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A characterization of the monodromy group of Gauss

hypergeometric equation

Toshio Oshima and Kouhei Shimizu

Abstract. We give a characterization of the monodromy group
of the second order linear Fuchsian differential equation on the Riemann
sphere which has three singular points.

1. Introduction

Hilbert’s twenty-first problem asks the existence of a linear differential equation

of Fuchsian class with given singular points and monodromy group. Since the

existence is not always true when the equation is single, the original problem was

formulated as the problem of the existence of the first order Fuchsian system of

Schlesinger canonical form with given singular points and monodromy group, which

is called Riemann-Hilbert problem. Plemelj (cf. [Pl]) and independently Birkhoff

gave affirmative answers. But their arguments were not sufficient and in 1990

Bolibrukh [Bo] gave a counterexample. Then the problem was affirmatively proved

by Bolibrukh [Bo2] and Kostov [Ko] if the the monodromy group is irreducible.

In this paper we consider single linear Fuchsian differential equations of higher

order. When the spectral type of the monodromy group is not rigid, the problem

is not true in general because the number of accessory parameters is not sufficient.

But it is proved in [O1] that the problem is affirmative if the monodromy group

is rigid and irreducible. Also it is shown in [O1, Example 2.2] that the problem is

not affirmative if the monodromy group is ‘rigid’ but reducible.

In this paper we give a characterization of the monodromy group of a Fuchsian

differential equation of the second order with three singular points. In this case

the equation is essentially Gauss hypergeometric equation

(1) x(1− x)u′′ +
(
γ − (α+ β + 1)x

)
u′ − αβu = 0

and hence the result is classically known (cf. [IKSY, Chapter 2, Corollary 4.3.4],

[KS]). Here we give it by a simple argument based on a result in [O2], which
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studies Gauss hypergeometric equation only by an elementary calculus without

any integration.

2. A characterization

Let

(2) u′′ + a(x)u′ + b(x)u = 0

be a Fuchsian differential equation of the second order with three singular points

c0, c1 and c2 in the Riemann sphere. To study the monodromy group of this equa-

tion we may assume (c0, c1, c2) = (0, 1,∞) by a linear fractional transformation.

Then x(1− x)a(x) and x2(1− x)2b(x) are polynomials of degree at most 1 and 2,

respectively. Hence the equation (2) has 5 parameters.

Let

(3)

⎧
⎨

⎩

x = 0 1 ∞
λ0,1 λ1,1 λ∞,1 ; x

λ0,2 λ1,2 λ∞,2

⎫
⎬

⎭

be the Riemann scheme of the equation (2). Then we have the Fuchs relation

(4) λ0,1 + λ0,2 + λ1,1 + λ1,2 + λ∞,1 + λ∞,2 = 1.

Since Gauss hypergeometric equation is characterized by its Riemann scheme

⎧
⎨

⎩

x = 0 1 ∞
0 0 α ; x

1− γ γ − α− β β

⎫
⎬

⎭ ,

the equation (2) is obtained from (1) by the gauge transformation

u �→ xλ(1− x)µu

with

(5)

�
λ0,1 = λ, λ1,1 = µ, λ∞,1 = α− λ− µ,

λ0,2 = 1− γ + λ, λ1,2 = γ − α− β + µ, λ∞,2 = β − λ− µ



Monodromy group of Gauss hypergeometric equation 155

and the explicit form of (2) is

u′′ − λ0,1 + λ0,2 − 1

x
u′ +

λ1,1 + λ1,2 − 1

1− x
u′

+
λ0,1λ0,2

x2
u+

λ1,1λ1,2

(1− x)2
u+

λ0,1λ0,2 + λ1,1λ1,2 − λ∞,1λ∞,2

x(1− x)
u = 0.

(6)

Let (u1, u2) be a base of local solutions of the equation (6) at a generic point

x0 as in the following figure. Let γp be closed paths starting from x0 and circling

around the point x = p once in a counterclockwise direction for p = 0, 1 and ∞,

respectively, as follows.

×0 ×1 ×∞

∗

γ1

��

��

��

γ∞

��

��

��

γ0

��

��

��

x0

Let γpuj be the local solutions in a neighborhood of x0 obtained by the analytic

continuation of uj along γp, respectively. Then there existMp ∈ GL(2,C) satisfying
(γpu1, γpu2) = (u1, u2)Mp. Here GL(2,C) is the group of invertible matrices of size

2 with entries in C. The matrices Mp are called the local generator matrices of

monodromy of the equation (6) and the subgroup of GL(2,C) generated by M0,

M1 and M∞ is called the monodromy group. We note that the eigenvalues of Mp

are e2π
√
−1λp,1 and e2π

√
−1λp,2 and moreover we have

(7) M∞M1M0 = I2 (the identity matrix)

and if we differently choose x0 and (u1, u2), the set of local generator matrices

of monodromy (M0,M1,M∞) changes into (gM0g
−1, gM1g

−1, gM∞g−1) with a

certain g ∈ GL(2,C). If there exists a subspace V of C2 such that {0} � V � C2

and MpV ⊂ V for p = 0, 1, ∞, then we say that the monodromy of the equation

(6) is reducible. If it is not reducible, it is called irreducible.

Definition 2.1. For (A0, A1, A2) ∈ GL(2,C)3 we put

CA0,A1,A2
:=

{
(gA0g

−1, gA1g
−1, gA2g

−1) | g ∈ GL(2,C))
}
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and

M̃ :=

{
CM0,M1,M∞

∣∣∣∣
M0, M1 and M∞ are local generator matrices of

the equation (6) with λi.j ∈ C satisfying (4)

}

under the above notation.

Then the following theorem is our characterization of M̃ .

Theorem 2.2. Under the above notation, M̃ is a subset of

X̃ := {CA0,A1,A2 | Ai ∈ GL(2,C) (i = 0, 1, 2) and A2A1A0 = I2}

characterized by

X̃ \ M̃ =
{
CA0,A1,A2

∣∣∣ Ai =

(
ai 0

0 a′i

)
, ai ̸= a′i (i = 0, 1, 2) and A2A1A0 = I2

}

∪
{
CA0,A1,A2

∣∣∣ Ai =

(
ai bi
0 ai

)
, bi ̸= 0 (i = 0, 1, 2) and A2A1A0 = I2

}
.

Remark 2.3. i) The above theorem is equivalent to [IKSY, Chapter 2, Corollary

4.3.4].

ii) The characterization of the monodromy group of the Gauss hypergeometric

equation (1) is obtained by Theorem 2.2 imposing the condition

(8) rank(Ai − 1) ≤ 1 for i = 0 and 1.

3. Proof of the theorem

We will show Theorem 2.2 by the following result in [O2].

Theorem 3.1 ([O2, Theorem 8]). Retain the notation in the previous section.

Let M0, M1 and M∞ be local monodromy matrices of the equation (6) with (4).

i) (M0,M1,M∞) is irreducible if and only if

(9) λ0,1 + λ1,ν + λ∞,ν′ /∈ Z (∀ν, ν′ ∈ {1, 2}).

ii) Suppose

(10) λ0,2 + λ1,2 + λ∞,ν /∈ {0,−1,−2, . . .} (ν = 1, 2).
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We may assume

(11) λp,1 − λp,2 /∈ {1, 2, 3, . . .} (p = 0, 1)

by one or both of the permutations λ0,1 ↔ λ0,2 and λ1,1 ↔ λ1,2 if necessary.

When

(12) λ0,2 + λ1,1 + λ∞,ν /∈ Z (ν = 1, 2),

there exists g ∈ GL(2,C) such that the monodromy matrices satisfy

(13) (gM0g
−1, gM1g

−1) =
((e2πiλ0,2 b0

0 e2πiλ0,1

)
,

(
e2πiλ1,1 0

b1 e2πiλ1,2

))

with

b0 = 2e−πiλ∞,2 sinπ(λ0,2 + λ1,1 + λ∞,2),

b1 = 2e−πiλ∞,1 sinπ(λ0,2 + λ1,1 + λ∞,1).
(14)

When (12) is not valid, we have (13) with a certain g ∈ GL(2,C) and

b0 =

{
1 if λ0,1 + λ1,2 + λ∞,ν /∈ {0,−1,−2, . . .} (ν = 1, 2),

0 otherwise,

b1 =

{
1 if λ0,2 + λ1,1 + λ∞,ν /∈ {0,−1,−2, . . .} (ν = 1, 2),

0 otherwise.

(15)

Note that the Fuchs relation (4) implies b0b1 = 0 in this case.

iii) Under a change of indices λp,ν �→ λσ(p),σp(ν) with suitable permutations

(σ, σ0, σ1, σ∞) ∈ S3 ×S3
2 we have (10) and (11). Here S3 and S2 are identified

with the permutation groups of {0, 1,∞} and {1, 2}, respectively.

Proof of Theorem 2.2. We say (A0, A1, A2) ∈ GL(2,C)3 is irreducible if and

only if there exists no subspace V of C2 such that {0} � V � C2 and ApV ⊂ V

for p = 0, 1, 2.

Let (A0, A1, A∞) ∈ GL(2,C)3 with A∞A1A0 = I2. We can choose λi,j ∈ C such

that they satisfy (4) and the set of eigenvalues of Ai are {e2π
√
−1λi,1 , e2π

√
−1λi,2}

for i = 0, 1 and ∞, respectively.

First we suppose (A0, A1, A∞) is irreducible. We will prove CA0,A1,A∞ ∈ M̃ .

Since the eigenvector v0 of A0 with the eigenvalue e2π
√
−1λ0,2 and the eigenvector

v1 of A1 with the eigenvalue e2π
√
−1λ1,2 are linearly independent, there exists g ∈
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GL(2,C) satisfying

(16) (gA0g
−1, gA1g

−1) =
((e2π

√
−1λ0,2 b0
0 e2π

√
−1λ0,1

)
,

(
e2π

√
−1λ1,1 0

b1 e2π
√
−1λ1,2

))

with suitable complex numbers b0 and b1. Here the irreducibility of (A0, A1, A∞)

implies b0b1 ̸= 0. Since traceA1A0 = traceA−1
∞ , we have

traceA1A0 = e2πi(λ0,2+λ1,1) + b0b1 + e2πi(λ0,1+λ1,2) = e−2πiλ∞,1 + e−2πiλ∞,2 ,

b0b1 = e−2πiλ∞,1 + e−2πiλ∞,2 − e2πi(λ0,2+λ1,1) − e2πi(λ0,1+λ1,2)

= e−2πiλ∞,2(e2πi(λ0,2+λ1,1+λ∞,2) − 1)(e2πi(λ0,1+λ1,2+λ∞,2) − 1)

= eπi(λ0,1+λ0,2+λ1,1+λ1,2)
(
2i sinπ(λ0,2 + λ1,1 + λ∞,2)

)

·
(
2i sinπ(λ0,1 + λ1,2 + λ∞,2)

)

= 4e−πi(λ∞,1+λ∞,2) sinπ(λ0,2 + λ1,1 + λ∞,2) sinπ(λ0,2 + λ1,1 + λ∞,1).

The condition b0b1 ̸= 0 implies that in (16) we may choose b0 and b1 by (14) for a

suitable matrix g ∈ GL(2,C). Hence Theorem 3.1 ii) assures CA0,A1,A∞ ∈ M̃ .

Now we suppose (A0, A1, A∞) is reducible. Then there exists a simultaneous

eigenvector v0 of A0 and A1, therefore

X̃ ′ := {CA0,A1,A2
| (A0, A1, A2) ∈ GL(2,C)3 is reducible and A2A1A0 = I2}

=

{
CA0,A1,A2

∣∣∣∣ Ai =

(
ai bi
0 a′i

)
(i = 0, 1, 2) and A2A1A0 = I2

}

and X̃ \ M̃ ⊂ X̃ ′. Note that if we fix i ∈ {0, 1, 2} and there exists an eigenvector

v1 of Ai with v1 ̸∈ Cv0, we may assume that Ai is a diagonal matrix in the above.

According to the number N = #
{
i ∈ {0, 1, 2} | ai = a′i}, we can divide X̃ ′ into

X̃N with N = 0, 1 and 3:

X̃ ′ = X̃0 � X̃1 � X̃3.

Suppose CA0,A1,A2
∈ X̃0. Then A1 is diagonalizable and according to the

simultaneous diagonaizability of (A0, A1, A2), we divide X̃0 as follows.

X̃0 := X̃0,0 � X̃0,1,
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X̃0,ν :=

{
CA0,A1,A2

∣∣∣∣
Ai =

(
ai bi
0 a′i

)
, ai ̸= a′i (i = 0, 1, 2)

A2A1A0 = I2, b0 = ν and b1 = 0

}
.

According to the existence of the scalar matrix in {A0, A1, A2}, we have

X̃1 = X̃1,0 � X̃1,1,

X̃1,ν :=

{
CA0,A1,A2 , CA1,A2,A0 , CA2,A0,A1

∣∣∣∣
A0 =

(
a0 ν

0 a0

)
, A1 =

(
a1 0

0 a′1

)
,

A2A1A0 = I2 and a1 ̸= a′1

}

Considering the number of scalar matrices in {A0, A1, A2}, we have

X̃3 = X̃3,3 � X̃3,1 � X̃3,0,

X̃3,3 :=
{
(a0I2, a1I2, a2I2) | a0a1a2 = 1

}
,

X̃3,1 :=

{
CA0,A1,A2

, CA2,A0,A1
, CA1,A2,A0

∣∣∣∣
A0 =

(
a0 1

0 a0

)
, A1 = a1I2,

A2A1A0 = I2

}
,

X̃3,0 :=

{
CA0,A1,A2

∣∣∣∣
Ai =

(
ai bi
0 ai

)
(i = 0, 1, 2)

A2A1A0 = I2 and b0b1b2 ̸= 0

}
.

We give examples of local monodromy matrices M0 and M1 of the equation (6)

with the Riemann scheme (3). Here we assume λ ∈ C \ Z and denote (A,B) ∼
(A′, B′) if there exists g ∈ GL(2,C) satisfying A′ = gAg−1 and B′ = gBg−1.

{
λ0,1 λ1,1 λ∞,1

λ0,2 λ1,2 λ∞,2

}
(M0,M1)

X1,0

{
0 0 0
1 λ −λ

}
∼

((1 0
0 1

)
,

(
1 0

1 e2πiλ

))
∼

((1 0
0 1

)
,

(
1 0

0 e2πiλ

))

X1,1

{
0 0 0
0 λ 1− λ

}
∼

((1 1
0 1

)
,

(
1 0

0 e2πiλ

))

X3,3

{
0 0 0
1 1 −1

}
∼

((1 0
0 1

)
,

(
1 0
0 1

))

X3,1

{
0 0 0
0 1 0

}
∼

((1 1
0 1

)
,

(
1 0
0 1

))

These 4 examples satisfy (10) and (11) but do not satisfy (12). The last column in

the above table follows from the last claim of Theorem 3.1 ii).
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Now we note the following facts. If CA,B,(BA)−1 ∈ M̃ , then CB,A,(AB)−1 ∈ M̃

and CA,(AB)−1,B ∈ M̃ because of the symmetry of the equation (6) determined by

the Riemann scheme (3) and moreover CaA,bB,(abBA)−1 ∈ M̃ for (a, b) ∈ (C \ {0})2
because of a suitable gauge transformation u �→ xλ(1− x)µu.

It follows from these facts that the above Xi,j shows X̃i,j ⊂ M̃ for (i, j) = (1, 0),

(1, 1), (3, 3) and (3, 1).

Suppose there exist complex numbers a0 and a1 satisfying (M0 − a0)
2 =

(M1 − a1)
2 = 0 and moreover CM0,M1,(M1M0)−1 ∈ X̃ ′. Then (12) is not valid

and Theorem 3.1 ii) and iii) imply that at least one of M0, M1 and M1M0 is a

scalar matrix. Hence X̃3,0 ⊂ X̃ \ M̃ .

Note that

{(a0, a′0, a1, a′1, a2, a′2) | {ai, a′i} are the sets of eigenvalues of Ai for CA0,A1,A2
∈M̃}

= {(c1, . . . , c6) ∈ C6 | c1c2c3c4c5c6 = 1}.

Suppose CM0,M1,M∞ ∈ X̃0. We may assume λ0,2 + λ1,1 + λ∞,1 ∈ Z. Owing to the

Fuchs relation (4), we may moreover assume

λ0,2 + λ1,1 + λ∞,1 ∈ {0,−1,−2, . . .}

and hence

λ0,1 + λ1,2 + λ∞,2 ∈ {1, 2, 3, . . .}.

Since any one of M1 and M0 is not a scalar matrix, we have

λ0,2 + λ1,2 + λ∞,1 ̸∈ Z and λ0,2 + λ1,2 + λ∞,2 ̸∈ Z.

In this case (10) and (11) are valid and (12) is not valid. Hence Theorem 3.1 ii)

assures b0 = 1 and b1 = 0 in (13). Thus we have X̃0 ∩ M̃ = X̃0,1.

Combining the facts we have proved, we have the theorem. �

Remark 3.2. Using our classification of elements of X̃, it is easy to show

X̃ =
{
CM0,M1,M∞ | M0, M1 and M∞ are local monodromy matrices of

the equation
du

dx
=

(
A0

x
+

A1

1− x

)
u with Ai =

(
ai bi
ci di

)
,

(ai, bi, ci, di) ∈ C4 for i = 0 and 1
}
.
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