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A characterization of the monodromy group of Gauss
hypergeometric equation

Toshio OsHIMA and Kouhei SHIMIZU

Abstract.  We give a characterization of the monodromy group
of the second order linear Fuchsian differential equation on the Riemann
sphere which has three singular points.

1. Introduction

Hilbert’s twenty-first problem asks the existence of a linear differential equation
of Fuchsian class with given singular points and monodromy group. Since the
existence is not always true when the equation is single, the original problem was
formulated as the problem of the existence of the first order Fuchsian system of
Schlesinger canonical form with given singular points and monodromy group, which
is called Riemann-Hilbert problem. Plemelj (cf. [P]]) and independently Birkhoff
gave affirmative answers. But their arguments were not sufficient and in 1990
Bolibrukh [Bo] gave a counterexample. Then the problem was affirmatively proved
by Bolibrukh [Bo2] and Kostov [Ko] if the the monodromy group is irreducible.

In this paper we consider single linear Fuchsian differential equations of higher
order. When the spectral type of the monodromy group is not rigid, the problem
is not true in general because the number of accessory parameters is not sufficient.
But it is proved in [O1] that the problem is affirmative if the monodromy group
is rigid and irreducible. Also it is shown in [O1, Example 2.2] that the problem is
not affirmative if the monodromy group is ‘rigid’ but reducible.

In this paper we give a characterization of the monodromy group of a Fuchsian
differential equation of the second order with three singular points. In this case
the equation is essentially Gauss hypergeometric equation

(1) z(1—2)u”" + (v = (a+ B+ 1Dz)u' —afu=0

and hence the result is classically known (cf. [IKSY, Chapter 2, Corollary 4.3.4],
[KS]). Here we give it by a simple argument based on a result in [02], which
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studies Gauss hypergeometric equation only by an elementary calculus without
any integration.

2. A characterization

Let
(2) u +a(z)u +b(z)u =0

be a Fuchsian differential equation of the second order with three singular points
co, ¢1 and co in the Riemann sphere. To study the monodromy group of this equa-
tion we may assume (cg,c1,c2) = (0,1,00) by a linear fractional transformation.
Then z(1 — x)a(z) and 22(1 — 2)?b(z) are polynomials of degree at most 1 and 2,
respectively. Hence the equation (2) has 5 parameters.

Let

r=0 1 00
(3) A0l A1 Acol; T
A02 A2 Aso,2

be the Riemann scheme of the equation (2). Then we have the Fuchs relation

4) Aot o2 A1 F A2+ A T A2 = 1.

Since Gauss hypergeometric equation is characterized by its Riemann scheme

z=0 1 00
0 0 a; Ty,
l-yvy—a-p8 8

the equation (2) is obtained from (1) by the gauge transformation
w21 — z)Pu

with

(5)

)‘0,1 = )‘7 )‘1,1 =K, )\oo,l =a—A-— s
X2=1—7+X Mop=v—a—-0F+pu Ic2=08-A—pu
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and the explicit form of (2) is

W Ao,1 + Ao2 — lu’ n A1+ A2 — 11/
1—2z
A1 A0 1\ A11M.2 — Ao 1Mso
w2z Aoa 0,2t A1,1A1,2 1Ao2

x
6

(6) A0,170,2 v
x? (1—x)? z(1—2)

_|_

=0.

Let (u1,ug) be a base of local solutions of the equation (6) at a generic point
xo as in the following figure. Let v, be closed paths starting from zy and circling
around the point £ = p once in a counterclockwise direction for p = 0, 1 and oo,
respectively, as follows.

Yo Y1 Yoo

Let ypu; be the local solutions in a neighborhood of g obtained by the analytic
continuation of u; along -y,, respectively. Then there exist M,, € GL(2, C) satisfying
(vpu1, Ypu2) = (u1, u2)M,. Here GL(2,C) is the group of invertible matrices of size
2 with entries in C. The matrices M, are called the local generator matrices of
monodromy of the equation (6) and the subgroup of GL(2,C) generated by M,
M; and M is called the monodromy group. We note that the eigenvalues of M,
are 2™V =121 and 27V and moreover we have

(7) Moo My My = I (the identity matrix)

and if we differently choose z¢ and (u1,us), the set of local generator matrices
of monodromy (Mg, My, M,,) changes into (gMog~',gMi1g~ ", gMoog™"') with a
certain g € GL(2,C). If there exists a subspace V of C? such that {0} SV & C?
and M,V C V for p =0, 1, oo, then we say that the monodromy of the equation
(6) is reducible. If it is not reducible, it is called irreducible.

DEFINITION 2.1.  For (Ag, A1, As) € GL(2,C)? we put

Cag a4, = {(gA0g™ " gA197 ", gAs97") | g € GL(2,0))}



156 T. OsHIMA and K. SHIMIZU

and

M= {CMO,MI,Mx

My, My and My, are local generator matrices of
the equation (6) with \; ; € C satisfying (4)

under the above notation.
Then the following theorem is our characterization of M.

THEOREM 2.2.  Under the above notation, M is a subset of
X :={Caya,.a, | As € GL(2,C) (i =0,1,2) and AyA;Ag = I}

characterized by

X\M: {CA07A17A2

A= <a8 2) ai#d; (i=0,1,2) and Ay Ay =L}

U {CAO;AI;A2

A = (“0 2) b 0 (i=0,1,2) and AsA; A =12}.

Remark 2.3. i) The above theorem is equivalent to [IKSY, Chapter 2, Corollary
4.3.4].

ii) The characterization of the monodromy group of the Gauss hypergeometric
equation (1) is obtained by Theorem 2.2 imposing the condition

(8) rank(A; — 1) <1 fori=0 and 1.

3. Proof of the theorem

We will show Theorem 2.2 by the following result in [02].

THEOREM 3.1 ([O2, Theorem 8]).  Retain the notation in the previous section.
Let My, My and My be local monodromy matrices of the equation (6) with (4).

i) (Mo, M1, M) is irreducible if and only if
9) Mot + My + Ao €2 (Y, v € {1,2}).

ii) Suppose

(10) A2+ A2+ Ao ¢ {0,—1,—2,...} (v=1,2).
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We may assume
(11) Mot = g2 € {1,231 (p=0, 1)

by one or both of the permutations \o,1 <> o2 and Ai1 <> A12 if necessary.
When

(12) M2+ A1+ Ao €2 (v=1,2),

there exists g € GL(2,C) such that the monodromy matrices satisfy

B _ eQTriA072 bO 627riA1,1 0
(13) (gMog™", gM1g™") = (( 0 eQﬂ—i,\o’l>a ( by ezm‘/\m))

with

(14) by = Qe TAee.2 gip 71'()\072 + )\171 + )\0072),
by = 2¢ TiAeo 1 Sinﬂ'()\og + )\171 + )\0071).

When (12) is not valid, we have (13) with a certain g € GL(2,C) and

b — 1 af X+ A2+ Aoy ¢ {0,-1,-2,...} (v=1,2),
0 0 otherwise,

(15)

; {1 if Moo+ M1+ Aoow ¢ {0,-1,-2,...} (v=1,2),
1 =

0 otherwise.

Note that the Fuchs relation (4) implies boby = 0 in this case.

iti) Under a change of indices Ny, = Ao(p),o,(v) With suitable permutations
(0,00,01,00) € &3 x &3 we have (10) and (11). Here &3 and &2 are identified
with the permutation groups of {0,1,00} and {1,2}, respectively.

Proof of Theorem 2.2. We say (Ao, A1, A3) € GL(2,C)? is irreducible if and
only if there exists no subspace V of C? such that {0} SV & C? and 4,V C V
forp=0,1, 2.

Let (Ao, A1, As) € GL(2,C)? with Ao, Ay Ag = I,. We can choose Aij € Csuch
that they satisfy (4) and the set of eigenvalues of A; are {€2™V =11 2mV=TAi21
for + = 0, 1 and oo, respectively.

First we suppose (A, A1, As) is irreducible. We will prove Cy, 4,4, € M.

Since the eigenvector vy of Ay with the eigenvalue e?™V~1*0.2 and the eigenvector
vy of A; with the eigenvalue e?™V =172 are linearly independent, there exists g €



158 T. OsHIMA and K. SHIMIZU

GL(2,C) satisfying

277\/—71A0)2 b 271'\/—71)\1@ 0
-1 -1 € 0 €
(16) (gAog™ ", gA19™ ") = (( 0 e2ﬂﬁAo,1>’ ( by GZW\/TA1,2>>

with suitable complex numbers by and b;. Here the irreducibility of (Ao, A1, Axo)
implies bob; # 0. Since trace A; Ay = trace A, we have

trace Ay Ag = 2TO02 M) | oy 4 @ri00a+AL) _ g-2ridecs | g=2mikec

bObl — 67271'1?\0071 + 672m’)\m,2 _ e27‘!‘i(>\0,2+>\1,1) _ 6271—1;()\0’1+>\1’2)

)

_ e—2ﬂi>\oo,2 (627Fi(>\0,2+>\1,1+>\oo,2) _ 1)(627Ti(/\0,1+>\1,2+>\oo,2) _ 1)

_ em’(Ao,1+>\o,2+>\1,1+>\1,2) (Qi sin 7T(>\0,2 + >\1,1 + >‘0072))
. (2i sinm(Xo,1 + A12 + >\oo,2))
= de Aot 2) gin (Ao 2 + A1 + Aoo2) SINT(Ao2 + A1t + Aso1)-

The condition bpby # 0 implies that in (16) we may choose by and by by (14) for a

suitable matrix g € GL(2,C). Hence Theorem 3.1 ii) assures Ca,, 4, 4., € M.

Now we suppose (Ag, A1, As) is reducible. Then there exists a simultaneous
eigenvector vg of Ag and A, therefore

X' :={Cay.a,.4, | (Ao, A1, Ay) € GL(2,C)? is reducible and Ay A A = I}

= {CAO;AlyAZ

A = (C(L)Z Zi) (’L =0, 1,2) and Ax A1 Ay = ]2}

and X \ M C X'. Note that if we fix i € {0,1,2} and there exists an eigenvector
vy of A; with v € Cug, we may assume that A; is a diagonal matrix in the above.

According to the number N = #{i € {0,1,2} | a; = a}}, we can divide X’ into
Xy with N =0, 1 and 3:

X' = XU X; U X;5.
Suppose Ca,,4,,4, € Xo. Then 4, is diagonalizable and according to the

simultaneous diagonaizability of (Ag, A1, A2), we divide X, as follows.

Xo = XooUXp1,
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aibi .
A; = <Oa§>’ a; #a; (1=0,1,2)

Xo, = {CAU,Al,A2
A2A1AO = IQ, bO = v and bl =0

b

According to the existence of the scalar matrix in {Ag, A1, A3}, we have

ag V a; 0
Ay = A =
0 (0(10)’ 1 <Oa’1

AsA1Ag =1, and a; # }

X1 =X 04Xy,

X1 = {CAoyAlyAz’ CA17A27A07 CA27A07A1

Considering the number of scalar matrices in {4y, A1, A2}, we have

X3 =X33U X3, X309,

X33 0= {(aol2,a115, a215) | agaras = 1},

ap 1
~ Ay = , A1 = aqls,
X3 = {CA01A11A27 CA27A07A1’ CA17A27A0 0 <O a0> ' 1 }’
AQAlAO =1

a; b
A= 7 ,=0,1,2
= (G0) a=n1)

X3 = {CAD,Al,Az
AQAlAQ = IQ and boble 7& 0

b

We give examples of local monodromy matrices My and M; of the equation (6)
with the Riemann scheme (3). Here we assume A € C\ Z and denote (A, B) ~
(A’, B if there exists g € GL(2,C) satisfying A’ = gAg~! and B’ = gBg~'.

A0,1 A1,1 Aoo,1
{/\0,2 M2 >\oo,2} (Mo, M)
00 0 10y (T © 10\ (1 0
X0 {1 ) —A} ~ ((o 1)’ (1 eQWM>) ~ ((0 1)’ (0 e”“))
00 0 11\ (T 0
X141 {0 A 17/\} - ((0 1)’ (0&’”’*))
000 10\ (10
Xa3 {1 1 —1} - ((01)’ (01))
000 11\ (10
Xas {0 1 0} - ((01)’ (01))

These 4 examples satisfy (10) and (11) but do not satisfy (12). The last column in
the above table follows from the last claim of Theorem 3.1 ii).
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Now we note the following facts. If Cy g (pa)-1 € M, then Cp 4 (ap)-1 € M
and Cy (ap)-1,8 € M because of the symmetry of the equation (6) determined by

the Riemann scheme (3) and moreover Cy,4 4B, (abBA)-1 € M for (a,b) € (C\ {0})?
because of a suitable gauge transformation u +— 2 (1 — x)"u.

It follows from these facts that the above X; ; shows )}i’j C M for (i,5) = (1,0),
(1,1), (3,3) and (3,1).

Suppose there exist complex numbers ag and a; satisfying (Mg — ag)? =
(M — a1)? = 0 and moreover Co, My, (My M) € X'. Then (12) is not valid
and Theorem 3.1 ii) and iii) imply that at least one of My, M; and M; My is a
scalar matrix. Hence )2370 cX \ M.

Note that

{(ao, aj, a1,d’, az,ab) | {a;,a;} are the sets of eigenvalues of A; for Ca, 4, 4, €M}

= {(Cl, .. .,CG) S (CG | C1C2C3C4C5C6 = 1}.

Suppose Chry. iy M., € )?0. We may assume Mg 2 + A1,1 + Aoo,1 € Z. Owing to the
Fuchs relation (4), we may moreover assume

Aoz + A1+ A1 €4{0,-1,-2,...}
and hence
Mo+ M2+ Ao € {1,2,3,...}.
Since any one of M7 and Mj is not a scalar matrix, we have
A2+ A2+ A1 €Z and Moo+ A2+ A2 € Z.

In this case (10) and (11) are valid and (12) is not valid. Hence Theorem 3.1 ii)
assures bp = 1 and by = 0 in (13). Thus we have Xo N M = X ;.
Combining the facts we have proved, we have the theorem. O

Remark 3.2.  Using our classification of elements of )?, it is easy to show

X = {Crig,nty 1 | Mo, My and My are local monodromy matrices of

the equation Z—u = (AO + A )u with A; = <ai bi> ’
x

T 1—=x c; d;

(ai, bi,ciyd;) € CH for i =0 and 1}.
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