume that the real part of λ is sufficiently large. Then we have

similar assertions as Proposition 2.2 for the integral of u(x), and hence (16) also

holds in this case. Moreover, the formula

Iµc ((x− c)λϕ(x)(log(x− c))r) =
∂r

∂λr
Iµc (ϕ(x)(x− c)λ)

holds for λ ∈ C \Z<0, since it holds for ℜλ > 0. Note that, as a function in (λ, µ),

this formula holds on (C \ Z<0)× C. Then we have

v(x) = Iµc (u)(x)

=
r∑

j=0

Iµc ((x− c)λϕj(x)(log(x− c))j)

=
r∑

j=0

∂j

∂λj
Iµc ((x− c)λϕj(x))

= (x− c)λ+µ
r∑

j=0

ϕ̂j(x)(log(x− c))j ,

where ϕ̂j(x) is a power series in x − c obtained from ϕj(x) in a similar way as in

(17). Thus we have the solution to Q of exponent λ+ µ with logarithmic terms.

In conclusion, the solution to P of exponent [λj,ν ](mj,ν) with λj,ν ̸∈ Z and

λj,ν+µ ̸∈ Z in the Riemann scheme (10) is sent by the Riemann-Liouville transform

Iµcj to the solution to Q of exponent [λj,ν + µ](mj,ν) in the Riemann scheme (12).

(ii) λ ∈ [0](m).

We first consider a holomorphic solution of exponent λ ∈ [0](m). If there is no

other [k](m′) with k ∈ Z≥0 at x = c, the solution of exponent λ ∈ [0](m) is always

holomorphic at x = c. We can apply Proposition 2.2 (ii-i) to get

(19) ∂(Iµc (u)(x)) =
1

Γ(µ)
u(c)(x− c)µ−1 + Iµc (∂u)(x).

By a repeated use of this formula, we have

(20) ∂j(Iµc (u)(x)) =
1

Γ(µ)

j−1∑

l=0

(∂lu)(c)∂j−1−l
(
(x− c)µ−1

)
+ Iµc (∂

ju)(x)
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for j ≥ 1. Multiplying (x− c) to (19), we get

ϑc(I
µ
c (u)(x)) =

1

Γ(µ)

(
u(c)(x− c)µ + (x− c)

∫ x

c

(∂u)(t)(x− t)µ−1 dt

)

=
1

Γ(µ)

(
u(c)(x− c)µ +

∫ x

c

(x− t+ t− c)(∂u)(t)(x− t)µ−1 dt

)

=
1

Γ(µ)

(
u(c)(x− c)µ +

∫ x

c

u′(t)(x− t)µ dt+

∫ x

c

(ϑcu)(t)(x− t)µ−1 dt

)

=
1

Γ(µ)

(
u(c)(x− c)µ − u(c)(x− c)µ + µ

∫ x

c

u(t)(x− t)µ−1 dt

+

∫ x

c

(ϑcu)(t)(x− t)µ−1 dt

)

= µIµc (u)(x) + Iµc (ϑcu)(x).

Thus we obtain

(ϑc − µ)(Iµc (u)(x)) = Iµc (ϑcu)(x).

Therefore

(21) (ϑc − µ)k(Iµc (u)(x)) = Iµc (ϑ
k
cu)(x)

holds for k ≥ 1.

Lemma 3.1. Let (x − c) denote the right ideal in W [x] generated by x − c.

Then, for j, k ≥ 0, we have

∂jϑk
c ≡ jk∂j mod (x− c).

Proof. We write

∂jϑk
c = ∂j(x− c)∂(x− c)∂ · · · (x− c)∂.

The left most x− c is killed by one of j ∂’s in the left of the factor. The second left

x− c is killed by one of ∂’s in the left of the factor, whose number is (j+1)−1 = j

when one ∂ has been used to kill the left most x− c. In a similar way, we see that

there are j possibilities to kill each x−c. Thus the total number is j×j×· · ·×j = jk.

�

Since the elements in the ideal (x − c) vanish when we put x = c, this lemma
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shows

(∂jϑk
cu)(c) = jk(∂ju)(c).

Combining this with (19) and (21), we obtain

(22) ∂j(ϑc − µ)k(Iµc (u)(x)) =

j−1�

l=1

lk(∂lu)(c)∂j−1−l
�
(x− c)µ−1

�
+ Iµc (∂

jϑk
cu)(x).

Then we get

(23) ∂qQ(Iµc (u)(x)) = Iµc (∂
k0Pu)(x) +R,

where

(24)

R =
1

Γ(µ)

⎛

⎝
�

j≥1

aj0

j−1�

l=0

(∂lu)(c)∂j−1−l
�
(x− c)µ−1

�

+
�

k≥1

�

j≥2

ajk

j−1�

l=1

lk(∂lu)(c)∂j−1−l
�
(x− c)µ−1

�
⎞

⎠ .

Because of the existence of this remainder R, Iµc (u)(x) = v(x) does not become a

solution to Q.

In order to obtain a solution to Q from a solution to P of exponent λ ∈ [0](m),

we may take another end point of the Riemann-Liouville transform. Suppose that

there is an l such that all solutions at x = cl can be sent to solutions to Q by the

Riemann-Liouville transform Iµcl with the end point cl. For example, if λl,ν ̸∈ Z for

some l ̸= 0 and for all ν, we can take this l.

The solution u(x) of exponent λ ∈ [0](m) at x = c is written as a linear combi-

nation of the solutions to P of exponents [λl,2](ml,2), . . . , [λl,nl
](ml,nl

) in a neighbor-

hood of x = cl. Thanks to the result in the case (i), we see that each solution in the

linear combination is sent to a solution to Q by the Riemann-Liouville transform

Iµcl with end point cl. Thus

v(x) = Iµcj (u)(x) =
1

Γ(µ)

� x

cj

u(t)(x− t)µ−1 dt

is a solution to Q. We may deform the path of integration so that it does not pass
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through t = c. Then, by noting the expansion

(x− t)µ−1 = ((x− c) + (c− t))µ−1 = (c− t)µ−1
∞∑

l=0

(
µ− 1

l

)(
x− c

c− t

)l

,

we find that v(x) is holomorphic at x = c. Hence the solution to P of exponent

λ ∈ [0](m) at x = c is sent to a holomorphic solution to Q.

Next we consider the logarithmic case. If there is another [k](m′) with k ∈ Z≥0

at x = c, the solution of exponent λ ∈ [0](m) may contain logarithmic terms. Take

λ ∈ [0](m), and assume that the solution u(x) is of the form (18) with this integer

λ. We take h ∈ C \ {0} with |h| sufficiently small. Then u(x) is holomorphic

at x = c + h, and hence the above results can be applied to this u(x) with the

Riemann-Liouville transform with the end point c+ h. In particular, we get

∂qQ(Iµc+h(u)(x)) = Iµc+h(∂
k0Pu)(x) +Rh,

where Rh is obtained from R in (24) by replacing c by c+ h. Since

lim
h→0

(∂λu)(c+ h) = ∞

by the existence of the logarithmic terms (log(x − c))j , and since Iµc+h(∂
k0Pu)(x)

converges as h → 0, we see that ∂qQ(Iµc+h(u)(x)) diverges. Then the Riemann-

Liouville transform Iµc does not send u(x) to a solution to Q.

Also in this case, we may take another Riemann-Liouville transform Iµcl to get

a solution to Q by a similar reason.

(iii) m > 0 and λ ∈ Z with λ > m.

Namely we assume that [0](m) exists in the Riemann scheme. This follows from

the assumption (A2) when such λ exists.

First we consider the non-logarithmic case. Since λ is a positive integer, the

solution u(x) of exponent λ is holomorphic at x = c. Then we can apply the results

in (ii), and hence (23) holds. We shall show that the remainder term R vanishes

in this case.

For a moment, we assume that w(P ) is non-positive, and hence k0 = 0. We can

write P as

P =
n−m−1∑

j=0

(x− c)n−m−jψj(x)∂
n−j +

n∑

j=n−m

ψj(x)∂
n−j ,
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where ψj(x) are polynomials. Now we rewrite this P as in the form (15) with

k0 = 0. From the term (x− c)n−m−jψj(x)∂
n−j , we obtain terms ∂rϑs

c in (15), and

the degree r of ∂ is at most

(n− j)− (n−m− j) = m.

From the term ψj(x)∂
n−j with j ≥ n − m, evidently we obtain terms ∂rϑs

c with

r ≤ m. Therefore the degree of ∂ in (15) is at most m. If w(P ) > 0, we operate

∂k0 , which is used to transform (x − c) to ϑc. Then also in this case, we see that

the degree of ∂ in (15) is at most m.

Hence the remainder R given by (24) is a linear combination of

u(c), (∂u)(c), . . . , (∂m−1u)(c). Since the order of u(x) at x = c is greater than

m, all these vanish. Then we have R = 0, which implies that Iµc (u)(x) is a solution

to Q. Moreover, the exponent of the solution Iµc (u)(x) is λ+µ, since the argument

in (i) can be applied to this case.

The logarithmic case is similar. As in the logarithmic case in (ii), we consider

the Riemann-Liouville transform Iµc+h with end point c + h, and take the limit

h → 0. Then the remainder Rh goes to 0 because λ > m. Thus, also in this

logarithmic case, the Riemann-Liouville transform Iµc sends the solution to P of

exponent λ to the solution to Q of exponent λ+ µ.

Summing up, we obtain the following assertion.

Theorem 3.2. Let P be a Fuchsian operator (11) with the Riemann scheme

(10) satisfying the assumption (A2). Let µ be in C\Z, and Q = mcµ(P ) the result

of the middle convolution with parameter µ. We consider solutions at a singular

point x = cj with 1 ≤ j ≤ p. Let λ be one of the exponents at x = cj.

(i) If λ ̸∈ Z and λ+ µ ̸∈ Z, the solution to P of exponent λ is sent to the solution

to Q of exponent λ+ µ by the Riemann-Liouville transform Iµcj with the end point

cj.

(ii) If λ ∈ [0](m), the Riemann-Liouville transform Iµc with the end point c does

not send the solution to P of exponent λ to a solution to Q. If there is another

singular point cl such that the solution of any exponent in [λl,ν ](ml,ν)
for any ν is

sent to a solution to Q by Iµcl , the Riemann-Liouville transform Iµcl with the end

point cl sends the solution to P of exponent λ ∈ [0](m) at x = c to a solution to Q

holomorphic at x = c.

(iii) If there is [0](m) at x = cj in the Riemann scheme (10) and if λ ∈ Z with

λ > m, the solution to P of exponent λ is sent to the solution to Q of exponent

λ+ µ by the Riemann-Liouville transform Iµcj with the end point cj.
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Example 3.3. The generalized hypergeometric equation of order 3 is obtained

from the Gauss hypergeometric equation by an addition and an middle convolution.

We start from the operator P given by (14) in Example 2.5. P is the operator for

the Gauss hypergeometric equation. First we operate Ad(xd), and then operate

mcµ to obtain the operator Q for the generalized hypergeometric equation of order

3. The change of the Riemann scheme is given by

⎧
⎨

⎩

x = 0 x = 1 x = ∞
0 0 a

1− c c− a− b b

⎫
⎬

⎭ →

⎧
⎨

⎩

x = 0 x = 1 x = ∞
d 0 a− d

1− c+ d c− a− b b− d

⎫
⎬

⎭

→

⎧
⎪⎪⎨

⎪⎪⎩

x = 0 x = 1 x = ∞
0 [0](2) 1− µ

d+ µ a− d− µ

1− c+ d+ µ c− a− b+ µ b− d− µ

⎫
⎪⎪⎬

⎪⎪⎭

We assume that the parameters a, b, c, d and µ are generic. We shall show that

the Riemann-Liouville transform Iµ0 with the end point 0 sends the solution to

Ad(xd)P of exponent 0 at x = 1 to a solution to Q holomorphic at x = 1.

For simplicity, we assume x ∈ R and 0 < x < 1. Any solution to P can be

expressed by an integral

�

C

sa−c(s− 1)c−b−1(x− s)−a ds

with a twisted cycle C. In particular the solution to Ad(xd)P of exponent 0 at

x = 1 is given by

u(x) = xd

� 0

−∞
sa−c(s− 1)c−b−1(x− s)−a ds.

As we have seen, the Riemann-Liouville transform Iµ1 with the end point 1 does

not send this u(x) to a solution to Q. Since the exponents of Ad(xd)P at x = 0 are

not integers, we can take the Riemann-Liouville transform Iµ0 with the end point

0. Then the result v(x) = Iµ0 (u)(x) becomes

v(x) =
1

Γ(µ)

� x

0

dt td
� 0

−∞
sa−c(s− 1)c−b−1(t− s)−a ds (x− t)µ−1

=
1

Γ(µ)

��

∆

sa−c(s− 1)c−b−1(t− s)−atd(x− t)µ−1 ds dt,
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where

∆ = {(s, t) ∈ R2 | −∞ < s < 0, 0 < t < x}.

By a standard argument in analysis, we can see that this integral over ∆ gives a

holomorphic function at x = 1. Thus the Riemann-Liouville transform with end

point 0 sends the holomorphic solution to Ad(xd)P at x = 1 to a holomorphic

solution to Q at x = 1.

In Theorem 3.2, we have not studied the case λ ∈ Z<0. In order to study this

case, it is useful to consider the Pochhammer cycle. We use the notation L for

the chain from c to x as in Section 2. Put L(ϵ1) = a and L(1 − ϵ2) = b. Let C1

(resp. C2) be the circle with center c (resp. x) of radius |a− c| (resp. |b−x|). The
Pochhammer cycle ∆ is the connected chain

(25) ∆ = C1 · L2 · C2 · L−1
2 · C−1

1 · L2 · C−1
2 · L−1

2 ,

where we have set L2 = L|[ϵ1,1−ϵ2]. As the integrand, we consider a linear combi-

nation of

f(t) = ϕ(t)(t− c)λ(x− t)µ−1

and

gj(t) = ϕj(t)(t− c)λ(log(t− c))j(x− t)µ−1,

where ϕ(t), ϕj(t) are holomorphic in a neighborhood of L, λ, µ ∈ C and j ∈ Z>0.

Then the branch of f(t) or gj(t) at the end point a of the right most L−1
2 coincides

with that at the starting point a of the left most component C1. If we take f(t) as

the integrand, and if we assume that λ, µ ̸∈ Z and ℜλ,ℜµ are sufficiently large, we

have

∆ = (e2πiλ − 1)(1− e2πiµ)L

as integrals. Since the integral over L is related to the Riemann-Liouville transform,

under the same assumption, we also have

Iµc =
1

Γ(µ)(e2πiλ − 1)(1− e2πiµ)
∆

as integral operators for f(t). Thus, up to scalar multiple, we may regard ∆ as an
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extension of Iµc .

Let u(t) be a linear combination

u(t) = ϕ(t)(t− c)λ +

r∑

j=1

ϕj(t)(t− c)λ(log(t− c))j .

Then the branches of u(t)(x− t)µ−1 at the starting point of ∆ and at the end point

of ∆ coincide, from which we obtain

∂

∫

∆

u(t)(x− t)µ−1 dt =

∫

∆

(∂u)(t)(x− t)µ−1 dt,

(ϑc − µ)

∫

∆

u(t)(x− t)µ−1 dt =

∫

∆

(ϑu)(t)(x− t)µ−1 dt.

Hence we get

∂qQ

∫

∆

u(t)(x− t)µ−1 dt =

∫

∆

(∂k0Pu)(t)(x− t)µ−1 dt,

which means that the integral transformation

u(x) �→
∫

∆

u(t)(x− t)µ−1 dt

sends a solution u(t) to P to a solution to ∂qQ. This assertion holds even if λ ∈ Z<0.

4. ODE for Appell’s F4

Appell’s hypergeometric series F4 is defined by

F4(a, b, c, d;x, y) =

∞∑

m,n=0

(a)m+n(b)m+n

(c)m(d)nm!n!
xmyn,

where (a)n is defined in (7). From this definition, we can derive the system of

partial differential equations satisfied by F4:

(26)[
x(1− x)∂2

x − 2xy∂x∂y − y2∂2
y + (c− (a+ b+ 1)x)∂x − (a+ b+ 1)y∂y − ab

]
z = 0,

[
y(1− y)∂2

y − 2xy∂x∂y − x2∂2
x + (d− (a+ b+ 1)y)∂y − (a+ b+ 1)x∂x − ab

]
z = 0.
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We can further derive a Pfaffian system

(27) dZ =
�
A(x, y) dx+B(x, y) dy

�
Z

from (26), and then notice that the rank of the system (26) is four and the singular

locus is given by

(28) {x = 0} ∪ {y = 0} ∪ {(1− x− y)2 − 4xy = 0} ∪ {x = ∞} ∪ {y = ∞}.

We look at the x-equation of (27):

(29)
∂Z

∂x
= A(x, y)Z.

As an ordinary differential equation, (29) has the Riemann scheme (as a system)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 0 x = (
√
y − 1)2 x = (

√
y + 1)2 x = ∞

0 0 0 a

0 0 0 b

−c 0 0 a− d+ 1

−c c+ d− a− b− 5
2 c+ d− a− b− 5

2 b− d+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

and the spectral type is (22, 31, 31, 1111), which means that the index of rigidity is

0. Moreover, this spectral type can be connected to the spectral type (11, 11, 11, 11)

by an iteration of middle convolutions and an addition. This can be seen by the

chase of the spectral types

(22, 31, 31, 1111) δ = 2 + 3 + 3 + 1− 2× 4 = 1

↓
(12, 21, 21, 111)

↓
(21, 21, 21, 111) δ = 2 + 2 + 2 + 1− 2× 3 = 1

↓
(11, 11, 11, 11).

The last spectral type (11, 11, 11, 11) is the spectral type of the ordinary differen-

tial equation whose deformation equation yields Painlevé VI. Since the deformation

equations are invariant under middle convolutions and additions [3], the deforma-

tion of (29) will give also Painlevé VI. On the other hand, the ordinary differential

equation (29) is already deformed, since it is a section of the completely integrable

system (27). Thus we expected that the entries of the coefficient matrix A(x, y) of
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(29) give an algebraic solution of Painlevé VI. However, this story does not work:

As far as we know, the equation (29) cannot be transformed to a normal Fuch-

sian system of non-resonant type, so that we cannot apply Katz-Dettweiler-Reiter

algorithm [1, 5].

Therefore we expect that Oshima’s middle convolution will work. Then we shall

compute the ordinary differential equation for F4 with respect to x.

By a simple but long calculation, we derive from (26) the ordinary differential

equation

(30)
�
p0(x)∂

4
x + p1(x)∂

3
x + p2(x)∂

2
x + p3(x)∂x + p4(x)

�
z = 0

in x satisfied by F4, where pj(x) are polynomials in x depending polynomially on

y. The explicit form of p0(x) is given by

p0(x) = x2((1− x− y)2 − 4xy)(v0x− v1),

where

v0 = (a− b− d+ 1)(a− b+ d− 1),

v1 = (a+ b− d+ 1)(a+ b− 2c− d+ 3)(y − 1),

and those of the other pj(x) are given in Appendix. We see that the point v = v1/v0
is a singular point that does not come from the singular locus (28). Hence it is an

apparent singular point. The Riemann scheme of (30) is

(31)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 0 x = (
√
y − 1)2 x = (

√
y + 1)2 x = v x = ∞

0 0 0 0 a

1 1 1 1 b

1− c 2 2 2 a− d+ 1

2− c −a− b+ c+ d− 1
2 −a− b+ c+ d− 1

2 4 b− d+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 0 x = (
√
y − 1)2 x = (

√
y + 1)2 x = v x = ∞

[0](2) [0](3) [0](3) [0](3) a

b

[1− c](2) a− d+ 1

−a− b+ c+ d− 1
2 −a− b+ c+ d− 1

2 4 b− d+ 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Since x = v is apparent, any solution is single valued at x = v. Then the spectral

type of the monodromy for (30) is (22, 31, 31, 1111). According to [7, Definition

4.8], the spectral type of (30) is determined by the Riemann scheme (31), and then

is (22, 31, 31, 31, 1111). Thus there arises a difference between the spectral types of
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the monodromy and of the equation. For the spectral type (22, 31, 31, 31, 1111) of

(30), the maximum of δ is

δ = 2 + 3 + 3 + 3 + 1− 3× 4 = 0,

which implies that we cannot reduce the order by additions and middle convolu-

tions. (Therefore we have not succeeded to obtain an algebraic solution to Painlevé

VI even by Oshima’s middle convolution.) We examine this.

We operate the middle convolution with parameter µ = a−1 to (30). Then the

order of the result is four, and the Riemann scheme is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = 0 x = (
√
y − 1)2 x = (

√
y + 1)2 x = v x = ∞

[0](2) [0](3) [0](3) [0](3) 2− a

1− a+ b

[a− c](2) 2− d

−b+ c+ d− 3
2 −b+ c+ d− 3

2 3 + a 2− a+ b− d

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

We see that the singular point x = v changes from an apparent singular point

to a non-apparent one. Then the spectral type of the monodromy becomes

(22, 31, 31, 31, 1111), which is different from the one before middle convolution.

Thus, owing to the existence of an apparent singular point, the compatibility of

the middle convolutions for the monodromy and for the equation does not hold.

5. Appendix

The coefficients of the ordinary differential equation (30) satisfied by F4 are

given as follows:

p1(x) = 2x(p13x
3 + p12x

2 + p11x+ p10),

p2(x) = p23x
3 + p22x

2 + p21x+ p20,

p3(x) = p32x
2 + p31x+ p30,

p4(x) = ab(a− d+ 1)(b− d+ 1)(p41x+ p40),

where

p13 = (a− b− d+ 1)(a− b+ d− 1)(a+ b− d+ 4),

p12 =
�
−2(a3 + b3)− 2ab(a+ b) + (c+ 4d− 13)(a2 + b2) + (6c+ 4d− 8)ab

+ (−4cd− 2d2 + 11c+ 15d− 20)(a+ b) + (d− 1)(3cd− 10c− 2d+ 9)
�
y

+ 4ab(a+ b) + (−3c− 2d+ 4)(a2 + b2) + (−2c− 8d+ 26)ab
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+ (c+ d− 2)(4d− 11)(a+ b)− (d− 1)(cd+ 2d2 − 8c− 13d+ 18),

p11 = (y − 1)
[{

(a+ b)3 + (10− 3d)(a2 + b2) + (18− 4c− 6d)ab

+ (−2c2 + 2cd+ 3d2 − 9c− 19d+ 25)(a+ b)

+ (d− 1)(2c2 − 2cd− d2 + 9c+ 8d− 16)
}
y

+ (a3 + b3) + 3ab(a+ b) + (9− 2c− 3d)(a2 + b2) + (20− 6d)ab

+ (−2c2 + 2cd+ 3d2 − 9c− 19d+ 25)(a+ b)

+ (d− 1)(2c2 − d2 + 7c+ 9d− 17)
]
,

p10 = −(a+ b− d+ 1)(a+ b− 2c− d+ 3)(c+ 1)(y − 1)3,

p23 = (a− b− d+ 1)(a− b+ d− 1)(a2 + 4ab+ b2 + (9− 3d)(a+ b) + d2 − 8d+ 14),

p22 =
[
−2(a4 + b4)− 12a2b2 − 4ab(a2 + b2) + 6(d− 3)(a3 + b3)

+ 2(6c+ 9d− 24)ab(a+ b) + (−6cd− 7d2 + 18c+ 47d− 68)(a2 + b2)

+ 2(−12cd− 9d2 + 30c+ 28d− 61)ab

+ 2(d− 3)(5cd+ 2d2 − 10c− 14d+ 17)(a+ b)

− (d− 1)(4cd2 + d3 − 26cd− 10d2 + 42c+ 39d− 50)
]
y

+ (a4 + b4) + 4ab(a2 + b2) + 14a2b2 + (11− 4c− 4d)(a3 + b3)

+ (55− 8c− 20d)ab(a+ b) + (10cd+ 7d2 − 28c− 42d+ 57)(a2 + b2)

+ (16cd+ 22d2 − 40c− 114d+ 148)ab

+ (−6cd2 − 6d3 + 42cd+ 51d2 − 56c− 134d+ 109)(a+ b)

+ 2(d− 1)(d3 − 6cd− 9d2 + 16c+ 29d− 31),

p21 = (y − 1)
[{

(a4 + b4) + 2ab(a2 + b2) + 2a2b2 + 3(3− d)(a3 + b3)

+ (17 + 4c− 5d)ab(a+ b) + (−3c2 − 2cd+ 3d2 + 3c− 21d+ 31)(a2 + b2)

+ (−10c2 − 8cd+ 4d2 + 14c− 32d+ 54)ab

+ (8c2d+ 4cd2 − d3 − 18c2 − 12cd+ 15d2 + 6c− 53d+ 51)(a+ b)

− (d− 1)(5c2d+ 2cd2 − 15c2 − 7cd+ 3d2 + 3c− 19d+ 28)
}
y

+ 2ab(a2 + b2) + 4a2b2 + (4 + 2c− d)(a3 + b3)

+ (22 + 2c− 7d)ab(a+ b) + (−5c2 − 4cd+ 3d2 + 7c− 18d+ 28)(a2 + b2)

+ (−6c2 − 4cd+ 8d2 + 6c− 46d+ 64)ab
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+ (8c2d+ 2cd2 − 3d3 − 18c2 − 8cd+ 24d2 + 4c− 65d+ 56)(a+ b)

− (d− 1)(3c2d− d3 − 13c2 − cd+ 9d2 − c− 28d+ 32)
]
,

p20 = c(c+ 1)(a+ b− d+ 1)(−a− b+ 2c+ d− 3)(y − 1)3,

p32 = (a− b− d+ 1)(a+ b− d+ 2)(a− b+ d− 1)(2ab+ (2− d)(a+ b+ 1)),

p31 =
[
−6a2b2(a+ b)− 2ab(a3 + b3) + (d− c− 2)(a4 + b4)

+ (6c+ 10d− 24)ab(a2 + b2) + (6c+ 18d− 40)a2b2

− (d− 3)(c+ 3d− 6)(a3 + b3) + (−15cd− 15d2 + 31c+ 73d− 84)ab(a+ b)

+ (5cd2 + 3d3 − 21cd− 25d2 + 23d+ 63d− 50)(a2 + b2)

+ (12cd2 + 8d3 − 56cd− 62d2 + 58c+ 152d− 116)ab

− (d− 3)(3cd2 + d3 − 12cd− 10d2 + 11c+ 25d− 18)(a+ b)

− (d− 1)(d− 2)(3cd+ d2 − 7c− 7d+ 10)
]
y

+ 6a2b2(a+ b) + 2ab(a3 + b3) + (2− d)(a4 + b4) + (40− 4c− 18d)a2b2

+ (24− 6c− 10d)ab(a2 + b2) + 3(d− 2)(c+ d− 3)(a3 + b3)

+ (13cd+ 15d2 − 28c− 73d+ 84)ab(a+ b)

+ (d− 2)(5cd+ 3d2 − 12c− 19d+ 25)(a2 + b2)

+ 2(4cd2 + 4d3 − 23cd− 31d2 + 26c+ 76d− 58)ab

+ (d− 2)(cd2 + d3 − 12cd− 11d2 + 15c+ 33d− 27)(a+ b)

+ (d− 1)(d− 2)2(cd+ 3c+ d− 5),

p30 = (y − 1)c(a+ b− d+ 2)(a+ b− 2c− d+ 3)

×
[
(a2 + b2 + (2− d)(a+ b)− d+ 1)y + 2ab− (d− 2)(a+ b− d+ 1)

]
.

Acknowledgements. The author would like to express his sincere gratitude

to the referees who pointed out incomplete arguments in the first manuscript.

Thanks to their advices, the author could revise these arguments. This work was

supported by Grant-in-Aid for Scientific Research B, no. 15H03628.

References

[1] M. Dettweiler and S. Reiter, An algorithm of Katz and its application to the inverse Galois
problem, J. Symbolic Comput., 30 (2000), 761–798.

[2] Y. Haraoka, Globally analyzable Fuchsian differential equations, Sugaku Expositions, 28
(2015), 49-72.



Oshima’s middle convolution 51

[3] Y. Haraoka and G. Filipuk, Middle convolution and deformation for Fuchsian systems, J.
London Math. Soc., 76 (2007), 438-450.

[4] K. Hiroe, Linear differential equations on P1 and root systems, J. Alg., 382 (2013), 1-38.
[5] N. M. Katz, Rigid Local Systems, Annals of Mathematics Studies, No. 139, Princeton Univ.

Press, Princeton, NJ, 1996.
[6] T. Oshima, Reducibility of hypergeometric equations, “Analytic, Algebraic and Geometric

Aspects of Differential Equations”, Trends in Mathematics, Birkhäuser, 2017, 429-453.
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