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GG system and its application to the connection problem of

GKZ hypergeometric functions

Saiei-Jaeyeong Matsubara-Heo

Abstract. This is an announcement of a result on connection
formula of GKZ hypergeometric functions between “nearby toric infini-
ties”. The key is the use of contiguity relation of GKZ hypergeometric
system which is known as GG system.

1. Introduction

In 80’s and 90’s, the general study of hypergeometric functions made a huge

progress in a series of papers by I.M.Gelfand, M.M.Kapranov, and A.V.Zelevinsky

([GZK89], [GKZ90], [GKZ94]). One of the non-trivial consequences of their study is

that there is a combinatorial structure of convex polytopes behind hypergeoemetric

systems. The aim of this paper is to give a new method of deriving connection

formulae of GKZ hypergeometric functions in the language of combinatorics of

regular triangulations.

GKZ system is determined by two inputs: an n × N (n < N) integer matrix

A = (a(1)| · · · |a(N)) and a parameter vector c ∈ Cn×1. GKZ system MA(c) is

defined by

MA(c) :

{
Ei · f(z) = 0 (i = 1, . . . , n)

�u · f(z)= 0
(
u = t(u1, . . . , uN ) ∈ LA = Ker(A× : ZN×1 → Zn×1)

)
,

where Ei and �u are differential operators defined by

(1.2) Ei =

N∑

j=1

aijzj
∂

∂zj
+ ci, �u =

∏

uj>0

(
∂

∂zj

)uj

−
∏

uj<0

(
∂

∂zj

)−uj

.

Throughout this paper, we assume an additional condition ZA def
= Za(1) + · · · +
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Za(N) = Zn×1. The GKZ system MA(c) is holonomic ([Ado94, THEOREM 3.9]).

Moreover, MA(c) is regular holonomic if and only if the primitive hyperplane

condition is satisfied, i.e., there exists a rational row vector l ∈ Q1×n such that

lA = (1, . . . , 1) holds. See [Hot], [SW08, Corollary 3.16]. See also [FF10, Theorem

5.9].

If we set cone(A) =
∑N

j=1 R≥0a(j), the notion of regular triangulation T of

cone(A) comes into play. To each regular triangulation T , we can associate a basis

ΦT of series solutions of MA(c). Therefore, we can expect combinatorics of regular

triangulations controls the solution space. The totality (or “moduli”) of regular

triangulations has the structure of a convex polyhedral fan, which is called the

secondary fan FA. Thus, we can deal with the notion of distance among regular

triangulations. Let us denote by CT the cone corresponding to a regular triangula-

tion T . We say T is adjacent to T ′ if CT∩CT ′ is a common facet of CT and CT ′ . The

analytic interpretation of adjacency is an analytic continuation by Mellin-Barnes

integral. This crucial observation is due to the paper [ST94] by Mutsumi Saito and

N.Takayama. Later, P.Horja discussed a similar problem for special configurations

A with the special parameter c = 0 in [Hor99], and L.Borisov and P.Horja studied

the general configuration with the special parameter c = 0 in [BH06]. In [Beu16],

F.Beukers proposed a conjectural method of computing a set of generators of the

monodromy group of GKZ system with a generic parameter c based on the mul-

tidimensional Mellin-Barnes integral representation under a special assumption of

the configuration. Our approach can be regarded as a complement to his approach.

A related problem is also discussed by S.Tanabé in [Tan17]. In this paper, we an-

nounce an explicit connection formula of GKZ hypergeoemtric functions for general

regular holonomic configuration A with a generic parameter c. Namely, when T

is adjacent to T ′, we give an analytic continuation between ΦT and ΦT ′ . As was

indicated in [ST94], the key is the method of boundary value problems ([Hec87],

[KO77]). However, we can realize this structure in a more explicit way employing

the viewpoint of GG system ([GG99]).

Throughout this paper, we use the following notation: for any vectors a =

(a1, . . . , an),b = (b1, . . . , bn) ∈ Cn, we set e2π
√
−1a = (e2π

√
−1a1 , . . . , e2π

√
−1an),

ab = (a1b1, . . . , anbn), and ab = ab11 · · · abnn . For any univariate function F , we

set F (a) = F (a1) · · ·F (an). For any 1 × n row vector z and any n × m matrix

B = (b(1)| · · · |b(m)), we set zB = (zb(1), . . . , zb(m)).
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2. GG system and GKZ system

In [GG97], Gelfand and Graev introduced a system of difference differential

equations called GG system. Here, “GG” stands for “Gauß and Graßmann”. A

very similar system was discussed in [AI99] and [AI01] where it is called quasi-

hypergeometric system. In this section, we briefly recall the definition of GG

system and discuss its relation to Γ-series. Suppose an n × N (n < N) integer

matrix A = (a(1)| · · · |a(N)) is given. In this section, we do not need to assume

that the configuration vectors generate the ambient lattice, i.e., we have, in general,

the inclusion Za(1) + · · · + Za(N) ⊂ Zn×1 but not the equality. We assume the

primitive hyperplane condition. We define GG system GG(A) as a system of linear

partial difference-differential equations on CN × Cn ([GG99]):

GG(A) :

⎧
⎨

⎩

Ei · f(z; c) = 0 (i = 1, · · · , n)(2.1a)

∂

∂zj
f(z; c)= f(z; c+ a(j)) (j = 1, . . . , N).(2.1b)

As was remarked in [GG99], solutions of GG system is automatically a solution

of GKZ hypergeometric system. Indeed, if u ∈ LA, we can decompose u as u =

u+ − u− where u+ and u− are integer vectors with non-negative entries and u+

and u− do not have common support. Then, we have an equality ∂
u+
z f(z; c) =

f(z; c+Au+) = f(z; c+Au−) = ∂
u−
z f(z; c).

We briefly discuss the method of constructing a basis of series solutions of a

given GKZ system following the exposition of M.-C. Fernández-Fernández ([FF10]).

This actually gives a method of constructing a basis of GG system GG(A). For

any vector v ∈ CN×1 such that Av = −c, we put

(2.2) ϕv(z) =
�

u∈LA

zu+v

Γ(1 + u+ v)

and call it a Γ-series. It can readily be seen that ϕv(z) is a formal solution of

MA(c) ([GZK89]). For any subset τ ⊂ {1, . . . , N}, we denote Aτ the matrix given

by the columns of A indexed by τ. In the following, we take σ ⊂ {1, . . . , N} such

that |σ| = n and detAσ ̸= 0. Taking a vector k ∈ Zσ̄×1, we put

(2.3) vkσ =

�
−A−1

σ (c+Aσ̄k)

k

�
,

where σ denotes the complement {1, . . . , N} \ σ. Then, by a direct computation,



72 S. Matsubara-Heo

we have

(2.4)

ϕσ,k(z; c)
def
= ϕvk

σ
(z) = z

−A−1
σ c

σ

∑

k+m∈Λk

(z
−A−1

σ Aσ̄
σ zσ̄)

k+m

Γ(1σ −A−1
σ (c+Aσ̄(k+m)))(k+m)!

,

where Λk is given by

(2.5) Λk =
{
k+m ∈ Zσ̄

≥0 | Aσ̄m ∈ ZAσ

}
.

The following lemma is easily confirmed ([FF10]).

Lemma 2.1. For any k,k′ ∈ Zσ̄, the following statements are equivalent

1. vkσ − vk
′

σ ∈ ZN×1

2. [Aσk] = [Aσk
′] in Zn×1/ZAσ

3. Λk = Λk′ .

We claim that this function ϕσ,k(z; c) viewed as a function of space variable

z and parameter variable c is actually a solution of GG(A). For later use, we

formulate it in a more general form. For any k̃ ∈ Zσ and for any partition σ =

σu � σd, we put

(2.6)

ψσu

σd,k̃
(z; c) =

∑

m∈Zσ
≥0

∏

i∈σu

Γ(teiA
−1
σ (c+Aσm))

∏

i∈σd

Γ(1− teiA
−1
σ (c+Aσ̄m))m!

(e2π
√
−1k̃eπ

√
−11σu zσ)

−A−1
σ (c+Aσ̄m)zmσ̄ .

Here, ei ∈ Zσ×1 is the vector whose entries are all zero but i-th one is 1, and

1σu =
∑

i∈σu
tei. Note that ψσu

σd,k̃
(z; c) is well-defined if the numerator does not

have any pole. It is important that series ψσu

σd,k̃
(z; c) is defined as a sum over the

positive lattice Zσ
≥0 which does not depend on the choice of k̃. This property plays

an important role when we consider restriction-extension structure of GG systems.

The following statement is easy to check.

Proposition 2.2. ψσu

σd,k̃
(z; c) is a formal solution of GG(A).

Let us review the definition of a regular triangulation. In general, for any

subset σ of {1, . . . , N}, we denote by cone(σ) the positive span of {a(1), . . . ,a(N)}
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i.e., cone(σ) =
∑

i∈σ

R≥0a(i). We often identify a subset σ ⊂ {1, . . . , N} with the

corresponding set of vectors {a(i)}i∈σ or with the set cone(σ). A collection T of

subsets of {1, . . . , N} is called a triangulation if {cone(σ) | σ ∈ T} is the set of

cones in a simplicial fan whose support equals cone(A). For any generic choice

of a vector ω ∈ R1×N , we can define a triangulation T (ω) as follows: A subset

σ ⊂ {1, . . . , N} belongs to T (ω) if there exists a vector n ∈ R1×n such that

n · a(i) = ωi if i ∈ σ(2.7)

n · a(j) < ωj if j ∈ σ.(2.8)

A triangulation T is called a regular triangulation if T = T (ω) for some ω ∈ R1×N .

Let us put Hσ = {j ∈ {1, . . . , N} | |A−1
σ a(j)| = 1}. Here, |A−1

σ a(j)| denotes
the sum of all entries of the vector A−1

σ a(j). We set

(2.9) Uσ =
{
z ∈ (C∗)N | abs

(
z
−A−1

σ a(j)
σ zj

)
< R, for all j ∈ Hσ \ σ

}
,

where R > 0 is a small positive real number and abs stands for the absolute value.

We define an N × σ matrix Bσ by

(2.10) Bσ =

(
−A−1

σ Aσ

Iσ

)

and a cone Cσ by

(2.11) Cσ =
{
ω ∈ RN×1 | ω ·Bσ > 0

}
.

Then, T is a regular triangulation if and only if CT
def
=

⋂

σ∈T

Cσ is a non-empty open

cone. In this case, the cone CT is characterized by the formula

(2.12) CT =
{
ω ∈ R1×N | T (ω) = T

}
.

From the definition of Uσ, we can confirm that z belongs to UT
def
=

⋂

σ∈T

Uσ if

(− log |z1|, . . . ,− log |zN |) belongs to a sufficiently far translation of CT inside itself,

which implies UT ̸= ∅.

According to [FF10], the parameter vector c is said to be very generic if A−1
σ (c+

Aσ̄m) does not contain any integer entry for anym ∈ Zσ̄. The following proposition

is well-known ([FF10]).



74 S. Matsubara-Heo

Proposition 2.3. Let T be a regular triangulation. For each n-simplex σ, we

decompose σ as σ = σu � σd. Assume the condition ZA = Zn×1. Then, for a very

generic parameter c,
⋃

σ∈T

{ψσu

σd,k̃
(z; c)}[k̃]∈Zσ×1/ZtAσ

is a basis of solutions of MA(c)

on an non-empty open subset UT of CN .

We quote a result of Gelfand, Kapranov, and Zelevinsky [GKZ94, Chapter 7,

Proposition 1.5, Theorem 1.7].

Theorem 2.4 ([GKZ94]). There exists a complete polyhedral fan FA in R1×N

whose maximal cones are exactly {CT }T :regular triangulation. The fan FA is called

the secondary fan. Moreover, there exists a convex polytope Sec(A) whose normal

fan is equal to the secondary fan FA. Sec(A) is called the secondary polytope.

The important observation is that GG system has a restriction-extension struc-

ture. Namely, we can construct an explicit Green kernel for a particular class

of boundary value problem of GG(A). Let a(N + 1) ∈ Zn×1 be a lattice vec-

tor. Let us put Ã = (A|a(N + 1)) and consider a formal solution f(z, zN+1; c)

of GG(Ã) formally holomorphic in zN+1, i.e., a formal solution of the form

f(z, zN+1; c) =
∑∞

m=0 fm(z; c)zmN+1. Then, we can easily see that its restriction

rest(f)(z; c) = f(z, 0; c) along {zN+1 = 0} gives rise to a solution of GG(A). Con-

versely, if we have a solution f(z; c) of GG(A), we can create a solution of GG(Ã).

Let σ
a(N+1)
c be a difference operator defined by (σ

a(N+1)
c g)(z; c) = g(z; c+a(N+1)).

Then, we have a

Proposition 2.5. F (z, zN+1; c)
def
= exp

(
zN+1σ

a(N+1)
c

)
f(z; c)

def
=

∑∞
n=0

f(z;c+na(N+1))
n! znN+1 is a formal solution of GG(Ã) such that rest(F )(z; c) =

f(z; c). The restriction operator rest gives an isomorphism between formal solutions

of GG(Ã) formally holomorphic in zN+1 and formal solutions of GG(A) whose in-

verse is given by exp
(
zN+1σ

a(N+1)
c

)
.

Based on this proposition, for a subset I ⊂ {1, . . . , N}, the general picture of

analytic continuation is given by the following diagram:
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(2.13)

Solutions of GG(AI)
ext
∼ ��

analytic continuation

��

Solutions of GG(A) holomorphic in zĪ

analytic continuation

��
Solutions of GG(AI)

ext
∼ �� Solutions of GG(A) holomorphic in zĪ ,

where ext is the extension operator defined by ext = exp

⎛

⎝
�

j∈Ī

zjσ
a(j)
c

⎞

⎠.

In order to choose a path of analytic continuation, we need to take into account

the combinatorial structure of the regular triangulations.

3. Analytic continuation associated to a perestroika

Let us recall some basic notions. We first recall the notion of perestroika. For

each regular triangulation T , there is a unique vertex vT of Sec(A) such that the

normal cone NSec(A)(vT ) of Sec(A) at vT is equal to the cone CT ∈ R1×N associated

to the regular triangulation. For any two regular triangulation T and T ′, we say

T is adjacent to T ′ if the corresponding vertices vT and vT ′ are connected by an

edge of Sec(A). The adjacency can be interpreted in a combinatorial way. We say

Z ⊂ {1, . . . , N} is a circuit if {a(i)}i∈Z is a minimal linearly dependent subset of

{a(j)}Nj=1. A subconfiguration I ⊂ {1, . . . , N} is called a corank 1 configuration

if the rank of Ker(AI× : ZI×1 → Zn×1) is 1. If I is a corank 1 configuration,

the corresponding subconfiguration {a(i)}i∈I has only two regular triangulations.

They are denoted by T+ and T−. This choice is not canonical but depends on the

choice of the generator u of LAI
= Ker(AI× : ZI×1 → Zn×1). Namely, if we fix

a generator u of LAI
, we put I+ = {i | ui > 0} and I− = {i | ui < 0}. Then

T+ (resp. T−) is defined by {I \ {i}}i∈I+ (resp. {I \ {i}}i∈I−). We say that a

polyhedral subdivision Q of A is an almost triangulation if any refinement of Q is a

triangulation. The following proposition can be found in [DLRS10, Lemma 2.4.5]

and [GKZ94, Chapter7, Theorem 2.10].

Proposition 3.1. A polyhedral subdivision Q of A is an almost triangulation

if and only if each cell of Q has at most corank 1 and there is a unique circuit Z

such that any corank 1 cell contains Z.

Proposition 3.2. Let T and T ′ be two regular triangulations such that T is

adjacent to T ′. We denote by e the edge of Sec(A) connecting vT and vT ′ .
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Then, any weight vector ω ∈ rel. int. NSec(A)(e) defines the same regular poly-

hedral subdivision S. Moreover, S is an almost triangulation whose refinements

are given by T and T ′.

We have a precise description of the change of adjacent regular triangulations

as follows. Suppose that a regular triangulation T is adjacent to another reg-

ular triangulation T ′. Let Q be the intermediate regular polyhedral subdivision

explained in the proposition above. We decompose Q as Q = Tirr ∪ {Is}s where

Tirr consists of simplices and Is are all corank 1 configuations. Since T (or T ′)

is a refinement of Q and T is a triangulation, we see that each Is has maximal

space dimension n, i.e., convex hull {0, {a(i)}i∈Is} has a non-zero Euclidian vol-

ume. This implies that Card Is = n + 1. Thus, if we denote by Z the common

circuit, and by T+(Is) (resp. T−(Is)) the two regular triangulations of Is, we

have T = Tirr ∪ {T+(Is)}s and T ′ = Tirr ∪ {T−(Is)}s. This is also denoted by

T = Tirr ∪ T+(Z) and T ′ = Tirr ∪ T−(Z). Note that Tirr can be empty. We call

this process “perestroika”.

As in Proposition 2.3, each regular triangulation T corresponds to a basis of

solutions, say ΨT . In the situation above, we can naturally decompose ΨT (resp.

ΨT ′) as ΨT = ΨTirr
∪ ΨT+(Z) (resp. ΨT ′ = ΨTirr

∪ ΨT−(Z)). According to the

general strategy in [ST94, §1], we want to construct a path of anayltic continuation

γ along which ΨTirr
is invariant and ΨT+(Z) is transformed to ΨT−(Z).

The key to construct a path is the convergence of Mellin-Barnes integral. We

fix a corank 1 configuration I. By the definition of corank 1 configuration, there

is an element u ∈ LAI
such that LAI

= Zu. We put I≥0 = {j ∈ I | uj ≥ 0},
I+ = {j ∈ I | uj > 0}, and I− = {j ∈ I | uj < 0}. We fix a j0 ∈ I+ and put

σ = I \ {j0}. Consider an integral

Iσ(zI ; c) =
1

2π
√
−1

∫

C

Γ(−s)
∏

i∈I−

Γ
(
teiA

−1
σ (c+ a(j0)s)

)

∏

i∈σ∩I≥0

Γ
(
1− teiA

−1
σ (c+ a(j0)s)

)×

(eπ
√
−11I− zσ)

−A−1
σ (c+a(j0)s)(eπ

√
−1zj0)

sds,(3.1)

where C is a vertical contour from −
√
−1∞ to +

√
−1∞ separating two spirals of

poles of Gamma functions in the integrand. Note that (eπ
√
−11I− zσ)

A−1
σ cIσ(zI ; c)

depends only on circuit variables (zI− , zI+). Applying the difference opera-

tor of infinite order exp
(∑

j∈Ī zjσ
a(j)
c

)
to Iσ(e

2π
√
−1k̃σzσ, zj0 ; c), we obtain
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ψ
I−

I≥0\{j0},k̃σ
(z; c).

Thus, we can apply the standard method of analytic continuation of Mellin-

Barnes integral to the functions Iσ(e
2π

√
−1k̃σzσ, zj0 ; c) (see [Sla66, Chapter3]) to

obtain analytic continuations of ψ
I−

I≥0\{j0},k̃σ
(z; c). However, we should carefully

choose the path γ so that the functions exp
��

j∈Ī zjσ
a(j)
c

�
Iσ(e

2π
√
−1k̃σzσ, zj0 ; c)

have a common domain of convergence for any σ = I \{j0} and for a suitable choice

of representatives k̃σ. Therefore, what remains to be checked is a Gevrey estimate

of functions Iσ(e
2π

√
−1k̃σzσ, zj0 ; c+AĪm) along the path γ for any m ∈ ZĪ×1. For

this purpose, we need to employ the so-called Erdélyi-Kober operator ([AI99]). In

this paper, we only mention that it gives an integral representation of a difference

operator from which we obtain the desired estimate.

We sketch the construction of the path of analytic continuation. We first

take a point − log |zstart| ∈ (ωT + CT ). Then, we choose a suitable positive

real number l so that − log |zend|
def
= − log |zstart| + l(ϕT − ϕT ′) ∈ (ωT ′ + CT ′).

Here ϕT and ϕT ′ are GKZ vectors associated to regular triangulations T and T ′

([GKZ94, §7.1.D]). Note that the secondary polytope is given by the convex hull

of the set {−ϕT }T :regular triangulation. We set γ1(t) = − log |zstart| + lt(ϕT − ϕT ′)

(0 ≤ t ≤ 1). Then, we choose arg z along this path γ1 so that the functions
�

σ∈T+

�
Iσ(e

2π
√
−1k̃σzσ, zj0 ; c)

�

[k̃σ ]∈Zσ×1/ZtAσ

have a common domain of conver-

gence. The existence of such a choice of an argument can be verified by a direct

computation. When z runs over this path γ1, we can show that there exists a vector

ωQ ∈ rel.int.CQ so that if − log |z| ∈ (ωQ + γ1), for any corank 1 configuration I

in Q, and for any simplex σ = I \ {j0} with j0 ∈ I+, the function

(3.2) exp

⎛

⎝
�

j∈Ī

zjσ
a(j)
c

⎞

⎠ Iσ(e
2π

√
−1k̃σzσ, zj0 ; c)

are all convergent. We set γ = ω + γ1.
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O

CT

CT ′

CQ

ωQ + C̃

ωT + CT

ωT ′ + CT ′

γ

ωQ + γ

CTirr

Figure 1. cones

The connection formula takes the following form.

Theorem 3.3. In the setting above, take a corank 1 configuration I of Q

and j0 ∈ I+. Put σ = I \ {j0}. Suppose that the parameter c is generic so that

ψ
I−

I≥0\{j0},k̃σ
(z; c) are independent for a choice of representative {[k̃σ]}. Then, along

γ, one has a connection formula

(3.3) ψ
I−

I≥0\{j0},k̃σ
(z; c) =

∑

i0∈I−

1
tei0A

−1
σ a(j0)

ψ
(I−\{i0})∪{j0}

I≥0\{j0},(k̃σ\{i0},
j0

0̆ )

(z; c).

Moreover, Γ-series corresponding to Tirr are invariant after analytic continuation.

Note that γ does not depend on the choice of corank 1 configuration I. There-

fore, this gives rise to a connection formula between bases of solutions of MA(c).
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[GZK89] I. M. Gel’fand, A. V. Zelevinskĭı, and M. M. Kapranov. Hypergeometric functions
and toric varieties. Funktsional. Anal. i Prilozhen., 23(2):12–26, 1989.

[Hec87] G. J. Heckman. Root systems and hypergeometric functions. II. Compositio Math.,
64(3):353–373, 1987.

[Hor99] Richard Paul Horja. Hypergeometric functions and mirror symmetry in toric vari-
eties. ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–Duke University.

[Hot] Ryoshi Hotta. Equivariant d-modules. arXiv:math/9805021.
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