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A revisit to periodic continuants

Genki Shibukawa

Abstract. We give a simple proof of some explicit formulas

of periodic continuants by Chebyshev polynomials of the second kind
given by Rózsa. We also mention an application of these explicit for-
mulas to q-analogue of rationals and continued fractions introduced by

Morier-Genoud and Ovsienko.

1. Introduction

Let Z≥p be a set of integers greater than or equal to p. For an integer p

and infinite complex sequences ap := (am)m∈Z≥p
, bp := (bm)m∈Z≥p

and cp :=

(cm)m∈Z≥p
, we put

αp := (ap,bp, cp).

We define the (extended) continuant polynomials Kn(αp) by

K−1(αp) := 0, K0(αp) := 1, K1(αp) := ap, Kn(αp) := det Tn(αp),

where Tn(αp) is the following n× n tridiagonal matrix:

Tn(αp) =




ap bp 0 · · · 0 0

cp ap+1 bp+1 · · · 0 0

0 cp+1 ap+2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · ap+n−2 bp+n−2

0 0 0 · · · cp+n−2 ap+n−1




.

There has been many research on continuant polynomials in relation to con-

tinued fractions and orthogonal polynomials. For continuant polynomials, several

properties have been well known since Euler, especially regarding some explicit for-
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mulas [3]. P. Rózsa [2] considered for a positive integer l the following l-periodicity

condition for the sequences ap,bp and cp

am+l = am, bm+l = bm, cm+l = cm,

and proposed an explicit formula of l-periodic continuantKn(αp) by the Chebyshev

polynomials of the second kind.

In this article, we give another proof of this explicit formula. While Rózsa’s

proof is based on direct calculations of the determinant of the definition for con-

tinuant polynomials, our proof uses only 2 × 2 matrices. We also mention some

examples of this explicit formula related to q-deformed rationals and q-continued

fractions introduced by Morier-Genoud and Ovsienko [1]. Since Morier-Genoud

and Ovsienko related their q-deformations of rationals and continued fractions to

the Jones polynomials of rational knots and the F-polynomials of a cluster algebra

with coefficients respectively, our explicit formulas for the periodic continuants are

useful to give explicit expressions by the Chebyshev polynomials of some examples

of the Jones polynomials and the F-polynomials.

2. Preliminaries

Throughout the paper, we denote the ring of rational integers by Z. We set the

Gauss hypergeometric function

2F1

(
a, b

c
;x

)
:=

∑
m≥0

(a)m(b)m
m!(c)m

xm, (a)m :=

{
a(a+ 1) · · · (a+m− 1) (m ̸= 0)

1 (m = 0)
.

Chebyshev polynomial of the second kind is defined by

Un(x) :=(n+ 1)2F1

(
−n, n+ 2

3
2

;
1− x

2

)
=

n∑
k=0

(
n

k

)
(n+ 1)k+1(

3
2

)
k

(
1− x

2

)k

,

(
n

k

)
:=

{
n(n−1)···(n−k+1)

k! (k ̸= 0)

1 (k = 0)
.

It should be remarked that by the definition of Un(x) we have

U0(x) = 1, U−1(x) = 0, U−2(x) = −1.
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The generating function for the Un(x) is

(1)
1

1− 2xu+ u2
=

∑
n≥0

Un(x)u
n.

Let hn(x, y) denote the bivariate complete homogeneous symmetric polynomials

of degree n

hn(x, y) :=
∑

i+j=n
0≤i,j≤n

xiyj =
xn+1 − yn+1

x− y
.

The generating function for the hn(x, y) is

(2)
1

(1− xu)(1− yu)
=

∑
n≥0

hn(x, y)u
n.

By (1) and (2) we have

hn(x, y) =



(xy)

n
2 Un

(
x+y
2
√
xy

)
(xy ̸= 0)

(x+ y)n (xy = 0)
.(3)

Lemma 2.1. Let A be a complex matrix

A :=

(
a b

c d

)

and E2 be the 2× 2 identity matrix. For any positive integer m, we have

Am = hm−1(ρ+, ρ−)A− hm−2(ρ+, ρ−)(det A)E2(4)

=




(det A)
m−1

2 Um−1

(
tr A

2
√
det A

)
A

−(det A)
m
2 Um−2

(
tr A

2
√
det A

)
E2 (det A ̸= 0)

(tr A)m−1A (det A = 0)

.

Here ρ+ and ρ− are the roots of the characteristic polynomial det (λE2 −A).

Proof. We consider Euclidean division for λm and det (λE2 −A) = (λ−ρ+)(λ−
ρ−). By the Euclidean theorem for division of polynomials, there exist unique
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polynomial q(λ) and two constants c1, c0 such that

λm = q(λ)(λ− ρ+)(λ− ρ−) + c1λ+ c0.(5)

By substituting ρ± for λ in (5), we have

ρm± = c1ρ± + c0.

Hence we obtain

c1 =
ρm+ − ρm−
ρ+ − ρ−

= hm−1(ρ+, ρ−),

c0 = −
ρm+ρ− − ρ+ρ

m
−

ρ+ − ρ−
= −hm−2(ρ+, ρ−) det A.

We remark that these expressions hold even if the case of ρ+ = ρ−. □

Example 2.2 (Power of a quaternion). Let a, b, c, d be real numbers. We define

2× 2 matrices Q, I, J and K by

Q = Q(a, b, c, d) = aE2 + bI + cJ + dK =

(
a+ b

√
−1 c+ d

√
−1

−c+ d
√
−1 a− b

√
−1

)
̸=

(
0 0

0 0

)
,

I :=

(√
−1 0

0 −
√
−1

)
, J :=

(
0 1

−1 0

)
, K :=

(
0

√
−1√

−1 0

)
,

which is a matrix realization of a quaternion:

q = a+bi+cj+dk ∈ H := {a+bi+cj+dk | a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1}.

By substituting

det Q = a2 + b2 + c2 + d2 =: |Q|2, tr Q = 2a

and A = Q in (4), we have

Qn = |Q|n−1Un−1

(
a

|Q|

)
Q− |Q|nUn−2

(
a

|Q|

)
E2

= |Q|n
{

a

|Q|
Un−1

(
a

|Q|

)
− Un−2

(
a

|Q|

)}
E2

+ |Q|n−1Un−1

(
a

|Q|

)
(bI + cJ + dK)
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=
|Q|n

2

{
Un

(
a

|Q|

)
− Un−2

(
a

|Q|

)}
E2

+ |Q|n−1Un−1

(
a

|Q|

)
(bI + cJ + dK).

The last equality follows from the Pieri’s formula for Un(x):

2xUn(x) = Un+1(x) + Un−1(x).

If we put

Q(a, b, c, d)n = An(a, b, c, d)E2 +Bn(a, b, c, d)I + Cn(a, b, c, d)J +Dn(a, b, c, d)K,

then we obtain

An(a, b, c, d) =
|Q|n

2

{
Un

(
a

|Q|

)
− Un−2

(
a

|Q|

)}
= |q|nTn

(
a

|q|

)
,

Bn(a, b, c, d) = b|Q|n−1Un−1

(
a

|Q|

)
,

Cn(a, b, c, d) = c|Q|n−1Un−1

(
a

|Q|

)
,

Dn(a, b, c, d) = d|Q|n−1Un−1

(
a

|Q|

)
,

where Tn(x) is Chebyshev polynomials of the first kind defined by

Tn(x) := 2F1

(
−n, n

1
2

;
1− x

2

)
=

n∑
k=0

(−1)k
(
n

k

)
(n)k(
1
2

)
k

(
1− x

2

)k

, Tn(cos θ) = cosnθ.

The most right hand side of An(a, b, c, d) follows from

1

2
{Un+1(x)− Un−1(x)} =

1

2

{
sin (n+ 1)θ

sin θ
− sin (n− 1)θ

sin θ

}
= cosnθ = Tn(x).

Lemma 2.3 (Fundamental properties of continuant polynomials).

1)

K−1(αp) := 0, K0(αp) := 1,(6)

Kn(αp) = apKn−1(αp+1)− bpcpKn−2(αp+2).
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2) Let

L(α, β) :=

(
α β

1 0

)
,

An(αp) := L(ap,−bpcp)L(ap+1,−bp+1cp+1) · · ·L(ap+n−1,−bp+n−1cp+n−1).

We have

An(αp) =

(
Kn(αp) −bp+n−1cp+n−1Kn−1(αp)

Kn−1(αp+1)−bp+n−1cp+n−1Kn−2(αp+1)

)
.(7)

Especially

tr An(αp) = Kn(αp)− bp+n−1cp+n−1Kn−2(αp+1),(8)

det An(αp) =
n∏

j=1

bp+j−1cp+j−1.

3) Put

kn+1(αp) :=

(
Kn+1(αp)

Kn(αp+1)

)
.

For any integer m such that n ≥ m, we have

kn+1(αp) = Am(αp)kn+1−m(αp+m).(9)

4) If for any integer n cn = −1, then we have

ap +
n−1

K
i=1

bp+i−1

ap+i
=

Kn(αp)

Kn−1(αp+1)
,(10)

where

ap +
n−1

K
i=1

bp+i−1

ap+i
:= ap +

bp

ap+1 +
bp+1

ap+2 +
bp+2

. . .
ap+n−2 +

bp+n−2

ap+n−1

.

Proof. 1) It follows from the definition of Kn(αp).
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2) When n = 1, (7) holds. Assume the result true for n. From induction on n and

(6), we have

An+1(αp) = L(ap,−bpcp)An(αp+1)

=

(
ap −bpcp
1 0

)(
Kn(αp+1) −bp+ncp+nKn−1(αp+1)

Kn−1(αp+2)−bp+ncp+nKn−2(αp+2)

)

=

(
Kn+1(αp+1) −bp+ncp+nKn(αp+1)

Kn(αp+1) −bp+ncp+nKn−1(αp+1)

)
.

Here, the third equality follows from (6).

3) By the definition of Kn(αp) and (6),

kn+1(αp) =

(
Kn+1(αp)

Kn(αp+1)

)

=

(
apKn(αp+1)− bpcpKn−1(αp+2)

Kn(αp+1)

)

= L(ap,−bpcp)kn(αp+1).

Hence

kn+1(αp)

= L(ap,−bpcp)L(ap+1,−bp+1cp+1) · · ·L(ap+m−1,−bp+m−1cp+m−1)kn+1−m(αp+m)

= Am(αp)kn+1−m(αp+m).

4) It follows from (6) and induction on n. □

3. Main results

Under the following we assume

ap+l = ap, bp+l = bp, cp+l = cp (p ∈ Z),

that is to say

αp+l = αp.(11)
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Theorem 3.1. For any positive integer m, we obtain

(12)

Klm(αp)

=





(det Al(αp))
m−1

2 Um−1

(
tr Al(αp)

2
√

det Al(αp)

)
Kl(αp)

−(det Al(αp))
m
2 Um−2

(
tr Al(αp)

2
√

det Al(αp)

)
(det Al(αp) ̸= 0)

(tr Al(αp))
m−1Kl(αp) (det Al(αp) = 0)

,

(13)

Klm−1(αp+1)

=



(det Al(αp))

m−1
2 Um−1

(
tr Al(αp)

2
√

det Al(αp)

)
Kl−1(αp+1) (det Al(αp) ̸= 0)

(tr Al(αp))
m−1Kl−1(αp+1) (det Al(αp) = 0)

.

Proof. By (9) and periodicity (11)

klm(αp) = Al(αp)kl(m−1)(αp+l) = Al(αp)kl(m−1)(αp).

Then we have

klm(αp) = Al(αp)
mk0(αp).

When

det Al(αp) =

l∏
j=1

bp+j−1cp+j−1 ̸= 0,

from (4) we have

Al(αp)
m = (det Al(αp))

m−1
2 Um−1

(
tr Al(αp)

2
√
det Al(αp)

)
Al(αp)

− (det Al(αp))
m
2 Um−2

(
tr Al(αp)

2
√
det Al(αp)

)
E2.

If det Al(αp) = 0, then

Al(αp)
m = (tr Al(αp))

m−1Al(αp).
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Finally, by (7)

Al(αp) =

(
Kl(αp) −bp+l−1cp+l−1Kl−1(αp)

Kl−1(αp+1)−bp+l−1cp+l−1Kl−2(αp+1)

)

=

(
Kl(αp) −bp−1cp−1Kl−1(αp)

Kl−1(αp+1)−bp−1cp−1Kl−2(αp+1)

)
.

By comparing the entries of the vector klm(αp), we obtain the conclusion. □

Our main result follows from this theorem immediately.

Theorem 3.2. For any positive integer m and j = −1, 0, 1, . . . , l−2, we have

(14)

Klm+j(αp−j)

= Kj(αp−j)Klm(αp)− bp−1cp−1Kj−1(αp−j)Klm−1(αp+1)

=




(det Al(αp))
m−1

2 Um−1

(
tr Al(αp)

2
√

det Al(αp)

)

·{Kj(αp−j)Kl(αp)− bp−1cp−1Kj−1(αp−j)Kl−1(αp+1)}

−(det Al(αp))
m
2 Um−2

(
tr Al(αp)

2
√

det Al(αp)

)
Kj(αp−j) (det Al(αp) ̸= 0)

(tr Al(αp))
m−1

·{Kj(αp−j)Kl(αp)− bp−1cp−1Kj−1(αp−j)Kl−1(αp+1)} (det Al(αp) = 0)

.

Here we define K−2(αp+1) by

−bp−1cp−1K−2(αp+1) := K0(αp−1) = 1.

Proof. From (9) and (7), we have

klm+j(αp−j)(15)

= Aj(αp−j)klm(αp)

=

(
Kj(αp−j) −bp−1cp−1Kj−1(αp−j)

Kj−1(αp−j+1)−bp−1cp−1Kj−2(αp−j+1)

)(
Klm(αp)

Klm−1(αp+1)

)
.

By (12), (13) and comparing the entires of (15), we obtain our main result (14). □
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4. Examples

In this section, we give the examples of (12) for l = 1, 2, 3 explicitly.

4.1. l = 1

In this subsection, we put

a := ap = ap+1, b := bp = bp+1, c := cp = cp+1.

In the case of l = 1, since

tr A1(αp) = a, det A1(αp) = bc,

we have the following well-known result:

Km(αp) =



(bc)

m−1
2 Um−1

(
a

2
√
bc

)
(bc ̸= 0)

am−1 (bc = 0)
.(16)

4.2. l = 2

In this subsection, we put

a1 := a2m+1 = a2m+3, b1 := b2m+1 = b2m+3, c1 := c2m+1 = c2m+3,

a2 := a2m = a2m+2, b2 := b2m = b2m+2, c2 := c2m = c2m+2.

Since

A2(αp) =

(
a1a2 − bpcp −apbp+1cp+1

ap+1 −bp+1cp+1

)

and

tr A2(αp) = a1a2 − b1c1 − b2c2, det A1(αp) = b1c1b2c2,

our main result (14) is

K2m(αp)(17)

=





(b1c1b2c2)
m−1

2 Um−1

(
a1a2−b1c1−b2c2

2
√
b1c1b2c2

)
(a1a2 − bpcp)

−(b1c1b2c2)
m
2 Um−2

(
a1a2−b1c1−b2c2

2
√
b1c1b2c2

)
(b1c1b2c2 ̸= 0)

(a1a2 − b1c1 − b2c2)
m−1(a1a2 − bpcp) (b1c1b2c2 = 0)

,
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K2m−1(αp+1)(18)

=




(b1c1b2c2)

m−1
2 Um−1

(
a1a2−b1c1−b2c2

2
√
b1c1b2c2

)
ap+1 (b1c1b2c2 ̸= 0)

(a1a2 − b1c1 − b2c2)
m−1ap+1 (b1c1b2c2 = 0)

.

Example 4.1 (A q-analogue of Fibonacci numbers). Morier-Genoud and

Ovsienko [1] introduced the following notion of q-deformed rational numbers and

continued fractions, motivated by Jones polynomials of rational knots or F -

polynomials of a cluster algebra with coefficients. For a positive rational number r
s

and its (regular) continued fraction

r

s
= a1 +

2n−1

K
i=1

1

ai+1
, a1, . . . , a2n > 0,

their q-analogue are defined by

[r
s

]
q
:= [a1]q +

2n−1

K
i=1

q(−1)i−1ai

[ai+1]q(−1)i

,

where q ̸= 0 is a complex parameter and

[a]q :=
1− qa

1− q
.

Our formulas (20) and (21) are useful to write down these q-analogue explicitly.

We consider the case of

(19) ap = [a]q(−1)p−1 , bp = q(−1)p−1a, cp = −1,

where a is a positive integer. By substituting (19) in (17) and (18), we have

K2m(αp) = Um−1

(
[a]q[a]q−1 + qa + q−a

2

)
([a]q[a]q−1 + q(−1)p−1a)(20)

− Um−2

(
[a]q[a]q−1 + qa + q−a

2

)
,

K2m−1(αp+1) = Um−1

(
[a]q[a]q−1 + qa + q−a

2

)
[a]q(−1)p .(21)
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From (10), we derive an explicit formula

[a]q +
2n−1

K
i=1

q(−1)i−1a

[a]q(−1)i

(22)

=

Um−1

(
[a]q[a]q−1+qa+q−a

2

)
([a]q[a]q−1 + q(−1)p−1a)− Um−2

(
[a]q [a]q−1+qa+q−a

2

)

Um−1

(
[a]q[a]q−1+qa+q−a

2

)
[a]q(−1)p

.

In particular, The case of a = 1 is a q-analogue of Fibonacci numbers defined

by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn.

As is well known, the continued fraction of F2n+1

F2n
is given by

F2n+1

F2n
= 1 +

2n−1

K
i=1

1

1
.

Thus, a q-analogue of this rational number and continued fraction expansion are

equal to

[
F2n+1

F2n

]

q

= 1 +
2n−1

K
i=1

q(−1)i−1

1
.

We put

a1 = a2 = 1, bi = q(−1)i−1

, c1 = c2 = −1

and

F2m+2(q) := K2m+1(α2), F2m+1(q) := K2m(α1).

From Lemma 2.3 (4), we have

[
F2n+1

F2n

]

q

=
F2n+1(q)

F2n(q)
.
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This sequence {Fn(q)} satisfies

F1(q) = 1, F2(q) = 1, F3(q) = 1 + q

and

F2m(q) = F2m−1(q) + q−1F2m−2(q), F2m+1(q) = F2m(q) + qF2m−1(q).

From (20) and (21), {Fn(q)} has the following explicit expression:

F2m+2(q) = Um−1

(
1 + q + q−1

2

)
(1 + q−1)− Um−2

(
1 + q + q−1

2

)
,(23)

F2m+1(q) = Um−1

(
1 + q + q−1

2

)
.(24)

4.3. l = 3

Put

a1 := a3m+1 = a3m+4, b1 := b3m+1 = b3m+4, c1 := c3m+1 = c3m+4,

a2 := a3m+2 = a3m+5, b2 := b3m+2 = b3m+5, c2 := c3m+2 = c3m+5,

a3 := a3m = a3m+3, b3 := b3m = b3m+3, c3 := c3m = c3m+3.

From (7) and (8), we have

A3(αp) =

(
a1a2a3 − ap+2bpcp − apbp+1cp+1 −apap+1bp+2cp+2 + bpcpbp+2cp+2

ap+1ap+2 − bp+1cp+1 −ap+1bp+2cp+2

)

and

tr A3(αp) = a1a2a3 − a1b2c2 − a2b3c3 − a3b1c1, det A1(αp) =
3∏

j=1

bjcj .
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Then (14) can be written as

K3m+1(αp−1)

(25)

= ap−1K3m(αp)− bp−1cp−1K3m−1(αp+1)

=




∏3
j=1(bjcj)

m−1
2 Um−1

(
a1a2a3−a1b2c2−a2b3c3−a3b1c1

2
√
b1c1b2c2b3c3

)

·{ap−1(a1a2a3 − ap+2bpcp − apbp+1cp+1)

−bp−1cp−1(ap+1ap+2 − bp+1cp+1)}
−
∏3

j=1(bjcj)
m
2 Um−2

(
a1a2a3−a1b2c2−a2b3c3−a3b1c1

2
√
b1c1b2c2b3c3

)
ap−1 (

∏3
j=1 bjcj ̸= 0)

(a1a2a3 − a1b2c2 − a2b3c3 − a3b1c1)
m−1

·{ap−1(a1a2a3 − ap+2bpcp − apbp+1cp+1)

−bp−1cp−1(ap+1ap+2 − bp+1cp+1)} (
∏3

j=1 bjcj = 0)

,

K3m(αp)

(26)

=




∏3
j=1(bjcj)

m−1
2 Um−1

(
a1a2a3−a1b2c2−a2b3c3−a3b1c1

2
√
b1c1b2c2b3c3

)

·(a1a2a3 − ap+2bpcp − apbp+1cp+1)

−
∏3

j=1(bjcj)
m
2 Um−2

(
a1a2a3−a1b2c2−a2b3c3−a3b1c1

2
√
b1c1b2c2b3c3

)
(
∏3

j=1 bjcj ̸= 0)

(a1a2a3 − a1b2c2 − a2b3c3 − a3b1c1)
m−1

·(a1a2a3 − ap+2bpcp − apbp+1cp+1) (
∏3

j=1 bjcj = 0)

,

K3m−1(αp+1)

(27)

=




∏3
j=1(bjcj)

m−1
2 Um−1

(
a1a2a3−a1b2c2−a2b3c3−a3b1c1

2
√
b1c1b2c2b3c3

)

·(ap+1ap+2 − bp+1cp+1) (
∏3

j=1 bjcj ̸= 0)

(a1a2a3 − a1b2c2 − a2b3c3 − a3b1c1)
m−1

·(ap+1ap+2 − bp+1cp+1) (
∏3

j=1 bjcj = 0)

.
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