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Unfolding of spectral types

Kazuki Hiroe

Dedicated to Professor Toshio Oshima on the occasion of his 70th birthday

Abstract. A conjecture on unfolding of spectral types of dif-
ferential equations is presented by Toshio Oshima. We claim that a
part of this conjecture is true for first order systems of linear ordinary
differential equations and give a sketch of proof of it.

Introduction

This paper is an announcement of one of the results in [6].

Let us consider the differential equation of Gauss hypergeometric function,

z(1− z)
d2

dz2
y + (c− (a+ b+ 1)z)

d

dz
y − aby = 0.

This is one of the most famous Fuchsian differential equation and enjoys many

interesting properties. Let us put

z = ϵξ, b =
1

ϵ

and rewrite the equation as follows

ξ(1− ϵξ)
d2

dξ2
y + (c− (a+

1

ϵ
+ 1)ϵξ)

d

dξ
y − ay = 0.

Then taking the limit ϵ �→ 0, we can see that the regular singular point ξ = 1
ϵ goes

to infinity and the resulting differential equation is

ξ
d2

dξ2
y + (c− ξ)

d

dξ
y − ay = 0
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which is called Kummer’s confluent hypergeometric equation and has an irregular

singular point at ξ = ∞. This process called confluence of singular points and

is a classical technique to study analytic properties of differential equations with

irregular singular points. It might be a natural expectation that every differential

equation with irregular singular points can be obtained from a Fuchsian equation,

differential equation only with regular singular points, through the confluence pro-

cess. This is always true in a naive sense. However, known families of differential

equations obtained by confluence of singular points usually share the same num-

bers of accessory parameters, for example Gauss hypergeometric family: Gauss,

Kummer, Hermite, and Heun’s family: Heun, confluent Heun, doubly confluent

Heun, biconfluent Heun, triconfluent Heun, and so on.

Thus, we may ask if we can obtain every differential equation with irregular

singular points from a Fuchsian equation with the same number of accessory pa-

rameter by confluence of singular points.

To compute a number of accessory parameters of a differential equation, a key

ingredient is the spectral type which consists of collections of positive integers

determined from local isomorphic classes of the differential equation. And it is

known that numbers of accessory parameters can be computed from indices of

rigidity of spectral types. In [11] and [12], Oshima introduced a notion called

unfolding of spectral type which connects different spectral types preserving indices

of rigidity. Further, Oshima formulated the above question on confluence of singular

points in terms of the unfolding of spectral types and presented this question as a

conjecture in [12].

The purpose of this paper is to introduce this conjecture by Oshima in the case

of first order systems of differential equations, as a variant of the original conjecture

which is for higher order scalar differential equations. Further, we claim that a part

of this conjecture for first order systems is true. The contents of this paper is as

follows. We shall review the Hukuhara-Turrittin-Levelt theory of local differential

equations and introduce the notion of spectral types in Section 1 and 2. In Section

3, Oshima’s idea of unfolding spectral types is explained. The conjecture presented

by Oshima in [12] appears in Section 4. Section 5 is the final section in which we

claim that a part of the conjecture is true and give a sketch of the proof of this

claim. A full-length proof of this claim will be found in the upcoming paper [6].

1. HTL normal forms and compositions of integers

From the Hukuhara-Turrittin-Levelt theory, it is known that local differential

equations defined on a neighborhood of a singular point are classified by Hukuhara-
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Turrittin-Levelt normal forms under gauge transformations whose coefficients are

formal power series. We shall associate collections of integers, called spectral types,

to Hukuhara-Turrittin-Levelt normal forms.

1.1. Compositions of integers

A composition β = {β1,β2, . . . ,βk} of integer n, denoted by β � n, is an ordered

set of positive integers β1,β2, . . . ,βk satisfying the equation β1+β2+ · · ·+βk = n.

We call each integer βi component of β and say that β has length l(β) := k and

size |β| := n.

Let us define a partial order on compositions of n as follows. For β =

{β1, . . . ,βk}, γ = {γ1, . . . , γl} � n, we say β is a coarsening of γ, denoted

by β ≥ γ or equivalently γ is a refinement of β when there exists indices

i0 := 0 < i1 < i2 < · · · < ik := l such that {γij−1+1, γij−1+2, . . . , γij} � βj for

j = 1, . . . , k. In this case we can define a surjective map from the index set of γ

to that of β in the following way. Define φ : {1, 2, . . . , l} → {1, 2, . . . , k} so that

φ(i) = j for ij−1 < i ≤ ij , j = 1, . . . , k and call this φ the coarsening map of β ≥ γ.

1.2. HTL normal forms and compositions of integers

The following is a fundamental fact of the local formal theory of differential

equations with irregular singularity.

Theorem 1.1 (Hukuhara-Turrittin-Levelt, see [13] for instance).

For any A ∈ M(n,C((z))), there exist a finite filed extension C((t)) of C((z)) and

X ∈ GL(n,C((t))) such that tr = z for some r ∈ Z≥1 and X[A] is written by

diag
(
q1(t

−1)In1
+R1, . . . , qm(t−1)Inm

+Rm

)
z−1

where qi(s) ∈ sC[s] satisfying qi ̸= qj if i ̸= j, and Ri ∈ M(ni,C). We call this

X[A] the Hukuhara-Turrittin-Levelt normal form of A or HTL-normal form for

short.

Here X[A] := XAX−1 +
(
z d
dzX

)
X−1 is the gauge transform which is the trans-

formation of the differential equation

z
d

dz
Y = AY,

and d
dz f(t) for f(t) ∈ C((t)) is defined by the equation tr = z, namely, d

dz f(t) =
1
r t

1−r d
dtf(t). If A ∈ M(n,C((z))) has the normal form in M(n,C((z))), namely

r = 1 in the above, then we say that the differential equation z d
dzY = AY has an

unramified irregular singularity at z = 0.
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Let us consider an HTL normal form in M(n,C((z))),

B = diag
(
q1(z

−1)In1
+R1, . . . , qm(z−1)Inm

+Rm

)
z−1

and set

k := max
i=1,...,m

{degC[z−1]qi(z
−1)}+ 1.

Let us see that an HTL normal form B =
∑k

i=1 Biz
−i+1 gives an increasing

sequence of compositions of n. Let
⊕m(s)

j=1 V⟨s,j⟩ be the decomposition of Cn as

simultaneous invariant spaces of {Bs+1, Bs+2, . . . , Bk} for s = 1, . . . , k − 1. Then

we have compositions

ms := {dimV⟨s,1⟩, dimV⟨s,2⟩, . . . , dimV⟨s,m(s)⟩} � n

for s = 1, 2, . . . , k − 1, satisfying

m1 ≤ m2 ≤ · · · ≤ mk−1.

Here we note that m(1) = m and m1 = {n1, n2, . . . , nm}.
Furthermore, the residue term Res(Bz−1) = diag(R1, . . . , Rm) defines a com-

position as follows. Let fRi
(x) =

∏li
j=1(x− ξ

(i)
j ) be the minimal polynomial of Ri.

Then we have a composition

m0 = {n[1,1], n[1,2], . . . , n[1,e1], n[2,1], n[2,2], . . . , n[m,em]}

where

n[i,j] := rank

j−1∏

s=1

(Ri − ξ(i)s Ini
)− rank

j∏

s=1

(Ri − ξ(i)s Ini
) for j = 2, . . . , ei,

n[i,1] := ni − rank(Ri − ξ
(i)
1 ).

Then we can check m1 ≥ m0 from the construction.

Definition 1.2 (spectral type of HTL normal form). The sequences

of compositions of n defined above,

m0 ≤ m1 ≤ · · · ≤ mk−1,

is called the spectral type of the HTL normal form B ∈ gk. We call the integer k
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length of the sequence.

2. Realization of spectral types

We have defined spectral types of HTL normal forms of local differential equa-

tions. In this section, we consider the existence of global differential equations

whose spectral types of singular points coincide with given collection of increasing

sequences of compositions of n.

2.1. Moduli spaces of differential equations

Following the papers [3], [9] and [5], we introduce isomorphic classes of global

differential equations whose local HTL normal forms are fixed.

Let us define Gk := GL(n,C[[z]]/zkC[[z]]) which can be identified with

{
A0 +A1z + · · ·+Ak−1z

k−1 ∈
k−1∑

i=0

M(n,C)zi
∣∣∣∣∣A0 ∈ GL(n,C)

}
.

Also define

gk := M(n,C[[z]]/zkC[[z]])
∼=

{
A0 +A1z + · · ·+Ak−1z

k−1
∣∣Ai ∈ M(n,C), i = 0, 1, . . . , k − 1

}
.

The group Gk acts on gk by the adjoint action Ad(g)X := gXg−1 for g ∈ Gk, X ∈
gk. The dual vector space g∗k is identified with

M(n, z−kC[[z]]/C[[z]]) ∼=
{
Ak

zk
+ · · ·+ A1

z

∣∣∣∣Ai ∈ M(n,C), i = 1, . . . , k

}

by the bilinear form

gk × g∗k ∋ (A,B) �→ Res(tr(AB)) ∈ C

where Res(
∑∞

i=r aiz
i) := a−1 for

∑∞
i=r aiz

i ∈ C((z)). Let us note that the coadjoint
action of Gk on g∗k is defined by (Ad∗(g)f)(X) := f(Ad(g−1)X) for g ∈ Gk, f ∈
g∗k, X ∈ gk.

Definition 2.1 (truncated orbit). Let us regard B ∈ g∗k. Then the

coadjoint orbit

OB := {Ad∗(g)B | g ∈ Gk}



58 K. Hiroe

is called the truncated orbit of B.

We say that a collection of matrices (A1, . . . , As) ∈ M(n,C)s is irreducible if

(A1, . . . , As) has no nontrivial invariant subspace of Cn, i.e., if a subspace W ⊂ Cn

satisfies that AiW ⊂ W for all i = 1, . . . , s, then W = {0} or Cn. Let us consider

a differential equation

d

dz
Y =

p�

i=0

ki�

ν=1

A
(i)
ν

(z − ai)ν
Y,

with

p�

i=0

A
(i)
1 = 0.

The principal term at the singular point ai is

Ai(zi) :=

ki�

ν=1

A(i)
ν z−ν

i

for each i = 0, . . . , p. Here we set zi := z − ai, i = 0, . . . , p. This differential

equation is said to be irreducible if the collection of the matrices (Ai,j)0≤i≤p,
1≤j≤ki

is

irreducible.

Let us take ki ∈ Z≥1 and HTL normal forms Bi ∈ g∗ki
for i = 0, 1, . . . , p. Then

we define a moduli space of differential equations on P1,

M(B) :=
⎧
⎪⎨

⎪⎩
d

dz
Y =

p�

i=0

ki�

ν=1

A
(i)
ν

(z − ai)ν
Y

�������

irreducible,�p
i=0 A

(i)
1 = 0,

�ki

ν=1
A(i)

ν

zν ∈ OBi
, i = 0, . . . , p

⎫
⎪⎬

⎪⎭

�
GL(n,C).

Here the action of GL(n,C) is given by

d

dz
Y = A(z)Y �→ d

dz
Y = gA(x)g−1Y,

for g ∈ GL(n,C), A(z) ∈ M(n,C(z)).
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2.2. Irreducibly realizable

Since differential equations have HTL normal forms at their singular points,

they have collections of increasing sequences of compositions of n as spectral types.

Conversely, we would like to find differential equations with given spectral types.

In this paper, we only consider differential equations with unramified singularities.

Thus, we adopt the following notion of realizability of spectral types.

Definition 2.2 (irreducibly realizable). Let us take a collection of in-

creasing sequences of compositions of n,

m = (m
(i)
0 ≤ m

(i)
1 ≤ · · · ≤ m

(i)
ki−1)i=0,1,...,p.

We say m is irreducibly realizable if the following conditions are satisfied.

1. There exists a collection of HTL normal forms B = (B0, B1, . . . , Bp) such

that Bi ∈ gki
and its spectral type is m

(i)
0 ≤ m

(i)
1 ≤ · · · ≤ m

(i)
ki−1 for each

i = 0, 1, . . . , p.

2. For the above B, we have

M(B) ̸= ∅.

A necessary and sufficient condition of non-emptiness of M(B) is already known

(see [4], [1], [2], [9], [5]). The condition is given in terms of Kac-Moody root

systems. Thus, we can rephrase the realizability of spectral types as a condition

on Kac-Moody root systems as follows. We refer the detail to the section 4 in [5]

and just give a quick review here.

For a collection of increasing sequences of compositions of n, m = (m
(i)
0 ≤

m
(i)
1 ≤ · · · ≤ m

(i)
ki−1)i=0,1,...,p, let us write

m(i)
s = (n

([i,s]
1 , n

[i,s]
2 , . . . , n

[i,s]

m(i)(s)
) for s = 1, 2, . . . , ki − 1,

m
(i)
0 = (n[i,1,1], n[i,1,2], . . . , n[i,1,e[i,1]], n[i,2,1], n[i,2,2], . . . , n[i,m(i)(1),e

[i,m(i)(1)]
]).

Let φi
s : {1, 2, . . . ,m(i)(s)} → {1, 2, . . . ,m(i)(s + 1)} be coarsening maps of indices

of m
(i)
s ≤ m

(i)
s+1 for s = 1, 2, . . . , k − 2 and φ

(i)
k−1 : {1, 2, . . . ,m(i)(k − 1)} → {1}.

Then we define a distance on the index set {1, 2, . . . ,m(i)(1)} of m
(i)
1 as follows,

di(j, k) := min{l | φ(i)
l ◦ · · · ◦ φ(i)

2 ◦ φ(i)
1 (j) = φ

(i)
l ◦ · · · ◦ φ(i)

2 ◦ φ(i)
1 (k)}− 1
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Set Iirr := {i ∈ {0, 1, . . . , p} | ki ≥ 2} ∪ {0} and Ireg := {0, 1, . . . , p}\Iirr. Then

let us define a symmetric Dynkin diagram Dm = (V,E) with E, the set of edges,

and V , the set of vertices, as follows. Set

V irr :=

�
[i, j]

����
i ∈ Iirr,

j = 1, . . . ,m(i)

�
, V leg :=

⎧
⎨

⎩[i, j, k]

������

i = 0, . . . , p,

j = 1, . . . ,m(i),

k = 1, . . . , e[i,j] − 1

⎫
⎬

⎭ .

Here we set m(i) := m(i)(1). Then the set of vertices V is the disjoint union

V := V irr � V leg.

Also define sets of edges between vertices,

E0↔Iirr :=

⎧
⎨

⎩ρ
[0,j]
[i,j′] : [0, j] ←→ [i, j′]

������

j = 1, . . . ,m(0),

i ∈ Iirr\{0},
j′ = 1, . . . ,m(i)

⎫
⎬

⎭ ,

Em
(i)
1 :=

�
ρ
[k]
[i,j],[i,j′] : [i, j] ←→ [i, j′]

����
1 ≤ j < j′ ≤ m(i),

1 ≤ k ≤ di(j, j
′)

�
,

Eleg(i) :=

�
ρ[i,j,k] : [i, j, k] ←→ [i, j, k − 1]

����
j = 1, . . . ,m(i),

k = 2, . . . , e[i,j] − 1

�
,

Eleg(i)↔m
(i)
1 :=

�
ρ[i,j,1] : [i, j, 1] ←→ [i, j] | j = 1, . . . ,m(i)

�
,

Eleg(i)↔0
1 :=

�
ρ
[i,1,1]
[0,j] : [i, 1, 1] ←→ [0, j] | i ∈ Ireg, j = 1, . . . ,m(0)

�
.

Then the set of edges E is the disjoint union

E := E0↔Iirr �
�

i∈Iirr

�
Em

(i)
1 � Eleg(i)↔m

(i)
1 � Eleg(i)

�
�

�

i∈Ireg

�
Eleg(i)↔0 � Eleg(i)

�
.

Then the relation

⟨vi, vj⟩ := −♯{edges vi ↔ vj} for vi ̸= vj ∈ V,

⟨v, v⟩ := 2 for v ∈ V

defines a bilinear form on ZV :=
�

v∈V Zv. Then we can define the root system

on ZV in the usual way (see Kac [10]).

Let us define a vector αm = (αv)v∈V ∈ ZV from the collection of increasing
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sequences of compositions m as follows,

α[i,j] := n
[i,1]
j and α[i,j,k] := n

[i,1]
j −

k�

l=1

n[i,j,l].

Then the results in [4], [1], [2], [9], [5] tell us that we can determine the condition

which assures that m is irreducibly realizable.

Theorem 2.3. A collection of increasing sequences of compositions of n, m =

(m
(i)
0 ≤ m

(i)
1 ≤ · · · ≤ m

(i)
ki−1)i=0,1,...,p is irreducibly realizable if and only if the

vector αm is a positive root in the root system associated with the Dynkin diagram

Dm.

3. Unfolding of spectral types

In [11] and [12], Oshima introduced a process for constructing spectral types of

Fuchsian equations from that of differential equations with irregular singularities,

this is called unfolding of spectral types, which will be explained in this section.

For an HTL normal form

B = diag
�
q1(z

−1)In1
+R1z

−1, . . . , qm(z−1)Inm
+Rmz−1

�
,

let us construct a family of elements in M(n,C(z)) containing this HTL normal

form B as follows. Recalling equalities,

1�
1≤ν≤i(z − cν)

=
i�

j=1

��
1≤ν≤i, ν ̸=j(cj − cν)

�−1

z − cj
,

we define a function of ci for i = 1, . . . , k as follows,

B(c1, . . . , ck) :=

k�

i=1

Bi�
1≤ν≤i(z − cν)

=
B1

z − c1
+

k�

i=2

i�

j=1

�
Bi�

1≤ν≤i, ν ̸=j(cj − cν)

�
1

z − cj

=

k�

j=1

⎛

⎝
k�

i=j

Bi�
1≤ν≤i, ν ̸=j(cj − cν)

⎞

⎠ 1

z − cj
.



62 K. Hiroe

Here we formally set
∏

1≤ν≤1,ν ̸=1(c1 − cν) = 1. We regard this B(c1, . . . , ck) as a

function on the polydisc Dk
ϵ := {(c1, . . . , ck) ∈ Ck | |ci| < ϵ, i = 1, . . . , k} for a

sufficiently small 0 < ϵ ≪ 1. Then the graph of this function

B := {(B(c1, . . . , ck), (c1, . . . , ck)) ∈ M(n,C(z))× Dk
ϵ | (c1, . . . , ck) ∈ Dk

ϵ }

and the natural projection π : B −→ Dk
ϵ define a deformation of B which is obtained

as the special fiber π−1((0, . . . , 0)).

Let us look at a generic fiber of the deformation π : B −→ Dk
ϵ . Namely, take a

generic element c = (c1, . . . , ck) ∈ Dk
ϵ so that ci ̸= cj for 1 ≤ i ̸= j ≤ k. Then we

have

B(c) =
k∑

j=1

Aj(c)

z − cj
,

where

(1) Aj(c) :=

k∑

i=j

Bi∏
1≤ν≤i, ν ̸=j(cj − cν)

∈ M(n,C)

for j = 1, . . . , k. Namely, the deformation π : B −→ Dk
ϵ has the irregular singular

HTL normal form B as a special fiber and collections of regular singular normal

forms as general fibers.

Let us see that this deformation of normal forms induces the deformation of

spectral types as follows. Let

m0 ≤ m1 ≤ · · · ≤ mk

be the spectral type of B. Then we can easily deduce the following by the definition

of Aj(c) in the equation (1).

Lemma 3.1. Let us take a generic c ∈ Dk
ϵ for a sufficiently small ϵ > 0. Then

the spectral type of Aj(c) is mj−1 for each j = 1, . . . , k.

This lemma leads to the following notion, unfolding of spectral types.

Definition 3.2. Let

m = (m
(i)
0 ≤ m

(i)
1 ≤ · · · ≤ m

(i)
ki−1)i=0,1,...,p

be a collection of increasing sequences of compositions of n. Then forgetting all
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“≤”s, we can consider the following collection of compositions of n

munf := (m
(i)
j ) i=0,1,...,p

j=1,2,...,ki−1

which can be seen as a collection of increasing sequences of length 1.

Remark 3.3. According to the construction explained in Section 2.2, we can

define the Dynkin diagram Dmunf for munf as well. Note that Dm and Dmunf are

different in general.

4. Oshima’s conjecture

In the previous section, we constructed a spectral type munf of length 1, namely

that of a Fuchsian differential equation, from a spectral type of an irregular singular

differential equationm. In the paper [12], Oshima gave a conjecture which concerns

the irreducibly realizability of m and munf. Let us explain the conjecture in this

section.

Let

m = (m
(i)
0 ≤ m

(i)
1 ≤ · · · ≤ m

(i)
ki−1)i=0,1,...,p

be a collection of increasing sequences of compositions of n.

Definition 4.1. We say that m is versally realizable if the following condi-

tions are satisfied.

• There exists an HTL normal form B(i) ∈ g∗ki
with the spectral type

m(i) := m
(i)
0 ≤ m

(i)
1 ≤ · · · ≤ m

(i)
ki−1

for each i = 0, 1, . . . , p.

• Let π(i) : B(i) → Dki
ϵi be the deformation of B(i) defined as before. Let us

define A
(i)
j (c(i)) ∈ M(n,C) by the equation (1) for B(i) with a generic c(i) =

(c
(i)
1 , . . . , c

(i)
ki
) ∈ Dki

ϵi . Then there exists a differential equation

d

dz
Y =

p∑

i=0

ki∑

j=1

C
(i)
j (c)

z − (ai + c
(i)
j )

Y

which depends holomorphically on c = (c(i))i=0,...,p ∈
∏p

i=0 Dki
ϵi and satisfies

that
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1. for generic c, the differential equation is irreducible Fuchsian equa-

tion with regular singular points at ai + c
(i)
j , and satisfies that

�p
i=0

�ki

j=1 C
(i)
j (c) = 0 and C

(i)
j (c) are in the conjugacy class of

A
(i)
j (c(i)), for i = 0, . . . , p, j = 1, . . . , ki,

2. the differential equation is a generic element of M(B) when c = 0.

In the paper [12], Oshima gave a conjecture for the realizability of spectral types

of higher order scalar differential equations, see the section 4 in [12]. The following

is a variant of this conjecture for first order systems of differential equations.

Conjecture 4.2 (Oshima [12]). Let m be a collection of increasing sequences

of compositions of n. Then the following are equivalent.

1. m is irreducibly realizable.

2. m is versally realizable.

3. munf is irreducibly realizable.

It immediately follows from the definition of versally realizability that the con-

dition 3 implies 1 and 2.

Remark 4.3. Under the assumption ⟨αm,αm⟩ ≥ −2, it is known that the

conjecture is true (see [7] and [12]).

5. Main theorem and sketch of proof

Let us give the statement of our main theorem of this paper.

Theorem 5.1. The direction from 3 to 1 is true in Conjecture 4.2

In the remaining of this section, we shall give a sketch of a proof of this theorem.

Let

m = (m
(i)
0 ≤ m

(i)
1 ≤ · · · ≤ m

(i)
ki−1)i=0,1,...,p

be a collection of increasing sequences of compositions of n. Define a sublattice L
of ZV as follows,

L :=

⎧
⎨

⎩β = (β[i,j]) ∈ ZV

������

m(0)�

j=1

β[0,j] =

m(i)�

j=1

β[i,j] for all i ∈ Iirr\{0}

⎫
⎬

⎭ .
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Set L+ := L∩
⊕

v∈V Z≥0v. We can see that the vector αm defined before Theorem

2.3 satisfies αm ∈ L+. Here we note that this correspondence is one to one and

onto. Namely, let us fix positive integers ki, i = 0, 1, . . . , p as above. Let us denote

the set of all collections of increasing sequences of compositions of n of length ki
(i = 0, 1, . . . , p) by Cn. Then we have a bijection σ from

⋃
n>0 Cn to L+,

(2)

σ :
⋃

n>0 Cn −→ L+

∈ ∈

m = (m
(i)
0 ≤ m

(i)
1 ≤ · · · ≤ m

(i)
ki−1)i=0,1,...,p �−→ αm

.

Setting

J := {
p∑

i∈Iirr

[i, ji] ∈ ZV | 1 ≤ ji ≤ m(i)},

we can see that L is generated by J ∪ V leg and L is closed under the action of

WL :=
〈
sj, s[i,j,k]

∣∣ j ∈ J , [i, j, k] ∈ V leg
〉

which is a subgroup of the Weyl group of ZV . Here sa, (a ∈ ZV ), is the reflection,

namely,

sa(β) := β − ⟨β, a⟩a, for β ∈ ZV .

The following lemmas play key roles in the proof of the theorem. We note that

these lemmas can be obtained from a slight modification of Theorem 3.14 in [8]

and Lemma 3.3 in [12].

Lemma 5.2. Let Dmunf = (V unf, Eunf) be the Dynkin diagram associated with

munf. Then

⟨αm,αm⟩ = ⟨αmunf ,αmunf⟩

Let us note that the unfolding of spectral types induces the bijection, µ : L+ →
ZV unf

≥0 such that µ(β) = σunf(σ−1(β)unf). Here σ and σunf are maps defined by (2)

for Dm and Dmunf respectively. We can show that this map is compatible with the

actions of both Weyl groups.

Lemma 5.3. Let W unf be the Weyl group associated with Dmunf . Then for
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each w ∈ WL, there exists w′ ∈ W unf such that

w(αm) = µ−1(w′(αmunf)).

Under these preparations, the proof of the theorem goes on in the following

way. Suppose that munf is irreducibly realizable. Then Theorem 2.3 tells us that

αmunf is a positive root of ZV unf

. Thus, the Weyl group orbit of αmunf is contained

in the set of positive roots or αmunf is a real root. Then Lemma 5.2 and 5.3 show

that there exists w ∈ WL such that w(αm) ∈ F̃ or w(αm) is a simple root, where

F̃ :=

{
β ∈ L+\{0}

∣∣∣∣
⟨β, a⟩ ≤ 0 for all a ∈ J ∪ V leg

support of β is connected

}
.

It is known that elements in F̃ are positive roots (see Theorem 6.20 in [5]). Thus,

in any case, αm is a positive root. Then Theorem 2.3 shows that m is irreducibly

realizable.
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