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Uniformizing model of type Az and almost Belyi functions

Jiro SEKIGUCHI

Abstract. We first review the result by K. Saito on the uni-
formization of the discriminant loci for the case of the root system of
type As. Then we formulate a generalization of his result and construct
three examples which satisfy the uniformizing model after K. Saito.

1. Introduction

The discriminant A(A3) of the polynomial f(t) = t*+ x1t? + 29t + x3 has many
interesting properties. Among others we focus our attention on the relation

_ﬁA(ALS) = Lo(z)* + Mo(x)*,

where Lo, My are polynomials (cf. (2), (3) in the main text). K. Saito ([3]) con-
structed a uniformization of the complement of A(As3) = 0 of C* with the help of
this relation. Noting that A(As) = 0 is also a free divisor, we are led to ask the
question whether there is a polynomial of three variables which defines a free divi-
sor and has a kind of the relation similar to (3). If there is a polynomial satisfying
these two conditions, it is expected to develop an argument analogues to [3]. The
author treated a generalization to the following case, namely, the case where there
exists a triplet of functions {F, L, M} of three variables satisfying

(A1) F, L, M are polynomials of (x1, 22, x3).

(A2) F =0 is a free divisor in the sense of [4].

(A3:p) F = LP + M? for some positive integer p.

See [6], [7] for details. It is underlined here that if p = 3, it is hard to find the
triplet {F, L, M} satisfying (A1), (A2), (A3:3) except the case of the discriminant
A(As3) treated by K. Saito.

In this paper we discuss a generalization of the above Saito’s result in another
direction. Namely we discuss the possibility of the existence of a triplet {F, L, M}
of three variables when Condition (A1) is changed to (A1)’ below while keeping
Conditions (A2), (A3:p):
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(A1)’ F is a polynomial but both L, M are algebraic functions of (x1, 2, x3).

If there is a triplet {F, L, M } with Conditions (A1)’, (A2), (A3:p), it is possible
to develop the argument in {F, L, M} similar to that in the case of the discriminant
of type As (cf. [3]).

Among others, it is one of basic problems to construct such triplets {F, L, M }
with Conditions (A1)’, (A2), (A3:p). The idea to perform this purpose employed
in this paper is the use of a generalization of Belyi functions, that is, the so called
“almost Belyi functions” introduced by A. V. Kitaev [2]. Then it is possible to
construct examples of the triplets at least in the case p = 3. We explain the reason
why the research on the almost Belyi function can be applied to the construction of
the triplet {F, L, M} with Conditions (A1)’, (A2), (A3:3) briefly. Some of almost
Belyi functions are realized in the following manner.

There are four weighted homogeneous polynomials hq, ho, h3, hy of three vari-
ables x1, xa, 23 with Conditions (E1), (E2):

(E1) he = 0 defines a free divisor in C3.

(E2) hihy = h3 + h3.

h3h
Then Z = “1.2 is an almost Belyi function introduced by A. Kitaev.

h3
We mnow focus our attention on Condition (E2). By putting
h
F=hy L= 5—3, M = —4, we obtain the relation given in (A3:3).
hl/ 3 h?/ 2

This observation suggests that some of almost Belyi functions provide triplets
{F, L, M} with Conditions (A1)’, (A2), (A3:3). Then it is worth checking to apply
the arguments in the case of the discriminant A(As) to such triplets {F,L, M}
constructed by the use of almost Belyi functions. The motivation of the present
study is to see if this attempt leads to a good conclusion or not. The purpose of this
paper is to construct examples of the triplet {F, L, M} and study some properties
of them. In spite that the result obtained is not satisfactory, the author hopes the
efforts developed in this paper will be useful for researches on free divisors, almost
Belyi functions and the uniformization.

The construction of this paper is as follows. In section 2, we review the result
by K. Saito [3] and in section 3, we will formulate the notion of the uniformizing
model of type Az and confirm the argument for the discriminant of type As hold for
the case of the uniformizing model of type As. The definition of the almost Belyi
function and its interpretation in terms of the use of free divisors are explained in
section 4. In section 5, we will construct three examples of the triplets {F, L, M}
by using almost Belyi functions. The first example is related with the free di-
visor defined by the polynomial Fg ¢ found in [5] and the almost Belyi function
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introduced in [9]. The second example is related with the discriminant of the real
reflection group of type Hsz. The third example is related with the almost Belyi
function found by Kitaev [2].

2. The case of A3z. A prototype

We give a survey on the result of [3] in this section.

The discriminant A(A3) of the polynomial of ¢ defined by f(t) = t* + x1t% +
rot + x3 coincides with the determinant of the matrix

21}1 31‘2 4I3

Ma(ay) = | 322 —x?2 + 4x3 *%SElIQ

4%3 7%561172 %(731’%4’8‘%11’3)

up to a constant factor. It is easy to see that A(As) defines a free divisor. This is
shown as follows. Let Vi, V5, V3 be vector fields defined by

H(Vi, Va, V) = Ma(ag) (O, Oy, Ons).
Then by direct computation, we have
VlA(Ag) = 12A(A3), ‘/QA(A?,) = 0, ‘/{),A(Ag) = 2]}1A(A3)

and these imply that A(As) = 0 is free.

The system of differential equations

Viu = —u,
VoVau = —3zou — 21 Vau,

VaVau = —xz3u — 2 Vou

is introduced in [3]. This is an example of uniformizing systems of equations sin-
gular along A(As) = 0. We will construct solutions of (1) following the idea by K.
Saito. We first introduce polynomials

1 1
(2) Lo(z) = —5(121‘3 +a?), My(x) = 5—4(230% + 2723 — 7211 73).
It is easy to see that

g ~ 105 A(As) = Lo(a)? + Mo()?,
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3
(4) ViLo =4Lo, ViMy = 6Mo, VaLo = VaMo = 0, ViLo = Mo, VMo = —3 L.

1
<V3 — 611V1> .

(5) P(t) = t* 4+ 3Lo(x)t + 2My(x)

Here we put

Vi =

N |

Let

be a cubic polynomial of . Then the following formulas are easy to show:
2
(6) P (—3361) = a2,

(Vi + 2t9;)P = 6P,

»(x)
) we) =5 [ Py

where ¢(z) = —221. Since P(p) = 23, we take the branch of P(t)*/? so that
P(p)'/? = 2. Then, by an argument explained in [3], we see that

Vin=-n, Ven=-1

To compute V4%, we first note that

l _}/SO 1(p—1/2 (VSIQO)
Vin=y | VAP 12

Vi = % {[: V(P Y2)dt + (VIP(t) %)=y - (Vi) + VI <(ij)> }
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5 {7 (= gt P2+ (P ey - () + v |
L {(Lo(a:)t4 — 3Lo(2)%% — ALo(x) Mo(2)t — 12(Mo(z)? + Lo(a:)3)))P(t)’3/2} e
+5{ 3PE iy () + 152 |
L (Lo(@)g" — 3Lo(2)26? — AL () My () — 12(Mo()? + Lo(2)?))

1623

+- {(VS’P(t)—lﬂ)t_w (Vi) + Vé((‘fw)}

2

—_

[\

It follows from direct computation that

1
‘/3/@ :§§02 +L07

1

V2o = §<p3 + Loy + Mo,
3

Vizey = 1972

V{P(t) = 3(Mot — L3).

As a consequence, we have

_ 3(Mop — L3) Vi 03 + 2Ly + 8M,
VIP(H) V2|, — 0 V(82 = .
SP) e L0yt or
Then
1
1622 (Lo(z)¢* — 3Lo(z)p? — 4Lo(x) Mo () — 12(Mo(z)* + Lo(2)?))
5

VAP ™)z - (V)

Lo(z)p* = 3Lo(x)?0® — 4Lo(x) Mo () — 12(Mo(x)? 4 Lo(x)?)
1623

3(Mop — Lg)(¢® + 2Lo)
83

1

s{Lo(z)¢* — 3Lo(x)*¢” — 4Lo(x) Mo(x) — 12(Mo(x)* + Lo()?)

T 1623
—6(Mop — L3)(¢” +2Lo)}
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_ P(p)(Loyp — 6M)

1623
- L()QD — 6M0
- 16$2

which implies

Lo(2)p* — 3Lo(x)?p® — 4Lo(x) Mo () — 12(Mo(x)* + Lo(x)?)

1623
1 _ V4
43 { 0Py - 0 + v |
T2 2

Therefore we obtain

L T
2 0 _ 2
<V3 16>’7 16°

Since Van = —1, we find that

1 1
12
Vi2p — _ — s )
3 N= 16132V277+ 16L0(33)77

As a consequence, it follows that the function n(z) is a solution of

Viu =—u,
2, _
) .
V3V2u = O,
Vi2u = —zx2Vou + 15 Lo(x)u.

It is easy to show that (1) is same as (9).
If u(z) is a solution of (9) such that Vau = 0, then u is a solution of the system
2 1
(10) Viu=—u, Vou =0, V3°u = 1—6L0u.
One method to solve this system is to reduce it to Gaussian hypergeometric differ-

L3+M?2 —1/4 .
T and u = L, '" f(z), we obtain

<V3/2— f60>u—9Lg/4 {x (19+112) <19+ 152) _192}f(x),

ential equation. In fact, putting x =
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1 5

12712
solution to (10). In this manner, we obtain three linearly independent solutions of

(1).

The equation P(—2z1) = 23 is equivalent to

d
where ¥ = T As a consequence, we find that u = L, 1/4F( ,Liz) is a

(11) Y2 =4X3 — g2 X — g3
under the correspondence

2
X = *g‘rla Y = 21’2, 92 = *]-QLOa gs = 78MO

Noting this and taking appropriate linearly independent solutions wuy,us of (10)
which are expressed by hypergeometric functions, we define a map

(21,22, 23) = (u1(x), us(z),n(x))

which is defined on the universal covering U of C* — {A = 0} and its image domain
coincides with

S = {(u1,u2,n) : Im(uy/uz) >0, muy +nug #n(Vm,n € Z)}.

By the theory of elliptic functions, the inversion map for (ui,us,n) : U — S is
realized by

(12)
9 1
—5331 —39(77’“1’”2 +Z { 77 mm—nw)2 - (mul +7W2)2}’
1

2 = =-273 /
T2 o' (n,u1, uz) {,73 +Z (n — muy —nu2)3}7

4 1
120 = - (12 1)=60) '—un.

0 3( 3 + 7) Z (muy + nug)*

3. Uniformizing models of type Ajs

In this section, we formulate an analogue of the result explained in the previous
section.

First we take a weighted homogeneous polynomial F'(z1,z2,x3) of three vari-
ables with weights w(z;) = d; (j = 1,2,3) such that di, ds, d3 are positive integers
and assume that d; < ds < ds. Then F = d1210,, + dax20y, + d3x304, is a vector
field such that EF = koF for some positive integer k.
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We assume that there are functions L = L(x1,x9,3),0 = @(x1,%2,23),T =
7(x1, 79, x3), vector fields V, W on C? and a positive number k; with the following
conditions:

(B].) EL = 4k1L, E(p = 2/{51@, Er = 3]’617 [E, W] = k1W, [E, V] = 2]171‘/,

0 L
det ( (¢, 7, L)

) is not identically zero,
a(xl, X2, ‘T3)

(B2)

(B3) 4L3 + (7% — ¢® — 3Lp)? = ¢ F for some non-zero number cy.
1 3 1

(B4) Vip = 5¢* + L, VT = J97, VL = o (7° = ¢ = 3Lg),

(B5) Wo =71, Wr = ;(gﬂ + L), WL =0.

DEerFINITION 3.1. A wuniformizing model of type As is the data
{F,L,M,E,V,W,p,7} consisting of a polynomial F = F(x1,x2,23), func-
tions L, M, o, T, vector fields E,W,V with the conditions (B1)-(B5).

As easy consequences of Conditions (B1)-(B5), we have the following.
(C1) Put M = 3(7% — ¢® — 3Ly) and P(t) = t* + 3Lt + 2M. Then P(p) = 72
and the discriminant of P(t) coincides with L? + M? up to a constant factor.

C2) VL =M, VM=—§L, WM =0, L3+ M? = 2F.
2 4

(C3) (V2= )P(t)~1/2 = L2 {(Lt* — 3Lt> — 4ALMt — 12(L% + M?))P(t)~3/2} .

(C4) We define vector fields E*, W*, V* on the (¢, 7, L)-space by

E* =200, + 370, +4L0L,
W* =79, + 3(* + L)0-,

1 3 1
Ve o= (§¢2 +L)0, + 970; + 5(72 —¢® —3Lp)r.

Then there is a natural correspondence
(E7 W’ V) H (klE*7 W*7 V*)

and 4L® + (172 — ¢ — 3Ly)? defines a free divisor on the (p, 7, L)-space and
E*, W* V* generate the Lie algebra of the logarithmic vector fields along the free
divisor 4L3 + (12 — 3 — 3Ly)? = 0.

Remark 3.2.  An identification between the variables x1,x2,x3 of §2 and p, T, L

2 1
is given by @ = —3%1, T =732, L= —§(12x3 + z2).
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Noting the property (C4), we define a system of differential equations

Fu =-ku,
W32y =0,
(13) VWu=0,
L T
Viu =(—=+ -W)u.
u (16+8 Ju

This system is an analogue to (9). This observation suggests that solutions to
(13) can be constructed by an argument similar to that developed in the previous
section, which we are going to do. We first introduce a function n(z) of z =
(21,2, x3) defined by

_ L T e
n(z) = 5 P(t) dt.

For a moment, we take a branch of P(t) such that P()'/? = 7. Tt is

clear from the definition that En = —kin. On the other hand, (B5) shows
1
that Wn = 5 This implies that W?2n = VWn = 0. Moreover using (B1)-(B5),
1
we find that V?2p= ELn—F 1LG This combined with Wn = 1/2 implies that
L

Vip = <16 + 1T6W> 7. As a consequence, 7)(x) is a solution to (13).

It is clear that the argument of the previous section shows

¢ =pn,u,uz)

1 ) 1 1
_?—FZ {(n—mul—nu2)2 B (mul—i-an)z}’

(14) 2r =g (n,u1, uz) (: _2{7713+Z/(77—muj—nu2)3 }> ’

1
—12L =60 e ——
Z (muq + nug)*

It is non-trivial to write down 1, z2,z3 by @, T, L.
We propose a few basic problems on the uniformizing model of type As.
(D1) Find the uniformizing models of type As.
(D2) Solve the system of equations (14) for z1,x9, x3.
(D3) Classify the uniformizing models of type As.

Remark 3.3.  In this paper, the problems (D1) and (D2) are treated but (D3)
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s not.

4. Almost Belyi functions

An almost Belyi function introduced by Kitaev [2] is an algebraic covering ¢ :
C — P! that branches above {0, 1,00} of P! and has exactly one simple branching
point outside the fibres {0, 1,00} of P1. One of the reasons why Kitaev introduced
almost Belyi functions is to construct algebraic solutions to Painlevé VI equation
with the help of almost Belyi functions (cf. [2]). There is a deep relationship
between some of almost Belyi functions and free divisors in three variables. We
explain a typical case of such almost Belyi functions. See [8] for the interpretation
of the almost Belyi functions in terms of free divisors. There are four weighted
homogeneous polynomials hy, hs, hg, hy of z1, 29, x5 with the following conditions.

(E1) hy = 0 is a free divisor in C3,

(E2) hihy = h3 + h3.
h3hs

Then (E2) implies that Z = defines an almost Belyi function. We focus

h
our attention on the equation of (E2), which is equivalent to
h3  h}
(15) hy = 2 + 2.
moon

There is a similarity between the last equation of the property (C2) and (15) by
putting
pe o et
1 1

This suggests the possibility of constructing examples of uniformizing models of
type Az with the help of almost Belyi functions. It is underlined here that L
and M are not polynomials but algebraic functions of z1,z2,x3. Even assuming
Conditions (E1), (E2), we need to show the existence of the functions ¢ and 7 to
reach the goal. Therefore we focus our efforts on the discovery of ¢, 7 in each case
of almost Belyi functions. The meaning of ¢, 7 is left to future research.

5. Examples of uniformizing models of type Ajs

In this section, we focus our attention on the construction problem of uniformiz-
ing model of type As. We treat three examples of uniformizing models of type As
which are constructed with the help of almost Belyi functions. In the first exam-
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ple, the problems (D1), (D2) explained in §3 are solved. In the second and third
examples, (D1) is solved but (D2) is still open.
5.1. Example 1: Free divisor defined by Fpg g

We start with the 3 x 3 matrix

T 21’2 3%3
— (523 = 3zy)  (—dwima+ 15w5)  2(923 + bryay)

101‘3 — 96z —9x .1‘2 — 5$2$
1 1 142 1 2 1 142 143
= — 1o(4x 251 2
15 <+15.’L‘3 ) 30 2( 1 2) 5 <—|—10l‘2$3 >

Mpe =

The polynomial fy = det(Mp ) defines a free divisor same as Fg ¢ introduced in
[5]. Let V1, Va, Va3 be vector fields by using Mp ¢ similar to the case of As. In this
case, it is easy to show that

Vifo=9fo, Vafo=0, Vsfo=0.

There is an almost Belyi function related with the polynomial fy which we are
going to introduce. Let Fg,Gs, Ps be the polynomials of z,s defined in [9, p.§],
namely

Fy =9(s + 1)%23 — 24s(s + 3)2? + 8s(11s — 1)z + 4852,
Gg =22 — 2sx — s,
Py =3(s+1)%z* — 4s(s + 3)a + 12s(s — 1)2? + 2452 + 852,

We also define (cf. [9])

(s +1)22°Fy

P59 = G
Then
P?
1= _-8
vs(9) 645G2’

which is equivalent to the identity
(16) (s+ 1)%2°F5 — 64sG3 — P = 0.

To connect Fg,Gg, Ps with the polynomial fj, we introduce rational functions Z, §
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of 1,9, 3 by

2

T1T3 —x7

§:

T = —- R
3x3 7 x? — 4xo

and polynomials hq, hs, hs, hy by

hy =3,

hy = 92125 + 6232303 — 22373 + 2303 — 6212923 + 23,

hs =923 + 6x 2373 + 2303 — dwo2?,

hy = 2725 + 27z 12523 + 9230323 — 182323 + 2323 — 6wyw073 + 224,

Then it is straightforward to show that

161‘3}12
Fy(%,8) = 05—
5(2:9) 3(x? — dwo)2a3’
G2, 5) = 510
r.8)—=—7-—-—-
s 9(x? — dwg)xy’
8xth
Py(#,5) = gz

27(2? — 4a9)22§’

We note that fo = —3ha. Moreover, the identity equation (16) turns out to be the
relation

(17) 4hihy + b3 — h3 =0

among hi, ho, hs, hy. Following the argument in the previous section, we put

hs ha
(18) L=——F-, M=—7:.
hi’/?’ h?/2
Then (17) turns out to be
(19) —4ho + L? + M? =0,

which is an analogue of (3) and (B3). We introduce vector fields

5/6

1 1 _
(20) V= 7207(1&@21/3 + (9r1w — 1023)Vo), W = S 2 (11 Vy + 2V3).
T3



Uniformizing model 175

It is easy to check that

VL:M,VM:—;ﬂ WL=WM =0.
We put
P(t) =1+ 3Lt + 2M,
(21) o = (33— 2mws)ay
T =9z120 — 2333)3:;1/4.

Then it is straightforward to show that (B1)-(B5) hold for ¢ and 7.

Summarizing the above argument, we obtain the following.

THEOREM 5.1. Put E = 210y, + 22205, + 32304, Then
{F,L,M,E,V,W,p,T} is a uniformizing model of type As, where F = det(Mp )
and L, M,V,W,p, T are defined by (18), (20) (21).

As a consequence, we construct a uniformizing model of type Az from the

polynomial fo = det(Mpg).

The problem (D2) is the next one to solve. It is equivalent to solve

(22) Y= p(777u17u2)7 2T = @/(777U17U2)7 —12L = 92,

which is a system of algebraic equations for z1,z2,x3 (cf. (14)).

In the rest of this subsection, we study (22) in detail. We first introduce y1, y2, y3
by

(23) y1= a1 fey oy = aa/ay ", ys =y
These imply

5/9 10/9 5/3 8/3
(24) T = ylyg/ , T2 = Y2Y3 / , T3 = ysyg/ = ys/ .

Then we have

© =3y3 — 2y1ys,

(25) 7 =y3(9y192 — 2y3),
L=—9y35 + 6y193ys + yiy3 — 4y213).

Noting (22) and (25), we introduce the system of algebraic equations for yi,ys,ys
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by

3y2 — 2y1y3 — X =0,
(26) 2y3(9y1y2 — 2y3) — Y = 0,
12(9y3 + 6y1y3ys + y7y3 — 4y2y3) — g2 = 0.

Note that X,Y, go are constants but these come from elliptic curve
Y2 =4X3 — g, X — gs.

For a moment, g3 is regarded as the constant defined by g3 = 4X3 — g, X — Y2,
From the first equation of (26), it follows that

_ Syg—X

27
(27) Y1 o

Then the second and third equations of (26) are reduced to

_ 3 2 _

g2 — 3X? + 54 Xy3 — 243y5 + 48y2y3 = 0.
To solve (28), we recall some basic properties of elliptic functions. We first factorize
AX3 = goX — g3 = 4(X — e1)(X — e2)(X — e3).

and introduce q1,42,93 by ¢; = /X —e; (5 =1,2,3). (Usually g, is denoted by
oj/o in the elliptic function theory.) Then

Y2 =4(X —e)(X —e)(X —e3) = 4q%q§q§.
Noting this, we assume that ¥’ = —2¢1¢2q3. Since X = e;+¢7, and e; +ez+e3 = 0,

a+a

2
it follows that X = 3 + 5 Asa consequence

4
g2 = —g(q?qg + @19+ B~ — @ —ds).

Eliminating the terms of equations in (26) containing y2, we obtain

(29) 8lys — 54X y2 —12Yys + g2 — 3X2 =0,
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which is regarded as an algebraic equation for ys. Since

8lys — 54Xy3 — 12Yys + g2 — 3X?
5 2 1 1 5 2 1 1
=81(y; + -q1y2 — §(X +2e1) + 9—1Y Y5 — =q1y2 — = (X +2e1) — —Y

3 3 9 9q1
+q2 + ¢ — g —
—81 (gt O q?)z %) <y2+q1 q32 qs)
—q1+ g2 — —q1 — @2 +
X(yz + q1 52 Q3) (y2 + q1 3212 (J3>’

it is easy to solve (29). As a consequence,

Q1 +q2+qs3

(30) Yo = — 3

is one of solutions to (29). Assuming that ys is given by (30), we have

(g2 + 43)(g3 + q1) (@1 + q2)

Y3 =—
2 b
(31) g = Q293 +q3q1 + 1G2
3ys
Finally, taking
U—_ (92 +a3)(g3 + @1)(q1 + g2)
2 b
we obtain
g = 2B tBnt+ g U-2/9
1 3 )
(2) _ et e
3
I3 = U4/3.
Concerning hs, hs, hy, p, T, we have
1
hy === (a5 — 43)*(a5 — ¢1)*(ai — 43)%,
1
hs ==(qi + a3 + 43 — 6303 — 301 — 41 43)U/°,

9

1
ha Z—Q(—%ﬁ + 3+ @3)(a} — 243 + @3)(q} + @3 — 2¢3) U3,
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1
=—(i+ 6 +d3),

w3(

T = —{194293-

5.2. Example 2: The discriminant of the real reflection group of
type Hj

Let Fio,G1a, P2 be the polynomials of z, s introduced in [9, p.5]:

Fig =a* —4(s +3)2% + (s + 65+ 14)22 + 2(s + 6)x + 1,

Gia=s23 —4(s2 +3s — 1)2? — 4(2s + 11)x — 4,

Pig =22% — 12(s + 3)2® + 15(s? + 65 + 10)z* + 2s(s? + 9s + 15)x3
+6(s? 4+ 9s + 25)z2 + 6(s + 6)z + 2.

27(8 + 4)3 $5G12

We also introduce the map (i2(x,s) = which coincides with

4 F
1/¢p12 in [9]. It is easy to check that
(33) 4F3, —27(s +4)32°G19 — PE = 0.
213 2(x3 — 2
We introduce Z, § by & = ?2 + 2173 , §= (2 xZ), which are rational func-
(] — 222) 22 To

tions of x1, xo,x3. We write (12(Z, §) by 1,22, x3. For this purpose, we introduce
weighted homogeneous polynomials of type (1,3,5) by
hi, =23 — 2,
hip :2:52 + x173,
h1 =highas,
hy =50x3x5 — 10825 + 40xi2525 — 902 2525 + 82503 — 200tw003 — 23,
hs =252%x3 — 1282525 + 1602225 + 20292223 — 100282325 4+ 80232523
+ 9625w3 + 4w1%23 — 202 w023 — 10x1m2x3 + 80z w323 — 8x5ah
+ 20232023 + 23,
hy =12521225 — 960225 + 31202825 — 51202329 + 3456230 + 15022523
— 113421%25 23 + 39602 2525 — 74402 w525 4+ 576021 2523 + 6021 2302
— 45021 o ad + 18752 w303 — 4440252505 + 4080232523 + 81 ah

— 6021 2wy + 3902 w323 — 1280282323 + 1320032523 + 1442523 + 302123
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— 150z ] xoxs + 1350 232 + 1202 2325 — 122525 + 30232925 + 5.

~ 108h3hs

Then (12(%,3) = —3 It is easy to show that
3

(34) 108h3hy + b — b3 = 0,
which is equivalent to the relation (33). As a consequence, we have

hi

1—(12(2,8) = 73
3

In this case, ho is regarded as the discriminant of the reflection group of type
Hjs. In particular hg = 0 is a free divisor in the (x1, 9, x3)-space. To show this,
we introduce a matrix Mg, by

T 3To 5x3
My, = 2 (423 — 9z2), T3 — 2, (323 + 2z123)
$(—1627 + 40z3xs + 323) Swixd 12(62323 — 923 + datas — dwizaas)

and define vector fields V; (j = 1,2, 3) by
"(V1,V2, V) = M, (O, Ory Ory)-
Then
det(Mp,) = 5ha, Viha = 15hs, Voha =0, Vihy =0,

which actually show that hy coincides with det(Mp,) up to a constant factor and
that ho = 0 defines a free divisor. Putting Z = (12(%, §), we have

ha
hihs

hy

VoZ = —10x -
2 o hihs

- Z, VZ =10(2z% — 1) -

223 —
Noting these equations, we define Vi = V3 + M‘/Q. Then V4 Z = 0. Moreover,
T
we have

20
Vglhl = —4$1$2h1, Vg/hg = —§x1$2h3, Vglh4 = —105611’2h4,
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In this case, we define

(35) th%jg, M.h}%j?.

Then it follows that

(36) 108hy = L? + M?.

We put

(37) V= —20;/6 {325(227 — baizy — x3)Va + (3aizy — 823 — 2123)V3} .

3
Then VL =M, VM = —§L2. Noting these, we introduce a polynomial of ¢ by

P(t) = t3 + 3Lt + 2M. We are going to find functions ¢ = (21,72, 23) and
7 = 7(21, 22, 73) such that P(p) = 72. After a little tedious computation, we find
that

$o
(38) Y= 5760
ny/
where
o = —Trirs + 162125 — 42523 + 10030003 + 23,
Then
108x2h?2
P(SD) = 122 L °
hy/
Moreover we put
V31
(39) W= PR (227 — 22)Va 4 21 V3).
1
Then
W = 6v/329h1,

hi/t
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These identities imply that

P(p) = (We)*.
On the other hand, it is easy to show that

WL=WM =0.
Comparing the argument above with that in the previous section, we define

T0 = 6 - 31/21'2]7,1,1

and
T0
(40) T=—
i/
Then

Moreover, by direct computation, we find that (B1)-(B5) hold.

THEOREM  5.2. Put E = 210y, + 32205, + 52304,. Then
{F,L,M,E,V,W,p,7} is a uniformizing model of type Az, where F = hy

and L, M,V,W, @, are defined by (35), (37), (39), (38), (40).
The proof of this theorem is a consequence of the argument above.

We have thus constructed a uniformizing model of type Az from the discriminant
of the reflection group of type Hsz. The problem to be done is to solve

Y=y, 21=1ys, —12L =ys,

which is a system of algebraic equations for x1, zs2, x3, where y1, Y2, y3 are constants
(cf. (22)). This problem is not solved in the present paper and left to the future
study.

5.3. Example 3: The almost Belyi function constructed by A. V.
Kitaev
We treat one of the almost Belyi functions constructed by Kitaev [2]. We define
a function z of z; and s by

2533(s? — 5)° (21 —a)5(21 — 1)%21(21 — 1)
(s+3)%(s —2)0  (2f + c32] + ca2? + 121 + )’

(41) z=—
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where

t = (5=2)%(s+3)%

__s*(s°=5)*

€0 = 2a(513)3(s—2)0>
(—5+52)%(45—7554+6552 —355°4+8s%)

1=- I(—2+5)5(3+s)7 )
_ 5(=148)(=5+5%)*(—9-3s+25%+25%)

2= 2(—2+5)3(3+5)7 )
_ 2(s?—5)(25%+552—15)

B= 7T G322 -

By definition, z is an almost Belyi function.

We introduce a free divisor defined by the matrix Mg,, below:

I 2$2 51‘3
Mg,, = | ma1 maa ma3 |,
m31 M32 M33

where

Moy = —2(3627 + 31x2z9 + 623),

Moo = 361}%%2 + 8%11‘% + 3z3,

Moz = 201 (922 + 4a9)73,

may = —4322% — 396231y — 887122 + 33,
ma3g = —4x9(—54x] — 152329 + 223),

maz = 20(54at + 2723wy + 223)w3.

Let Vi,Va, Vs be the vector fields defined by Mg,, as before. Putting fo =
det(MEg,,), we find that

Vifo=15fy, Vafo = Vsfo =0.

This shows that fo = 0 is a free divisor.

Remark 5.3.  We remark on the polynomial fy introduced in this subsection.
If x1 = 0, then fo turns out to be x3(x3 — 32x3) up to a constant factor. This
implies that if x1 = 0, the curve defined by fo = 0 has the Ei3-singularity in the
sense of Arnol’d. Moreover, regarding x1 as a parameter, fo = 0 defines a family
of curves in the (xq,x3)-plane which is a deformation of the E13-singularity. The
polynomial fy coincides with the polynomial introduced in [1, §7.1].

To rewrite the almost Belyi function z defined above in terms of the coordinate
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(21,2, x3), we introduce polynomials hi4, hip, b1, ha, b3, ha by

hiq =222 + 29,

hip = 23 + 123,

hi = hiahas,

hy = —200xiz3 — 1602223 — 3225 — 2162575 — 18032923 — 40212373 + 3,

hs =400xiz§ + 3202229 + 64210 + 1024252523 + 800232573 + 160212523
+6402$2323 + 3202 2323
—40z3z423 — 322323 — 1922325 — 160232203 — 40212323 + 24,

hs =8000z5x1? + 9600z 213 + 3840x221* + 51223° + 3072027293
+36288x5 21023 + 144002323 w3 + 192021 21225 + 49920252523
+63360x82223 + 30000212523 + 6240232323 + 48023023 + 409602 2323
+59520x 2323 + 3552025 x523 + 10240232523 + 120021 2323 + 1382421023
42304028 x923 + 16320252325 + 52802 z3x] + 540z x5y — 482573
—288x7 x5 — 240x3 w92} — 60z 2375 + 5.

Note that x3ho coincides with fy up to a constant factor. By direct computation,
we find that

(42) 210 33n3a2hy — B3 + 13 = 0.

210 3345120,

Then Z = h§

is the almost Belyi function essentially the same as z

h2
introduced in (41). In particular, (42) shows that Z — 1 = —h—é. This reflects an
3
important property of the almost Belyi function.

We define vector field V, W by

1
102/ 0R3/
(43) + (62222 + 25 + x123)V3},

31/2
W == () {1V — (623 + 22)V2)

{(=362322 — 14z 25 — 22323 + w223) Vi

and functions L, M by

hs hy

(44) L= M=-—12_.
Ve 225
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It is easy to see that

VL=M, VM= —%L{ WL=WM =0.

We put

P(t)=t%+ 3Lt +2M,

o = 20223 + 825 — 80x3 w073 — 2071 2303 + 23
(45) xé/ﬁ(h0h2)5/6 ’

;- _93.33/2 ,3/4 —20xtxs — 102325 — 25 + 4afxs

3 (h0h2)5/4 !
Then
Plp) =12 Wep=r.
THEOREM  5.4. Put E = 210y, + 22205, + 52304,. Then

{F,L,M,E,V,W,p,T} is a uniformizing model of type Az, where F' = det(Mg,,)
and L, M, V. W, p,T are defined by (44), (43), (45).

The proof of this theorem is a consequence of the argument above.
We have thus constructed a uniformizing model of type Az from the polynomial
defining the free divisor fy = 0.

The problem to be done is to solve
Y = Y1, 2T:y27 _12[/:3}37

which is a system of algebraic equations for x1, zs, x3, where y1, y2, y3 are constants
(cf. (22)). This problem is not solved in the present paper and left to the future
study.
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