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Confluence and versal unfolding of Pfaffian systems

Toshio OSHIMA

Abstract. A versal unfolding of a Pfaffian system with irregu-
lar singularities on the Riemann sphere is studied through its middle
convolution. If the system is rigid, it is realized as a confluent limit of
a rigid Fuchsian system. We show that the versal unfolding of a rigid
Pfaffian system is extended to a versal KZ equation regarding singu-
lar points as variables. Appell’s hypergeometric equations and their
confluences are the simple examples.

1. Introduction

In [16] we introduce a versal unfolding of a single linear ordinary differential
equation with unramified irregular singularities in P!, which is an embedding of
the equation into a Fuchsian equation containing singular points as holomorphic
parameters. We require that the index of rigidity is stable under the unfolding. For
example, a versal unfolding of Hermite equation is an embedding into an equation
with singular points % and i isomorphic to Gauss hypergeometric equation :

(1.1) (1 —t2)(1 — tex)@” + (A1 + Ao@)@’ + fi( A2 — t1ta(i+ 1))@ = 0.

We note that the Riemann scheme of the unfolding is defined from that of the
original equation and hence we know the procedure to get a Hermite equation from
Gauss hypergeometric equation as a confluence limit. This enables us to study
the original equation through the Fuchsian equation which we expect easier to be
analyzed.

The existence of the unfolding of any irreducible equation with unramified ir-
regular singularities is conjectured in [16]. We study there the middle convolution
and versal addition acting on the versal unfolding and prove that the conjecture
is stable under these operations of the original equation, which implies that the
conjecture is true, for example, when the equation is a rigid single equation.

In this note we study versal unfolding of Pfaffian systems. A Pfaffian system
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on the Riemann sphere P! is a differential equation

(1.2) ‘;—Z: (ZP:Z w_aj ZAom 2)

j=1i=1

Here A;; are constant square matrices of size N and u is a vector of N unknown
functions. The integer N is called the rank of the Pfaffian system. The points
ai,...,ap and oo are singular points of the equation. If ro =r =--- =r, =1,
the differential equation (1.2) is called a Fuchsian system. Let My (C) denote the
space of square matrices of size N with entries in C.

The versal unfolding of the equation (1.2) is

(S e

—a.)
(1.3) s
> ot )i
— .
— (1 —ap2x)(1 —ag2x) - (1 — ag,x)
Here flm € My (C) holomorphically depend on parameters a = (ag.2, ..., @0,y
@11, ,Qlpys---50p1,---,0pyr, ) Which coincides with Aj;; when a =

©,...,0,a1,...,01,...,ap,...,ap). Moreover the index of rigidity (cf. §2)
does not depend on the parameters.

If the points a;; (i = 1,...,7;,j = 1,...,p) and oo = aaj and aaﬂl (1 =
2,...,70) in P! are mutually different, the equation (1.3) is a Fuchsian system

da UNRER o Jp L
1.4 — = — L u
= @ (N )
with suitable matrices C;; € My (C).

As is given in §5 the versal Gauss Pfaffian system is

_ A+tip A2 0 0 T
(1.5) di _ _( no tap Mttap Astta(ta—ti)p )71

dx (1 —tiz) (1 — ty12)(1 — taz)

Katz [8] introduces the operation called middle convolution for the study of
rigid local systems and the middle convolution of the Fuchsian system

du LA
1. — = § J
(1.6) dx ‘ “

T —a;
Jj=1 J
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is interpreted by [2] as an operation on matrices A;. In §4-5 we define a middle
convolution of the versal unfolding (1.3) of the equation (1.2) through the analytic
continuation of that of the Fuchsian system (1.4). This assures the existence of
versal unfolding in many cases. In particular the conjecture is true for a rigid
Pfaffian system. Note that the confluent limit of the middle convolution defines
that of the Pfaffian system (1.2) which has been introduced by several papers
(cf. [9, 19, 21]).

Suppose the Fuchsian equation (1.6) is rigid. Then we regard the singular
points a; as variables and it is shown by [3] that the equation is extended to KZ
(Knizhnik-Zamolodchikov) equation

87.L Ai,l/ -
(1.7) e g T (i=0,...,p)
0<v<p

with Ag; =Aj,zo=zand z; =a; (j=1,...,p). Here
(1.8) Aij= A5, [Aij, Akl = [Aij, Aik + Ajk] =0

for mutually different indices 4, j, k and ¢. The spectral type of Ay ; is given by [2]
and that of A; ; with ¢ > 0 is clarified by [15], where the relation (1.8) is essential.
If the equation (1.2) is rigid, the versal unfolding (1.3) is also rigid and therefore
(1.4) has an extension to a KZ equation. Then by an analytic continuation we
have in §7 a versal confluence of the extended KZ equation where the extension
of the original equation (1.2) to the equation with several variables is realized by
a specialization of parameters. Hence the rigid equation (1.2) is extended to a
Pfaffian system with the p + 1 variables (zo, z1,...,2p) = (z,a1,...,ap).

2. Notation and preliminary results

For each singular point of the Pfaffian system (1.2) there exist N independent
formal solutions. By a linear fractional transformation, we may assume the origin
is a singular point. If the origin is a ramified irregular singular point, it becomes
unramified under a new coordinate y = z» with a suitable positive integer p. We
assume that the origin is a regular singular point or an unramified irregular singular
point. Then the studies by Hukuhara, Turrittin and Levelt assure that the equation
has formal solutions

co N—-1 r—1

(2.1)  w(x)= (Cl,x’\“ﬂ" log" & + Z Z Cyi a0t log/ 36) exp(— -

i=1 j=0 i

| >
8|3
N

Il
-
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so that the main terms

r—1

(2.2) (Cl,x’\“*o log*v ) exp(_ Z )‘V,i> (v=1,...,N)

il

1=

of the solutions are linearly independent (cf. [20]). Here u,(x), C, and C,; ; are
column vectors of size N. Then {Z;:—Ol Aviw' | v=1,...,N} is called the set of
characteristic exponents of the equation (1.2) (cf. [16]). For simplicity we assume
k, = 0 for v = 1,...,N. Suppose the multiplicity of a characteristic exponent
Av(z) equals m,,. The the set

(2.3) (@), [v=1,...,0} with @), = : | €Cla)m™

v

is called the set of generalized characteristic exponents at the singular point if
k, = 0 in the above and N = my + - - - + m,,. We define maps

(2.4) m:{l,...,N} = {1,...,N}
for k=1,2,...,r such that

mv)=v (v=1,...,N),
(V) = (V) & deg(\(z) = A\ (z) <k —1 (k=2,...,7),
{1, NV = {1, m(N)}.

Put

(2.5) ng = mr(n), mgk) = Z m, (1=1,...,nk).
7w (v)=t

Then

(2.6) m(k):N:m(lk)+~~~+mg? (k=1,...,7r)

1)

is a partition of N. Note that ny =n and m; ' = m;. We may assume

(2.7) 1<v <V <N = m(v) <mp(V)
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by a permutation of the indices v of A, (z). Then we note that for any k£ > 1 and
v=1,...,7, there exists an integer v’ such that

mgk)+._.+ml(/k) :mgkfl)er_i_m(jfl)

k—1) k)

and m( is a refinement of m*). The tuple of partitions {m® ... m®} is

called a spectral type of the equation at the singular point and represented by the
1. (1)| . ~m£12)| . |mY) ()
2

series of figures separated by | as m; “Mp,.
In this paper we assume the equation (1.2) has no unramified irregular singular
points. Let {[Aj,]m;, | ¥ = 1,...,n;} be the set of generalized characteristic
exponents at the singular points a; for j = 1,...,p and oo for j = 0 and the
corresponding spectral types
m; = {mgl), . .,myj)} with m;k) :N = my? +- 4 mﬁzm (k=1,...,7j)
are the sets of partitions of V. Here we define the characteristic exponents at a
singular point by applying a suitable coordinate transformation x — x—a or = — %
so that the singular point corresponds to the origin of the new coordinate. Then
the generalized Riemann scheme (GRS) is the table

P‘O-,l&)]mo,l [Al,lé)]ml,l e P‘pyl(;’.)]:lp,l
[A0,no (x)]mo,no [A1ny (@]mmll T [)‘p,np (m)]mp,np

In this paper we always assume the Fuchs relation

(29) Z Z mj,l//\j,l/(o) =0,

j=0v=1

which is satisfied if the system is Fuchsian or it is transformed into Hukuhara
normal form at each singular point by the Gauge transformation with GL(V, C[x]).
Here C[x] is the ring of formal power series at the singular point. (Cf. [16] for single
differential equations).

The set of spectral type of the equation is the set {my,...,m,} and is ex-
pressed by arranging the expression of m; separated by “,”. This notation is
frequently used in [13] for a Fuchsian equation and given by [16] in general (cf.

[16] for examples). The unfolded Fuchsian spectral type of m is the spectral type

{m

Jk)}1§k§rj, i=0,.p of a Fuchsian differential equation with (ro + --- + r,) reg-

yeey
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ular singular points, whose expression is obtained by replacing “|” by “” in the
expression of m. The spectral types of Gauss hypergeometric equation and its
confluence called Kummer’s equation are expressed by

11,11,11 and 11|11,11.

A given spectral type m is called irreducibly realizable if there exists an irreducible
Pfaffian system (1.2) which has the GRS (2.8) for generic \;, satisfying (2.9).
The condition so that m is irreducibly realizable is solved by [1] when (1.2) is
Fuchsian, namely, A;, are constant, and by [4] in general allowing unramified
irregular singularities. Then the dimension of parameters with a fixed GRS, which
is called accessory parameters, equals 2 — idx m. Here idx m, the index of rigidity,
defined by [8] is

p Ty Nj k

idxm =2V = 3 3 (N2 = (m

7=0k=1 v=1

oL~
T?T
~—
N
N———

(2.10)

ponj

P n;
=2N?% - Z(N2 — Zmiu) — Z Z Z deg()\j’,, - )\j’,,/)7
§=0 v=1 j=0v=1v'=1

where we put deg0 = 0 (cf. [16, Lemma 3.5 i) ]).

Since we examine matrices and functions with meromorphic parameters, we
recall a certain result given by [12].

Let M be a C*°-manifold and let U be a connected convex open subset of C.
We denote by D’(M) the space of Schwartz distributions on M. Here M may be
a finite set. Suppose that meromorphic functions f1(A),..., fm(X) of U valued in
D'(M) are given. Moreover suppose there exists a non-zero holomorphic function
(M) on U such that f1,..., fn are holomorphic on Uy = {\ € U; ¢(A) # 0} and
dim V) = m for any A € Uy by putting V) = Z;nzl Cf;(N). For p € U we put

V,, = {f(0); f is a holomorphic function on {t € C; |t| < 1} valued in D’(M)
and there exists a holomorphic curve ¢ : {t € C; |t| < 1} — U such that
c(t) € Uy and f(t) € Vg for 0 < [t| < 1 and ¢(0) = pu}.

DEFINITION 2.1.  We call V, the closure of the holomorphic family of the
spaces Vy (A € Uy) at pw and V), (u € U) the completion of the holomorphic family.
It follows from [18, Proposition 2.21] that dimV,, > m. We define that a point
p € U\ Uy is a removable (resp. unremovable) singular point if dimV, = m
(resp. dim 'V, > m).
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THEOREM 2.2 ([12, Lemma 6.3]).  Retain the notation above. If p is a remov-
able singular point of the spaces Vy, then there exist a neighborhood U, of u and
holomorphic functions hi(X),. .., hm(X) on U, valued in D'(M) such that they are
linearly independent for any A € U,. They span Vy for any X € U,,.

Conversely the existence of {hi(\),..., hym(X)} with this property implies that
W is a removable singular point.

If there is no unremovable singular point in U, we may choose U, = U and we
call the set of functions {h1 (), ..., hm(X)} a complete base of the holomorphic fam-
ily. If there is another complete base {hi(\), ..., hm(X)}, then there exist holomor-
phic functions c; ;(\) on U such that hi(\) = Yoy Cij(Mhi(A) fori=1,....m.
We note that there is no unremovable singular point when dimU = 1.

ExAMPLE 2.3. The set {fi(a;,a) =1 |i= 1,...,m} is a holomorphic

r—aj
family of the functions a = (ay,...,a,) € C™ valued in rational functions of z,
which has no unremovable singular point. The set {h;(z,a) = (w_al)(w_}lz)“_(x_ai) |
i=1,..., m} is a complete base of this family, which is essential in this note. Note

that {m |i=0,...,m— 1} is also a complete base of this family.

Another important example without an unremovable singular point is
{erem@t Ao | 5 € &,,}, which is examined in [11, §1]. Here &,, is the
permutation group of the set of indices {1,...,m} and (A1,...,\p) € C™.

3. An example of middle convolution

Consider a Pfaffian system

(3.1) du_ A 43

.~z " x(w—c)u

with Ay, A2 € My(C). We will explain the middle convolution of this system
which we expect to depend holomorphically on the parameter ¢ in a neighborhood

of 0. Since m(zl_c) = %(mic — %), we have

d C
(32) £:?1U+xfcu with Clel—%AQ and C’QZ%A%
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1 1
g :T<{> with T:(11?> and S:T-lz(w),
z(z—c) T—c T cc Le

1 1
U/:(Al,A2)< 1 >UZ(A17A2)T< 1 )’LL
z(z—c) r—cC

Here and hereafter matrices are block matrices with elements in My (C) if otherwise
stated.

Apply the Riemann-Liouville integral to the solution u(x) of (3.1):

a(z) = (éi‘:a) with (I,v)(z) == ﬁ

Here i € C and a is a singular point of the system, namely, a = 0, ¢ or co. Then
(Tp1v) = I41 (V') and T4 (2v') = 21,41 (V") — (p+ 1) 141 (v). Since

(e = <<<++>) ) -(“at et (),

u(x) is a solution of the system

/: v(t)(z — t)* .

dx T T—c

(%3 %) (o eln)
U 0 0 Cp Cy + 1 o
du _ PR s az((f)(cl,02)+<

8
8
| =
o
N———
N——
_:z

r—c
This system is the convolution of (3.2) defined by [2].

Putting

Ly
(3-4) W(z) = i
Il‘+1x(mfc)

we will examine the equation satisfied by 4(z). Since 4(z) = Ta(z), we have

1 1
a’:T<({> (Cl,CQ)Jru(ff 1))3@
1
=< 1 (A, Ag) +pT | ® 4 c S>ﬁ
z(z—c) z + z(z—c)

8

8=
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(L)t () s (A G ()

A1+,u As 0 0
0 nu/. Ar+p Ay +cep)
U+ U.

x xz(x —c)

Hence we have the convolution
da A Ay N Ay +p A\ 0 0
(3:5) dx (:U +x(xfc))u’ ! ( 0 p) R Ar+p As+cu

of the system (3.1) satisfied by (3.4).

Put € := U1 Ar A 1) — oY, Then for (1) € IC, we have
() AQ CA2 V2 (%

Ajvy + Asvg = As(v1 + cvg) =0,
()= (o 5) ) =0
Ay (Z;) - (A1 ?Lu Ay E)k cu) (Z;) s (1)1 —f(—)cvg) ek
Vo

0

and Ay induce linear transformations on the quotient space V = C2N J(K+L). Let
A; and A, be matrices corresponding to the induced linear transformations on 1%
with respect a suitable base of V. We define that the system

(3.6) = (é + i)fu

x  z(x—c)

Moreover L := {( > ‘ (A1 + pvg = 0} satisfies A;£ = AL = {0}. Then A4,

is the middle convolution of (3.1). We are interested in the case when A; and A,
and K + £ holomorphically depend on ¢ and hence so are A; and As.

REMARK 3.1. Suppose A; and As holomorphically depend on ¢. Then there
exist a non-negative integer k and a base {wi,...,wx} of K + L for a generic c.
We may assume w; holomorphically depend on ¢ and then Theorem 2.2 assures
the existence of a base {11, ...,w,} of K+ L for a generic ¢ such that wy, ...,
holomorphically depend on ¢ and moreover they are linearly independent for any
c. Then Ayw; = Zle ay,;,;W; with holomorphic functions a, ; ; of ¢ for v =1, 2
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and therefore the space 25:1 Cw, is invariant by Ay and Ay for any c¢. Then we
define V = C2N/ Z?Zl Ciw; and get the middle convolution with (A7, A>) which
holomorphically depends on c.

4. Middle convolution — a special case

First we examine the convolution of the system

du - Ai
(4.1) %:;(x—al)---(x—ai)u

of rank N. It is essentially same as in the preceding section but the calculation is
a little more complicated. Put

(12) ple) = aile) =) pila).

Note that {qi(z),...,¢(x)} is a complete base of the holomorphic family
{p1(x),...,p-(x)} with respect to (ai,...,a,) € C" (cf. Example 2.3).

For a solution u(x) of the system, the convolution of this system is the equation
satisfied by the function

Iu+l(‘11u)
a(x) = with I,(v)(z) =
Iu+1((1ru)

L wv P AY Tkt
X / (t)(z — t)*dt.

Here ¢ = a; or oo and p is a complex parameter. Note that

i j—1

1 _ u:l(ai_al/)
T —a; _jz::(m—al)---(x—aj)’

(4.3)
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Hence we have

(4.4)
0 i< 7),
p=S-(a)q, S.(a):=(5;;(@))i<i<r, Sij(a):= (. .)
1<5<r Siq1,..i-13(@) (i >7),
0 1<j),
q="T.(a)p, Tr(a):=(T;;(a))i<i<r, Tija):= { (. J.)
1<5<r tiq,..ngy@  (@>7)
by denoting
b1 q1
(4.5) p=|:|.a=|":],
Dr qr
k
(46)  Sigirgy(@ = [[(ai—a;,) and t; g, @) = sig,.. 50 @)

=1

N

[u+1(plu>
Putting a(z) = and (C1,...,C) = (Aq,..., A)T(a), u(z) and

I;H—l(pru)
@(x) are solutions of

du " O,L
%_;x_aiu

and
da . N
i (p(C’l, ..., Cy) + uDiag(py, ... ,p,.))u,
respectively. Here p is a column vector of elements in My (C) and Diag(eq, ..., ¢)

denote the block diagonal matrix with the i-th diagonal element c;. If ¢; are scalars,
they are also identified with scalar matrices in My (C). Hence 4(z) = T, (a)u(x) is
a solution of the system

di

T (a)(p(Cy,...,Cy) + nDiag(ps, . ..,pr))Sr(a))d

=T,
= (q(Al, ...y Ap) + uT,(a) Diag(py, . . . ,pT)ST(a))ﬁ,
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which is the convolution of the system (4.1). The system equals

A < Aj .
(4.7) o= ; TR i,

o= a)

where we define

(4.8) D,(a) := T,(a) Diag(p1, . .., pr)Sr(a) = Z D, j(a)g;,
(4.9) A(z) :=q(Ay,...,A) + puD,(a) = Zquj.

Here D, ;(a) and /lj are matrices of size rIN which do not depend on z and

1 0 0 0--\ /p 10 0 0.
t12 210 0 O --- Do l1se1 0 0 ---
(4.10)  D,(a)= t1o3ta13ts1e 0 <+ Ps 15318312 0 -« |~
(4.11) P1=q1, P2 = q1 + 82,1G2, P3 = q1 + 53,142 + 53,1243, - . .

and for simplicity we denote s312 = 53 11,21(a) etc. Then, for example, we have

00 0 00 0 0 o

1521 0 - 1 0 0
4.12) D,; =1, D,o = |, Drs= 53,1 83,12
(4.12) ! A 2 0 1 831 2 0 1 s4,1+542 84,12 0 -

by (4.6), (4.8), (4.10) and (4.11).



Confluence and unfolding of Pfaffian systems 129

ExaAMPLE 4.1.  When r = 3, the convolution of the system (4.1) equals

Ay +p Ay Aj 0 0 0
0 1% 0 A1+u AQ‘F(GQ*al)/A A3
dii 0 0 pu). 0 i (as — a1
dz x—a + (x —a1)(z — ag)
(4.13) ! ! 2
0 0 0
0 0 0

Ar+p Az + (a3 —a1)p Az + (a3 —ar)(az — a2)p
(x —a1)(z — a2)(x — a3)

Moreover under the notation in Lemma 4.2 ii) we have

Ay As Az
K =1|A4y A3+ 52142 53143
Az s3143 53,1243

Let Dy, (a) be the (i,7) element of D, (a). Then

(4.14) Drgij(a) =Y Ti,(a)S,r(a)S,, (a) = Dy jixla)
v=1

%
= D b {12 k1S (L 1)
v=max{k,j}
%

= Z Ly {k k41, i\ {v}Su {1,...,j—1}

v=max{k, j}

(4.15) Dy ij(ta) = t9TF171D, 5 o(ta) (Yt € C\ {0}).

LEMMA 4.2. i) D,y (a) are homogeneous polynomials of a with degree
j+k—1i—1. In particular

0 (i<k ori<j ori>j5+k—1),
Drpss(a) = (. . j j )
1 (i=j+k—-1).
(Al, ey A,-)D,-J(&) Vo
11) Put K = and L = { 0 cCN ‘ (Al +,u)110 = 0}

(Ay,...,A;)D, ()
Then K = {v € C"N | Kv = 0} and L satisfies A;K C K and A;L£ = {0} for
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Proor. i) Put m(a) = [[,<;-;<,(a; — a;). Then n(a)l'D,.(a) is a matrix of poly-
nomials of a for a suitable integer L. We may put L = 0 if we show that D,.(a) is
holomorphic with respect to a in a small neighborhood U;; of a generic point of a
hypersurface defined by a; = a;. Put ¢; = p;p; and ¢, = p, for v # j. Since the
transformation of (¢i,...,q,) to (¢1,...,¢,) and that of (¢1,...,G-) to (q1,...,qr)
holomorphically depend on a € Usj, it is sufficient to show that the same claim is
valid for the system u' = Z;Zl g;jBju. It follows from Example 2.3 that we may

assume (i,j) = (1,2) and in this case the corresponding convolution (B, ..., B,)
is given by
Q1 a1 0
” o Go 1+ (az —a1)da
~j Nj: 4 <B17B27B37-~-aBr)+M as
i=1 . .
I Gr

Hence Bj are polynomial functions of a and we can conclude that D, x(a) are also
polynomials of a.
If i > j + k — 1, the identity (4.15) implies D, ;; j(a) = 0.

Lastly we determine the constant D, i jik—1,;(2) = Dy jjtr—1,k(a). Then we
may assume j < k and

Jjt+k—1

v=~k

which equals 1 when j = 1. If j > 1, we can restrict this function on a;4r—1 = a;_1
and we have
jHk—2
D,y jtk—1,(a) = Z Lok k1, k= 2\ {0} Su {1, —2) >
v=~k

which equals 1 by the induction on j. Thus we have completed the proof.

i) Ko = {0 € CN | Diag(Cy,...,C.)o = 0} satisfies A;K C Ko
for 5 = 1,...,7. Hence K1 = {o € C"V | Diag(Cy,...,C.)S-(a)d =
0} satisfies Alel C Ky for j = 1,...,r. Since C; = >I_ | AT,;, the
(i,7) block of Diag(Ch,...,C:)S,(a) equals > _ A,T,;(a)S; ;(a) and that of
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.., C)S-(a) equals

BPIEN

A Tuk Sk]
v=1k=1

tS,(a) Diag(Cy, .

ZA DTZU]

and therefore K = K. Tt is clear that A,£ = {0} for i =1

. |
Owing to Lemma 4.2 we have the following remark
REMARK 4.3. If we restrict to a; = = a, = a, the convolution of the
system
du 4 A,
4.16 — = 7 _
(4.16) dx Z (x —a) “
Jj=1
is give by
0 o o0 -+ 0
T A, s )| Avtp A Az A,
(4.17) i ; - a)ju with A; = 0 40 0
= 0 0 u 0
and
Ay Ag - Arq Ay
Ay Az--- A, 0 .
(4.18) K=" R (Aiﬂ_l)KM with A, =0 for v >7r
: . : 1<5<r
A0+ 0 O

5. Middle convolution

In this section we examine the middle convolution of the general system
mo(x>s 2
(5.1) S @ aa)@ =) (@

Ao,z'Ii*Q
Uu.
1—agsz) - (1 —ap.x)

—aj,i)
a ; (1 — agoz)(
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By a linear fractional transformation of the variable x the system (5.1) is trans-
formed into a system (5.1) with o = 1, namely, a system (5.1) without the term
¥, in the second line of (5.1). Then restricting the system (4.1) in a neigh-
borhood of the point a3 = -+ = ar, = a}, arj41 = " = Qry4ry—1 = Aoy .,
Apy gty —1 =+ 00 = ap = ay with af # aj (1 <@ < j < p’), we have the middle
convolution of the general system (5.1) as a special case of middle convolutions
studied in the previous section, which is sufficient to many purposes.

But we want to have an explicit form of the middle convolution of (5.1). Hence
we will examine the convolution of the system

du . Algi=2
2 o J
(52) dz ; (1 —agz)(l —asgx)---(1 —aix)u

as in the system (4.1). Put

) -1 i T _
(5.3) pi(r) = ———, G(r)==2 1 H(l — a,x) L
T —a; s
Then we have
a; . T 1
5.4 pi(x) = ,  gi(T) = ith y = —.
(5.4) P =y — o @) yVH:nyay with y = -
Putting a’ = (ag, ..., a,), we have
(5.5)
0 i < 7),
P = SU(a)d, Si) = (SL)aicrs Siy(a) =] D
2%j<r Sip1 (2. (@) (027),
0 i < 9),
d' =T.(a")p', T;(a) := (T} ;)e<i<r, T;;(@):= { / , (. ‘7.)
2<5<r tirt g, @) (E27)
by denoting
Py q2
(56) p/ = s q/ = ,
P qr

,,,,,
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Then the convolution of the system (5.2) equals

du .
- = (d'(Ah, -+, Al) + D.(a))a,
where
(5.8) D! (a') := T!(a) Diag(p}, ..., p.)S.(a") ZD a’)q,,
namely,
th 0 0 0 shb 0 0 --n-nn
! t! o 0 --- sh s 0 v
2,3 32 ) 3 53,2
D;(a/) = 0 Dlag(péapéaqﬁh) )

! / ! A ! /
2,34 £3,243 U3 12 84842 54,23 0.

/ ! / !/ I ! / ! ! / / I /
Do = S2q2, D3 = 3Gy + 53 9G3, Dy = 5445 + S4.9G3 + S4.93q4, - - - -

Let D! be the (i,j) element of D] ;. Then we remark that

r.k,i,j

(59) rk:?,,_] Z / )S, ( /) D/,j,z k( l)

7

= Z tu+1,{k+1,k+2 1+1}\{V+1}su+1 {2,...,5}°
v=max{k, j}

(5.10)  T7,()8S, ;(a") = Tic1p-1(a')Syo1,j1(2)

and we get the following lemma by the same way as in the proof of the previous
lemma.

LEmMMmA 5.1. i) Dy, . .(a") are homogeneous polynomials of a' with degree
i+ k—1i. In particular
, , 0 (i<k ori<j or i>j+k),
rk i,j(a )= . .
1 (t=j+k).
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ii) Put
(A5, ..., Al)D,_11(a)
K := : , Ki={vecC V| Kv=0},
(A/Q, ey A;)Drfl’rfl(a/)

(—az)--(—ar)v T r r
com {0t e (ST aay+ (T ai)o=0).
v=2

. j=2 v=j+1

Then we have /L-IC C K and fljﬁ ={0} forj=1,...,r.

ExXaMPLE 5.2. When r =4,

as 0 0 0 0 0
Dim(a/) =|1la 0], DQ73(3/) = | as as(az —az) 0 )
01 ay 1 as+as—as as(ag — az)
0 0 0
DﬁM(a’) =10 0 0

Qa4 a4(a4 - CLQ) a4(a4 - a2)(a4 - a3)
and the convolution of the system (5.2) with a parameter p equals

Ayt asp Ay A, 0 0 0
1 asp 0 A5 +asp As + az(as — a2)p Al x
di o

di 0 B aap 7 (a3 +as —az)p  as(as —ax)p
dx 1—asx (1 —a22)(1 —asz)

0 0 0
( 0 0 0 ) z?
A +asp A+ as(as — az2)p Ay + as(as — az)(as — a3)p _
B (1 = a2z)(1 —azz)(1 — asx) v

Under the notation in Lemma 5.1, we have

Ap Aj Al
K= Aé (a3 — ag)Aé + Ail (a4 — ag)Ail R
Ai; (a4 — 112)1421 (a4 — az)(ll4 — ag)Aﬁl

asa4v
L= { <—a4v>
v

(azag Ay — ag Ay + Al + azazagp)v = 0}.
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If we put as = --- = a, = 0, the convolution of the system
du . o
(5.11) o= —ZA;xJ u
j=2
is given by
0 0 o --- 0
di o ) - j—n | Ay Ay A - Al
(5.12) = —ZA;»:EJ u with A} = P S S
=2 0 u 0 - 0
and £ C K.

Combining the results we have studied, we have the convolution

du Lk Agl
dr <ZZ (z—aj1)(x—aj2) - (z—aj;)

(5.13) e o
z(]: Ag iz 2 ) .
- .
— (1 —ag2x)(l —agsz) - (z — ag,iz)

of the general system (5.1) by the following theorem.

THEOREM 5.3 (CONVOLUTION).  The convolution (5.13) of the Pfaffian system
(5.1) is given as follows. Put

ag = (aoz2,...,00,) and a; = (a;1,...,0:,,) for j=1,...,p,
i i
Qi = — H(l — ao,,,x)_l and gq;; = H(x — ai’,,)_l for 5=1,...,p,
v=2 v=1
qo,2 qj,1 do
qo = y 45 = fOT’j:la"'ap and q-= )
Qo,ro Aj,r; dp

A= (AO,Q, .. -aAO,rmAl,la .. "Alﬂ”lv' .. 7/1])71,. .. 7Ap,rp)a
T0

Do(ag) = — Y D} ;(a0)qo: and Dj(a;) => D i(aj)gi (G=1,...,p),

=2 =1

D(a) = Diag(Do(ay), ..., D,(a;)).
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Here D, i(a;) (resp. D, ;(ag)) are derfined by (4.8) (resp. (5.8)) with (4.4) (resp.

70,

(5.5)). Then the convolution (5.13) is

du .
(5.14) == (qA n uD(a))u.
Put
(A0,27 o 7AO,T0)DTO—1,1(aO) (Aj,la N ,Ajm].)Drj,l(aj)
Ky = : , K= : )
(Ao,2,- -+ A0,r0)Dro—1,70—1(a0) (Aj1s - Ajr, ) Dy oy (a5)

K = Diag(Ko, K1, ..., K,), K ={v e Clrot+r=DN [y — 0}
0 0 0 p T
Aso = Z( 11 aO,u>AO,i + (H ao,u> (M +> > Aj,i)>
=2 v=i+1 v=2 Jj=11i=1

(—@0,3)"‘(—00,7~0)U
(—ao,4)-"(—ao,ry)v

(—a0.rg)v

Lo={veCN | A v=0}, L= { To = —(—a0,2)'6(_“0m0)”

v E EQ}

In the above definition of L, the i-th block equals (—ag it2) -+ (—ag.,)v € CV
for 1 < i < 1o and the (ro + --- + r;)-th block equals —(—ap2) - - (—agr,)v for
j=0,...,p—1 and the other i-th blocks with i > ro are 0 € CN. Then we have

ro+r1 — _(_U«O,2)““(_a0,r‘0)v

(5.15) /AljyilC C K and flj’iﬁ ={0} for i=1+0d0,...,7; and j=0,...,p.

Here 6;, =1 if j =k and 0 otherwise.

DEFINITION 5.4 (MIDDLE CONVOLUTION). In the above theorem, A; ; induce
linear transformations on the quotient space V = C(rot+m=UN /(]C 4 £). Let
Aj,i be matrices corresponding to the induced linear transformations on V with
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respect a suitable base of V. We define that the system
dv \“= = (v —aj1)(x—a;2) - (x — a;,)
(5.16) ’

T0 A07i$i_2 ) B
U
(1—ap2z)(1 —agsz)- - (r— ap,x)

is the middle convolution mc,, of (3.1) with a parameter p € C.

Suppose A;; in the system (5.1) holomorphically depend on a. Since K and £
in Theorem 5.3 depend on a, we denote them by K(a) and £(a), respectively. Let k
and ¢ be the dimensions of K(a) and £(a) for a generic a satistying ag 2 - - - ag» # 0.
Note that K(a) N L(a) = {0} in this case. Then Theorem 2.2 implies the relation
dim(/C(0) 4+ £(0)) > k + £ and the following proposition.

PROPOSITION 5.5.  Retain the notation above.

i) Fiz a generic a and replace a;; by aj1 +t(a;; —aj1) for j =0,...,p and
t=1,...,7; with agn = 0. Then we may assume that K=K+L holomorphically
depends on t € U, \ {0} with U, = {t € C | |t| < €} and € > 0, which we denote
by K(t). Then Theorem 2.2 assures that we can uniquely define K(0) so that K(t)
holomorphically depends on t € U.. Using this single parameter t, we can define a
middle convolution which holomorphically depend on t € U, (cf. Remark 3.1).

ii) Let U be an open subset of the space of parameter a such that A;,; are
holomorphic with respect to the parameter a € U. If the dimension of L(a) + K(a)
is constant for a € U, then flj,i are holomorphic with respect to a € U. This is
assured if the middle convolution (5.16) defined in i) is irreducible.

REMARK 5.6. i) By the restriction ag2 = -+ = ag, = 0 and aj1 = --- =
aj,;, = a; we get the middle convolution of the system (1.2) which coincides with
the middle convolution defined by [19].

ii) Proposition 5.5 i) may relate to Remark 6.2 ii).
iii) Calculation of D(a) in (5.14) is implemented in a computer program in [17].

6. Versal unfolding and confluence

Note that the identity (4.3) implies that the Riemann scheme of the equation
du )\k

dr (xfal)(xfag)n(xfak)u
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equals

T =aq 1=1,...k r=a
A ( ) and (a1 = =ar = a),
Si{1,...,k} (@1,..,ak) )\kmk_l

which is an example of versal unfolding of the equation v’ = @ _/\a) U

Let (2.8) be GRS of the system (1.2). Put

)\j,u(x) = )\j,u,O + )\j,u,lx + -+ Aj,u,rjflxmil € (C[il,'} (V = 17 e 7nja .7 = 0; e ap),
,:{%3UQime®

aO’IZO, a.v' . .
Mo lag (U<i<pii=1,...,1)).

Then the versal unfolding of GRS (2.8) defined by [16] equals

r=aj;, (i=1,...,r5,j=0,...,p)

and we require that the versal unfolding (1.3) of the system (1.2) has this GRS.
Here

LN

Aty k()

(r) -
61) A=) 2
k=1 T:{17"'ak}

(0<j<p, 1<r<rj, 1<v<n;,),

p Ny
(6.2) Njk(@0) = Njuk and YN “my A ,0(a) =0
j=0v=1
with ag1 = 0 and ag is the point defined by ag; =0 (i = 1,...,7) and aj; = a;

(¢ =1,...,r; and j = 1,...,p). See [16, Example 4.4] for an example of the
unfolding for a single differential equation. Replacing [A](,,) in the example by
[Alm, we have GRS of a Pfaffian system from that of a single differential equation.

For a function ¢(z) of z, the addition Ad(¢) is an automorphism of the ring
of linear differential operators induced from the map wu(z) — ¢(z)u(xz). Then
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Ad((b)(%) = % — —’ and by the versal additions

AVY o (o Am) _Ad(exp/ s ))) ceo)

Osfcu

= v=

d d Ak
AdV? Moy Am) (— _—7—§j7
[ cm )\ 0 y Am )
0 (dx) dx k—o”ﬁ—o(x_ )

Cy
k—1
AdViL (A1, Am) = Ad(exp )\ks ds )),
“ o [T (1 —cs)

d d
AdV(ﬁ7.._,#)(/\1,...,/\m)<%) = %“rkz:lm

introduced by [13, §2.3], we can shift A; , by any polynomial f;(z) with deg f;(z) <
r; except for the constant terms of Ay, (cf. [16]). Then applying suitable versal
additions, GRS of the resulting universal unfolding satisfies

(65) deg)\ 1<1 and A? (Z.Z(So,j—Fl,...,’l”j,j:(),...,p).

Let m = {m;i)} be a spectral type of a differential equation whose irregular
singularities are unramified. We define three condition for m.

1. m is irreducibly realizable : There exists an irreducible differential equation
with a generic Riemann scheme corresponding to the spectral type m.

2. m is versally realizable : m is irreducibly realizable and the corresponding
equation has a versal unfolding.

3. m has a Fuchsian base : There exists an irreducible Fuchsian differential
equation with a generic Riemann scheme corresponding to the unfolded Fuchsian
spectral type {my)}

In this paper, we say that the system (1.2) is irreducible if and only if the
condition 4;;V CV (i =1,...,r;,j =1,...,p) for a subspace V of CV implies
V = {0} or V = C¥. This irreducibility is weaker than the irreducibility as a
D-module which is examined in [13, 14].

CONJECTURE 6.1 ([16]).  The above three conditions are equivalent.

REMARK 6.2. i) In [16] we mainly examine when the equations are single
equations with arbitrary orders. In this note we examine when the equations are
Pfaffian systems. The necessary and sufficient condition for 1 is given by [4] and
that for 3 is given by [1]. In fact, these conditions are interpreted to the problem
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characterizing the roots of Kac-Moody root systems by suitable correspondences
between spectral types m and elements of the root lattices. Then the equivalence
of the conditions 1 and 3 is reduced to a problem of roots in two Kac-Moody root
systems. Note that our middle convolutions and versal additions with holomorphic
parameters a are compatible with those for equations with irregular singularities
when a = ag and also with those for Fuchsian equations when a and GRS of the
equations are generic. Therefore these operations keep the above three conditions
for the spectral type m.

We note that these operations induce the action of the Weyl groups of certain
Kac-Moody root systems. Hence each condition is invariant in the orbit of the
group action of a Weyl group. We remark that [7] shows that there are only finite
orbits with the same index of rigidity and there is a unique spectral type with the
minimal rank in each orbit, which is called a basic spectral type (cf. [16, §5]).

Comparing the correspondence of the roots (cf. [4, 7]), the answer of the Deligne-
Simpson problem given by [4] assures that the condition 3 implies the condition 1,
which is explained in [5]. The author originally wanted to solve the Deligne-Simpson
problem for single equations with irregular singularities by showing the equivalence
of the conditions 1 and 3. But this implication and the Deligne-Simpson problem
are still unsolved for single differential equations. Here the Deligne-Simpson prob-
lem is to characterize GRS with an irreducible differential equation.

ii) Kawakami [10] shows that the system (1.2) satisfying r; <2 for j =0,...,p
has a versal unfolding. Hence we can conclude that the conjecture is true for the
Pfaffian systems satisfying that the Poincaré rank is not larger than 1 at every
singular points. Moreover the versal unfolding of some basic spectral types m with
idxm > —2 are also given in [6].

iv) If m is rigid, then m is an orbit of the Weyl group containing the trivial
equation u’ = 0 of rank 1. Hence the conjecture is true and we have the following
theorem (cf. [16, §5]).

THEOREM 6.3.  Any irreducible rigid Pfaffian system (1.2) is realized as a
specialization of its versal unfolding (1.3) which is constructed by successive appli-
cations of versal additions and middle convolutions to the trivial equation v/ = 0
whose rank equals 1.
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7. Several variables

Consider the differential equation

ou _ (i AjJ'
(1) Oxo  \im = (w0 — x5 —ejn) (@0 — x5 — ej2) -+~ (20 — 25 — €j,0)
3 i )
= (1 —ao220)(1 — ao3o) - -+ (1 — ag,iwo)
In this section we assume that A;; do not depend on (zg,z1,...,2,) but
holomorphically depend on a and e. Here a = (agg2,...,00r,) and e =
(€11, -Clrys---s€py,) With (a,e) € U C Crotmt+72=1 and U is a neighbor-

hood of the origin. Put

(7.2) W(a,e):(ﬁ I1 (ejykfejyi))(ﬁao,i)( I1 (aoykfaoyi)),
=2

J=11<i<k<r; 1<i<k<ro
(7.3) U ={(a,e) € U |n(a,e)#0}.

Note that the equation (7.1) is a Fuchsian system of ordinary differential equation
with the variable x if (a,e) € U'.

We examine its extension to a Pfaffian system

ou .
(7.4) a—x] =Aj(x)u (j=0,...,p)
with the integrability condition
9A;(x)
8$i

+ A;(x)Ai(z) = 0Ai(x) + A;(x)Aj(z) 0<i<ji<p)

(7.5) e,

which is equivalent to (1.8) for the system (1.7). Here A;(z) are suitable square ma-
trices of size N whose entries are rational functions of  and Ag(z) is the coefficient
of u in the right hand side of (7.1).

In particular we will show the existence and construction of the extension when
the system (7.1) is rigid. According to the usual expression of Pfaffian forms, the
system (7.4) equals

(7.6) du = zp: A (x)udz;.
i=0
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THEOREM 7.1. i) Put xzo; = a&} fori=2,...,1r9 and z;; = x; + e;; for
i=1,...,r; and j=1,...,p. Suppose that when (a,e) € U’, the Fuchsian system
(7.1) with singularities at x;,; and oo is extended to a KZ system with variables
(o, 21,...,2p) and that the KZ system is holomorphically extended for (a,e) € U.
Then the middle convolution of (7.1) defined in §5 has the same property.

ii) If the equation (5.1) is a versal unfolding of the irreducible rigid equa-
tion (1.2), then the equation (5.1) is extended to a Pfaffian system with variables
(x,z1,...,2p) and a holomorphic parameter (a,e) € U.

PRrOOF. i) The transformation of the equation (7.1) to a Fuchsian system (1.6)
with p replaced by R = ro+- - -+r,—1 is holomorphic with respect to (a,e) € U" and
the transformation between @ and 4 is also holomorphic with respect to (a,e) € U’.
Let 4 be the generator of the convolution of the equation (7.1) given in the previous
section. Then applying Definition 7.3 to the Fuchsian system, we have a Pfaffian
system di = Y77 Aj(z)adz; for (a,e) € U'. Note that A;(x) are holomorphic
for (a,e) € U’ and meromorphic with respect to (a,e) € U.

Then we show that the parameter (a, €) of A;(x) is holomorphically extended to
U. It is sufficient to show that Aj (2) are holomorphic with respect to the parameter
(a,e) in a neighborhood of the generic point of U \ U’. There are the following
three types of the generic point of U \ U’.

Case 1. There exist j,, i, and 4], such that e; ;, = ej,# and 1 < j, < p and
1Sio<i;§7“jo.

Case 2. There exist i, and i;, such that ag;, = a7 and 2 < i, <, <7,.

Case 3. There exists i, such that ap;, =0 and 2 < i, <r,.

When the parameter is in a neighborhood of a generic point classified in Case
1 or Case 2, then as in the proof of Lemma 4.2 i), we can reduce the regularity for
the equation (7.1) withmy =2 andr; =1 (j=0,2,...,p). We examine this case
in Example 7.5 when p = 2. The result for p = 1 or p > 2 is essentially same as
this case.

When the parameter is in a neighborhood of a generic point classified in Case
3, we can reduce the regularity for the equation (7.1) with rp = 2 and r; = 1
(j =1,...,p). We examine this case in Example 7.6 when p = 2. The result for
p=20, 1 or p> 2 is essentially same as this case.

Thus we see that A;(z) are holomorphic with respect to the parameter (a,e) €
U. Let K and £ be the subspaces of C*V to define the middle convolution of (7.1)
which are given in Theorem 5.3. Since Aj(x) (IC + £) CK+Lforj=1,...,pand
(a,e) € U’ and moreover K + £ holomorphically depends on (a,e) € U, we have
the middle convolution of (7.4) with the holomorphic parameter (a,e) € U.
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ii) As is stated in Theorem 6.3, the versal unfolding of an irreducible rigid
differential equation (7.1) is obtained by successive applications of versal additions
and middle convolutions to the trivial equation. Hence the claim ii) follows from
the claim i). O

REMARK 7.2. i) Using a complete base of

1 1 1
{Ij+€j,i*$07 zj =kt eji—ery 1= a0 () +eji)
li=1,...,r;, ke {l,....p}\{j}, v=1,...,1, 1/:2,...,7‘0},

the holomorphic dependence of A;(x) with respect to (a,e) means that of the
coefficients of linear combination of this base in the expression of A;(x).

ii) By the restriction ej; =0fori=1,...,r;j and j=1,...,p and ag,; = 0 for
i=2,...,19, we have the extension of the rigid system (1.2) to a Pfaffian system
with p + 1 variables (zo,z1,...,2p) = (x,01,...,ap).

DEFINITION 7.3 (]2, 3]). The convolution

8'& Ai,u .
(7.7) s = ; oot (=0...p)
0<v<p

of the KZ equation (1.7) is defined by

J
0o ... 0 .0
Aoj=35| Aoq - Aoj+p - Aoy | € M(pN,C) (1<j<p)
0o .- 0 .0

= ((Ao,t + Nés,t)ésd')gsgp’

1<t<p
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( J
A’L,]
1 A i+ AO,j 7A0 7
Ay = € M(pN,C)
(1<i<j<p)

7 —Ao,i A+ Aoy

A17]
= (Ai,j5s,t + Ao,j0s,i(0¢,i — 6¢.5) + Ao,:0s,5 (0¢,5 — 5t,i)) 1<s<p

1<t<p

v

Putting £ = {u € C?V | Diag(Ao,1,...,Aop)u = 0} and £ = {() € CPN |
(Ao + -+ Agp+ p)v =0}, we have 4; ;(K+ L) C (K+ L) for 0 <i<j<p.

The above A; ; are obtained as follows (cf. [3]). Putting u; = ot and 4, =
I 41(uy), we have
an 1 an 0 1
()
8xi To — Ty (9582 81‘1 To — Ty
A; A; 0 1
s e R DI R €
(IO*Ij)(xi*l’O) 1<v<p, vii T — Ty “\dxg xg — x4
If i # j, then
u 1 ( U u ) U — Uy
(o —zi)(x0 —25) T —Tj\W— T3 To— ;) T — Ty
and
0l A; ol A ol AU, L,
(7.8) Lo R WL N W (),

Oxr; ®—x; T;—x T —
i % i i J 0<v<p, v£i i v

If ¢ = j, we have

IH+1((

0 1 ) 0

= T%Iuﬂ(ui) - Iu+1( L Ou )

8x0 To — g o — Tj 8:1:0
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P
= o e (E )

ai A,i A,u i — Wy
R T e DV o ey )

Oz o0 1<v<p, viti Tty
and
Ot P Ao+ pdiy Agp (g — Ty Ayt
19) g =Y iy Y fediiily 3 Sl
Ti v=1 Ti = o 1<v<p,v#i Ti = Ty 1<v<p,v#i Ti = Ty
EXAMPLE 7.4. Note that the convolution of the KZ equation
(7.10) du = Z( > 8 Yua,
Ty — Ty
i=0 v€{0,1,2,3}\ {4}
is given by Definition 7.3, which has the generator .
For ¢ =0 or i = 3 we have
(7.11) L = ( S 2 SRR >u
Ov;  \mi—x (v —x1)(zi —T2) @ — T3
C; C; Ciz—i
_ ( 1 n 2 4 3 )u
Ti—T1 Xy — T2 Ty — T3
Here
A; A; . .
Cin= A+ 2 Cip=—"2 Cigoi = Aizy, 0=T4,
’ Tl — T2 To — T
1 0 0 1 0 O
S=(1ay—21 0|, T:=8"= |- -
Xr1—T2 To2—T1
0 0 1 0 0 1

We rewrite the convolution according to the generator @ defined in §5 for the
ordinary differential equation (7.11) with ¢ = 0. Hence

ot P . - Cs0 Cs1 Cs2
= ’ ’ 2.
(9172 A ( )u with A?,(ﬂ?) T(I’g — X + Tr3 — I1 * Tr3 — IQ)

Putting

R A A A
Ag(fv) _ i,o n i,l - 3,2 - 7
T3 — Zo T3 — 1 (953 wl)(xg $2)
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we have
R ~ . 0 0 0
Az o =TCp35 =Aos=1| 0 O 0 ,
Ao,1 Ao,z Aoz + 1

Ag,l = T(és,l + 6'3,2)5

C31+C32+4+Cspo 0 —C3,0
=T 0 C31+Cs32+Csp —Cs0 S
—C10 —Cayp C31+C32+Cio+ Cap
Az + Aspo 0 —Azpo
= 0 As 1+ Aspo 0 ,
—Aipo —Aso Az + Ao
. . C3,2 0 0
Az = T((mz — 301)03,2)5 =(z2—z)T| 0 Cs32+Cs30 —Csp S
0 —C20 C32+Cap
Az 0 0

= | Aso As2+ (2 —z1)Aos —Aos
—Aap (1 — x2)Ao,2 Az o+ Ao2

Hence A3 j(2) holomorphically depend on the difference of (21, x2) if so are As ;(x).

Next we examine an example which regards an irregular singular point as a
variable. Put (z,z1,z2,23) = (z,y + €1,y + ea, x3) for the equation (7.10) and fix
Zo, T3, €1 and ey as constants. Then the Pfaffian system (7.10) equals
Coru dxr1 + ¢ dr1 + Crau dzo + Casu dzo

xr1 — Xo xr1 — T2 xr1 — I3 XTo — & 2 — X1 T2 — T3
O()lu C13u Cozu CQ37.L
= dy + dy + d
y+e1—woy y+e —xs3 4 y+e2 —xo y+y+ez—xs
Ci1 + Ci2 521C2 .
= — d th —ey—e
Z y+€1—$i (y—i—el—a:i)(y—i—eg—xi))u yw 521 2 !

12U

Clgu d$1+ Cogu

du =

dzo +
0 X

i€{0,3}

and Definition 7.3 implies

Co1+p Coz2 Cos 0 0 0
Co1 Coz2+p Cos S21 (Col Coz+p 003)
~ 0 0 0 0 0 0
du = —
y+e —xo (y+e1—zo)(y +e2 — o)
Co3+C13+C23 0 —Cos Ca3 0 0
0 Co3+C13+C23 —Cos S21 0 C23+Co3 —Cog
—Co1 —Co2 Co01+Co2+Co3 0 —Co2  C23+Co2 -
+ — udy.
y+el —as3 (y+er—x3)(y+e2 — x3)

For simplicity we allow to denote C;; and A;; in place of C; ; and A; j, respectively,
if we do not expect any confusion. Put

A1 =Cin+Cig, Ay =—521Cs2 (1=0,3) and S = (

O
= oo

0
S21
0
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Using @ = S~'4, we have

Ay Az "
dit = i : d
u Z y+e —x; (y+617(£1)(y+62*.’£1))uy

€{0,3)
with
) Agi + 11 Aoz Aps ) 0 0 0
(7.12) Ay = 0 w0 |, Aso= | Aor +p Aga+ (e2 —e1)p Aos |,
0 0 0 0 0 0
A A13 + A03 0 _AOB
(7.13) Az = 0 Aqz + Aos 0 ,
—Ao —Ape Az + Ao
Az 0 0
(7.14) Axz3 = | Aoz Azz+(e2 —e1)Aos  —Aos

—Apz  —(e2 —e1)Ap2 Asz + Ap2

Combining this result with Example 7.4 we have the following example.

EXAMPLE 7.5. The convolution of the versal KZ equation

ou AO 1 Ao 2 AO 3
= L 7 + 208 )y
(91'0 ( 07‘%1 ( 071‘1)(‘%07‘%1762) xofxg)
Ou _ ( _ Az.0
(715) 8x1 X 7%0 £C1 71’0)(%1 7%04’62)
A _ 2,3 )u
5 3;11 — T3 (fll —x3)(x1 — 23 +A€2) ’
ou _ 3,0 + 3,1 + 3,2 )u
63)3 Tr3 — Xo T3 — I (l‘g —l‘l)(l‘g — X —62)
with
is obtained by replacing (u, 4; ;) by (4, A, ) in (7.15), where Ai,j satisfy the same
relation as (7.16) and are given by (7.12), (7.13), (7.14) with e; = 0 and
0 0 0
(7.17) Aps=1 0 0 0

Ao1 Aoz Aoz +p
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If A; ; are complex numbers, the above convolution gives the equation of Ap-
pell’s F; and its confluence.

Putting 23 = a~!, the generator u of the Pfaffian system (7.10) satisfies

ou Co1 Co,2 Co,3 Ao Ap,2 Ao,z
- = + + 71)u = + - U
8x0 o — T o — T2 o —a o — T Tro — T2 1—0,%0
0 C C C A A A

u _ ( 1,0 n 1,2 i 1737 )u: ( 1,0 + 1,2 1,3 )u
(9171 1 — o Tr1 — T2 r1 —a 1 1 — 2o Tr1 — T2 17&.’,81

Apo=Cop, Ain—i =Ci1-i, Aoz =aCp3 (i=0,1).

Put S = Diag(1,1,a) and & = Su with the generator @ of the convolution of the
system (7.10) and

o ( Al,o 1211,2 A1,3 ) N
= + - U
ory T —x9 x1—Ty 1—axr

Then we have

Co1 +p Co2 Cos Aor +p Aoz Aos
(7.18) App=5"" 0 0 0 |S= 0 0o o |,
0 0 0 0 0 0
R Ci2+Co2  —Co2 0 Az + Aoz —Ao2 0
(7.19)  Ap=5" —Co1 Ci2+Co1 0 | S= —Aor A2+ Ao 0 |,
0 0 Ch2 0 0 Ais

A Ci3+Coz 0 —Cos A1z + Aoz O —aAos
(720) Az =aS™" 0 Ciz 0 S = 0 A 0
—Co1 0 Ciz+ Co1 —Ao1 0 A3+ ado

Thus we have the following example.

EXAMPLE 7.6. The convolution of the KZ equation

3u o ( A071 A072 A073 )
g 4 B Y
dzg To—T1 To—T2 1—axg
1o} A A A

(7.21) ou ( Lo, Az A3 )u,
Oxq T1—Tg T1—T2 1—ar
ou o ( AQ,O A271 A2,3 )
g + B Y
Oy To—Tg T1—T2 1—aw

Aij=4;; 0<i<j<3)

is obtained by replacing (u, 4, ;) by (4, A”) Here /1” are given by (7.18), (7.19),
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(7.20) and
. 0 0 0 X 0 O 0
Apx = | Aor +p Aoz Aoz |, As=[ 0 O 0 )
0 0 0 Aor Aoz Aoz + ap

. Ass 0 0
Az = 0 Azzs+ Aoz —ados .

0 —Ap2  Azz + ado2

REMARK 7.7. If A;; are complex numbers in (7.21), the above convolution
gives the equation of Appell’s F; and its confluence, which corresponds to the
convolution in Example 7.5 by the correspondence = x_lxl + x1.

The following example have two irregular singular points.

EXAMPLE 7.8. We examine the extension of the rigid equation (1.2) with
p=2,179=1,7r1 =2 and ro, = 3, namely,

du 2 Ao, > Ao,v+2
de (Z (x —x1)¥ * ; (x — x2)V>u

Then the extension is

ou 2 Ao, 2L Aguio
7 L e\,
(91'0 (; (1’0 — CL’l)V VZ::I ((EO — QCQ)V)
ou ()" M0 e~ Arge
7.22 — = — 4 : U,
( ) 0x1 <yz_:1 (xl — JZQ)V ; (.231 — .132)1’)
ou 3 (71)”7114”_;'_2 0 4 (71)”7114”_;'_2 1
_— = - 7 - & —+ -~ 7 @ = U,
Jza <yz—:1 (zo — LL'())V 112::1 (zo — LL'l)V )
Aij = Aja

with zg = x, which is obtained by successive applications of middle convolutions
and additions to the trivial equation. It is calculated through the convolution of

the above equation given by

Aot + i Aoz Aoz Aos Aos 0 0 0 0 O
) 0 w 0 0 0 X Ao1r + p Aoz Aoz Aoa Aos
Aor = 0 0O 0 0 O , Apz = 0 0 0 0 O R
0 0 0 0 O 0 0 0 0 O
0 0O 0 0 O 0 0O 0 0 O
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0 0 0 0 O 0 0 0 0 0
) 00 0 00 ) 00 0 00
Aoz = | Ao1 Aoz Aoz +pt Aos Aos |, Aoa=| 0 O 0 0 0 |,
0 0 0 uw 0 Aop1 Aoz Aoz + 1 Aoa Aos
00 0 0 u 00 0 pu 0
0 0 0 0 O
0 0 0 0 O
Aps=1] 0 0 0 0o o0 |,
0 0 0 0 O
Ao1 Aoz Aoz + 1 Aos Aos
A1z + Aos 0 —Aos —Ao,a —Aos
. 0 Aqz + Ags 0 0 0
Az = —Ao1 —Ap2 Az + Ao 0 0 )
0 0 0 A1z + Aor Ao
O O 0 0 A13 + A01
Ara + Aoa 0 —Aos  —Aos 0
. —Aoz  Aa+ Aoa Aos Aoa Aos
Ay = Aoz 0 Ais—A2 O 0 ,
—Ao1 —Ap2  Aia+ Aor —Ao2 0
0 0 0 Aor Ais — Aoz
Ais + Aos 0 —Aos 0 0 Aig O 0 0 O
—2A0s Ais+ Aos 2404 2405 O —3A05 A1s 3405 0 O
Ays = 0 0 Ais 0 0 |, A= 0 0 Ay 0 0
2A02 0 —2A02 A5 O 0 0 0 A O
—Ao1 —Aop2 Aot —2Ap2 Ais 3Ap02 0 —3Ap2 0 Ass

This result is obtained by the versal unfolding and its extension to a KZ equation
explained in this section. Here we only give the result restricting the parameters
of the equation with irregular singularities. The explicit expression of the versal
unfolding of the system such as (7.22) is a little complicated in general, which is
calculated by the function mcvm() in [17].
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