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Rotation numbers of regular closed curves on oriented

aspherical surfaces

Masayuki Yamasaki

Abstract. Whitney’s rotation number classifies regular closed

curves on the euclidean plane up to regular homotopy and, when the
self-intersections of the curve are transverse double points, there is a
combinatorial formula for the rotation number obtained by algebraically
counting the self-intersections of the curve. In this paper, I generalize

these results to the case of curves on oriented surfaces with a complete
euclidean or hyperbolic metric.

1. Introduction

Whitney-Graustein theorem says that two regular closed curves on the euclidean

plane E2 are regularly homotopic if and only if they have the same ‘rotation number’

([5]), which is defined as follows. A regular (not necessarily closed) curve γ : [a, b] →
E2 induces a continuous function θ : [a, b] → R, called the angle function of γ, which

gives the angle of the tangent vector γ̇(t) measured from the positive direction of

the x-axis, and the euclidean rotation number iγ of γ is defined by

iγ = (θ(b)− θ(a))/2π ∈ R.

It is independent of the choice of θ. When γ is a regular closed curve, iγ is an integer.

Note that an analogous ‘euclidean rotation number’ of an oriented polygonal closed

curve on E2 can be defined to be the integer given by the formula

(the sum of the external angles at the vertices)/2π ∈ Z .

On the other hand, take any geodesic triangle with the positive orientation on the

standard unit 2-sphere S2. Then the formula above does not give an integer because

the sum of the external angles is 2π− (the area of the triangle), and, if we slightly

move the vertices, then its quotient by 2π changes continuously. This suggests
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that the ‘rotation number’ of a regular closed curve on S2 cannot be defined by

directly using the standard metric on S2. Instead, assuming that the curve does

not pass through the north pole P , we project the curve to the euclidean plane

E2 by the stereographic projection and take the euclidean rotation number of the

image. When a regular homotopy passes P , this number changes by ±2; so it is

well-defined only in Z/2Z. It is well-known that this rotation number gives the

regular homotopy classification of regular closed curves on S2.

In this paper, we consider regular closed curves on an oriented surface M which

has a complete euclidean metric or a complete hyperbolic metric, define an integer

valued rotation number W (γ), and prove the following:

Theorem 1.1. Suppose M is an oriented surface with a complete euclidean

or hyperbolic metric. For regular closed curves γ, γ′ on M , the followings are

equivalent.

(1) γ and γ′ are regularly homotopic.

(2) γ and γ′ are freely homotopic and have the same rotation number.

Because of Gauss-Bonnet theorem, the given riemannian metric does not give

us the desired rotation number when the metric is hyperbolic. The idea is to use

a lift γ̃ to the universal cover M̃ of the given curve γ. In the euclidean case, M̃ is

E2 itself. In the hyperbolic case, M̃ is the hyperbolic plane H2 and, if we use the

upper-half plane model or the Poincaré disk model, it is a subset of E2. When γ

is null-homotopic, then γ̃ is also a regular closed curve on E2, and we define W (γ)

by iγ̃ ∈ Z. When γ is not null-homotopic, we define W (γ) to be

iγ̃ − (iδ̃ + χδ/2π) ∈ Z,

where δ̃ is the unique geodesic in M̃ connecting the end points of γ̃, and χδ is the

external angle of the geodesic δ in M obtained by projecting δ̃ to M . See §2 for

the details of the definition of the rotation number and the proof of Theorem 1.1.

In §3, we give some sample calculations of rotation numbers. In particular, we

show that the rotation numbers of closed geodesics and closed horocycles are 0.

In §4, we give a Whitney-type formula for rotation numbers of non-null-

homotopic regular closed curves that are ‘generic’ in the sense that the only sin-

gularities are transverse double points. Suppose γ is a non-null-homotopic regular

closed curve on a complete euclidean or hyperbolic surface. Let D(γ) be the set of

double points of γ. For each d ∈ D(γ), we define its sign sgn(γ, d) as an element

of {−1, 0, 1}, and prove the following:
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Theorem 1.2. W (γ) =
∑

d∈D(γ) sgn(γ, d) .

This implies that W (γ) does not depend on the choice of the complete euclidean

or hyperbolic metric.

Remark 1.3. The combinatorial formula above was already given by Tanio and

Kobayashi in [4] when M is the torus.

Remark 1.4. There is another generalization of Whitney’s rotation number by

Reinhart [3] and Chillingworth [1]. But they need to fix a vector field X on M

to define their invariant as an element of Z/|χ(M)|Z, where χ(M) is the euler

characteristic of M , and could not give a regular homotopy classification when

χ(M) < 0.

Remark 1.5. In this paper, we allow reparametrizations of curves as long as

they do not change the orientation so that we can talk about regular homotopies

between two curves defined on different intervals.

2. The Invariant W (γ)

Let M be an oriented surface with a complete euclidean/hyperbolic metric,

and let pM : �M → M be the universal cover of M . We may assume that �M is

either E2 itself or a subset of E2 (the upper half-plane or the interior of the unit

disk). In any case, for an arbitrary compact subset C of �M , there is a strong

deformation retraction of E2 into �M fixing C. This implies that two regular curves

with compact images in �M are regularly homotopic in �M if and only if they are

regularly homotopic in E2.

Suppose γ : [a, b] → M is a regular closed curve with base point p. We define

W (γ). Let �γ : [a, b] → �M ⊂ E2 be a lift of γ.

Case 1. γ is null-homotopic in M .

In this case, �γ is a regular closed curve in E2, and its euclidean rotation number iγ̃
is an integer.

Proposition 2.1. If γ is another lift of γ, then iγ̃ = iγ .

Proof. When the metric of M is euclidean, there is a euclidean isometry T of E2

such that γ = T ◦ �γ; therefore, the claim is obvious.

Next, we consider the hyperbolic case. Suppose iγ̃ = k. If k = 0, then �γ
is regularly homotopic to a small figure-eight in E2, and this induces a regular

homotopy of γ to another figure-eight. Therefore, iγ = 0. If k ̸= 0, then �γ is
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regularly homotopic to a curve which goes round a small circle in E2 k times, and

this induces a regular homotopy of γ to a curve which goes round a simple closed

curve k times. Therefore, iγ = k. □

Definition 2.2. When γ is null-homotopic, W (γ) := iγ̃ ∈ Z.

Case 2. γ is not null-homotopic in M .

In this case, γ̃ is not a closed curve. Then p̃ = γ̃(a) and γ̃(b) are distinct points. We

first pick up the unique geodesic δ̃ : [a′, b′] → M̃ connecting these two points in M̃

with respect to the riemannian metric induced from that of M . This depends only

on the homotopy class ξ of γ in π1(M,p) and on the choice of p̃. The geodesic pM ◦δ̃
on M will be denoted δ. This δ is the shortest geodesic based at p that represents

ξ in π1(M,p), and can be regarded as the simplest closed curve on M based at p

that represents ξ. So we would like to compare γ with δ, or more precisely, γ̃ with

δ̃. We need the following preparation to do so.

Proposition 2.3. Two regular arcs γ1 and γ2 on E2 with the same end points

and the same end directions are regularly homotopic fixing the end points and the

end directions if and only if iγ1 = iγ2 .

Proof. According to Gromov’s h-principle, γ1 and γ2 are regularly homotopic

fixing the end points and the end directions if and only if the maps

(γi, γ̇i/|γ̇i|) : [a, b] → E2 × S1 (i = 1, 2)

are homotopic rel ∂. The first components are homotopic rel ∂ because the target

is contractible, and the second components are homotopic rel ∂ if and only if the

angle functions are homotopic rel ∂, and it happens if and only if iγ1 = iγ2 . □

Proposition 2.4. The difference iγ̃ − iδ̃ is independent of the choice of the

lift γ̃.

Proof. Let us denote the angle functions of γ̃ and δ̃ by θγ̃ and θδ̃, respectively,

and denote the differences of the values of these angle functions at the initial point

and at the terminal point by α and β, respectively:

α = θγ̃(a)− θδ̃(a
′), β = θγ̃(b)− θδ̃(b

′) .

Then we have the identity iγ̃ − iδ̃ = β−α
2π . Now, make local twists of the arc δ̃

by the angle α around the initial point, and by the angle β around the terminal

point to obtain a new curve ε̃, which has the same end directions with γ̃ (Figure
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1). Since these twists actually define a regular homotopy from δ̃ to ε̃, we obtain

a homotopy between θδ̃ and the angle function θε̃ of ε̃ that changes only near the

end points, and we may assume that θε̃ satisfies the identities

θε̃(a
′) = θδ̃(a

′) + α = θγ̃(a), θε̃(b
′) = θδ̃(b

′) + β = θγ̃(b) .

So we have the equality iγ̃ = iε̃, and γ̃ is regularly homotopic to ε̃ fixing the end

points and the end directions by Proposition 2.3. Set ε = pM ◦ ε̃.

• •
γ̃

δ̃

α

β

•
γ̃

ε̃
•

Figure 1. Local twists of δ̃ around the end points.

Suppose γ is another lift of γ, and let p be the initial point of γ. Let δ (resp. ε)

be the lift of δ (resp. ε) whose initial point is p. The deck transformation T of pM
that sends p̃ to p sends the curves γ̃, δ̃, and ε̃ to the curves γ, δ, and ε, respectively,

and sends the regular homotopy between γ̃ and ε̃ to a regular homotopy between

γ and ε. Therefore, the equality iγ = iε holds, and we have identities

iγ̃ − iδ̃ = iε̃ − iδ̃, iγ − iδ = iε − iδ.

Let us compare the right hand sides of these. Recall that ε̃ was obtained by twists

around the end points. The deck transformation T induces a regular homotopy

between δ and ε. Since T is conformal, the changes of the end directions at the

end points of δ are exactly the same as the changes of the end directions at the end

points of δ̃; therefore, we have iε̃ − iδ̃ = iε − iδ, and this completes the proof. □

Note that δ may have a corner at the base point p; so, we need to take the

external angle of δ at the vertex p into consideration.

Definition 2.5. The external angle χδ of the geodesic δ based at p is the

angle of the initial direction measured from the terminal direction such that −π <

χδ < π.

Remark 2.6. The external angle of a geodesic which starts and ends at p cannot

be equal to ±π, because a point and a direction together determine a geodesic which
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passes the given point and has the given direction there.

Definition 2.7. When γ is not null-homotopic, W (γ) := iγ̃ − iδ̃ −
χδ

2π
∈ R.

Proposition 2.8. W (γ) is an integer.

Proof. We only need to consider the case when γ is not null-homotopic. Let α

and β be as in the proof of Proposition 2.4; then, W (γ) =
(β − α)− χδ

2π
. The

relation β−α ≡ χδ mod 2π can be read off on M as shown in Figure 2. So, W (γ)

is an integer. □

γ γ

χδ

δ
δ

α

β
•
p

Figure 2. Relation of χδ with α and β modulo 2π.

Proof of Theorem 1.1 (1)⇒(2). When we change γ by regular homotopy,

the relevant angle functions etc. and hence the rotation number W (γ) changes

continuously. Since W (γ) is an integer, its value does not change.

Proof of Theorem 1.1 (2)⇒(1). Suppose that γ, γ′ are homotopic and have

the same rotation number.

Step 1. Perform a finger move on γ along an arc which connects the base points

of γ and γ′, so that they have the same base point p.

Step 2. If they represent different elements of π1(M,p), then they are conjugate

by a certain element [ξ] ∈ π1(M,p). Perform another finger move on γ along ξ so

that they represent the same element of π1(M,p).

Step 3. Locally twist γ around p so that they have the same direction at p.

Step 4. Take lifts γ̃ and γ̃′ of them whose initial points are the same. Then iγ̃
and iγ̃′ are the same. So, by Proposition 2.3, the lifts are regularly homotopic in

E2 fixing the end points and the end directions.

Step 5. If the geometry of M is hyperbolic, squeeze E2 into H2 = M̃ by an isotopy

fixing the two lifts, and obtain a regular homotopy in H2.
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Step 6. Compose the regular homotopy with pM to obtain a desired regular

homotopy between γ and γ′ in M . This finishes the proof.

3. Examples

In this section, we calculate the rotation numbers for important examples. We

consider only non-null-homotopic regular closed curves.

Proposition 3.1. If γ is a closed geodesic on a complete euclidean or hyper-

bolic surface, then W (γ) = 0.

Proof. We have �γ = �δ and χδ = 0. Therefore, W (γ) = 0. □

Proposition 3.2. If M is a a horocycle on a complete hyperbolic surface,

then W (γ) = 0.

Proof. Without loss of generality, we may assume that �γ is a horizontal line

segment connecting �p and �p. The geodesic �δ connecting these points is a circular

arc. See Figure 3. �γ and �δ are the lifts of γ and δ, respectively, whose common

initial point is �p. From the figure, we can see that iγ̃ = 0 and iδ̃ = −χδ

2π
. Therefore,

W (γ) = 0−
(
−χδ

2π

)
− χδ

2π
= 0.

□

•�p •�p •�γ

�δ

�γ

�δ
χδ

Figure 3. Horocycle case.

Suppose γ is a non-null-homotopic regular closed curve. Then γ is homotopic

to either a closed geodesic or a closed horocycle. Let γ(0) denote such a curve.

And, for a non-zero integer k, we define a curve γ(k) to be the curve obtained by

• adding k positive kinks to γ(0), if k > 0, and

• adding |k| negative kinks to γ(0), if k < 0.

The following is obvious.
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Proposition 3.3. W (γ(k)) = k.

Corollary 3.4. If the rotation number W (γ) of a non-null-homotopic regular

closed curve γ is equal to k, then γ is regularly homotopic to γ(k). In other words,

γ(k)’s are the standard representatives of regular closed curves homotopic to γ.

4. Whitney-type Formula for Generic Curves

Let M be an oriented complete euclidean or hyperbolic surface, and consider a

generic curve γ on M . If γ is null-homotopic, then γ̃ is a regular closed curve on

M̃ ⊂ E2; so, we can apply the classical Whitney’s formula to this.

So, in this section, we consider the case when γ is not null-homotopic. We will

define a combinatorial invariant T (γ) and show that W (γ) = T (γ). First, consider

all the lifts of γ to M̃ and compose all these lifts to obtain a curve γ̃ : R → M̃ ,

which will be called a ‘cover ’ of γ, and it is given the orientation induced from

the orientation of γ. Covers with different parametrizations are regarded to be

the same cover. Since γ is generic, any cover γ̃ is also generic. Also note that

any cover can be obtained by composing a given cover and an appropriate deck

transformation of M̃ .

As in §1, D(γ) denotes the set of all the double points of γ. Let d ∈ D(γ) be any

element. At d, the curve γ splits into two closed loops γ1 and γ2 based at d. Since

γ is non-null-homotopic, at least one of γ1 and γ2 must be non-null-homotopic.

The followings are obviously equivalent:

• Either γ1 or γ2 is null-homotopic.

• There exists a cover γ̃ of γ and a double point d̃ of γ̃ such that pM (d̃) = d.

• For any cover γ̃ of γ, there exists a double point d̃ of γ̃ such that pM (d̃) = d.

We define D±(γ) to be the subset of D(γ) consisting of those double points satisfy-

ing the conditions above, and define D0(γ) to be its complement. In other words,

double points in D±(γ) correspond to self-intersections of the same cover, and the

double points in D0(γ) correspond to mutual intersections of distinct covers.

For each point d ∈ D(γ), we define sgn(γ, d) ∈ {−1, 0,+1} as follows: For a

double point d ∈ D0(γ), we define sgn(γ, d) to be 0. Before we define sgn(γ, d)

for d ∈ D±(γ), we first define sgn(γ̃, d̃) of a double point d̃ of a cover γ̃ of γ. Let

t1 < t2 be the real numbers such that γ̃(t1) = γ̃(t2) = d̃. Choose a small positive

number r. We define sgn(γ̃, d̃) to be +1 (resp. −1) if the arc γ̃((t2 − r, t2 + r))

(drawn horizontally in Figure 4) crosses the arc γ̃((t1−r, t1+r)) (drawn vertically in
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Figure 4) from left to right (resp. from right to left). For a double point d ∈ D±(γ),

take any cover �γ of γ and any double point �d of �γ such that pM (�d) = d, and set

sgn(γ, d) = sgn(�γ, �d). This does not depend on the choice of �γ or �d.

• •
�d �d

sgn(�γ, �d) = +1 sgn(�γ, �d) = −1

�γ �γ

Figure 4. Sign convention for a double point of γ̃.

Definition 4.1. For a non-null-homotopic generic regular closed curve γ, we

define T (γ) by

T (γ) =
∑

d∈D±(γ)

sgn(γ, d) =
∑

d∈D(γ)

sgn(γ, d).

Remark 4.2. In [4], Tanio and Kobayashi defined an invariant t(γ) which is

very close to the T (γ) above. They set sgn(γ, d) = ±1 when one of the loops

obtained by splitting γ at d is null-homologous. So, if the fundamental group of a

surface is abelian, t(γ) and T (γ) are the same for generic curves on that surface.

Example 4.3. Figure 5 shows a developed picture of a flat cylinder and a regular

closed curve γ on it. This curve has two covers as shown in Figure 6. The curve

γ has two self-intersections d and e, and sgn(γ, d) = 0, sgn(γ, e) = 1. Therefore,

T (γ) = 1.

Proposition 4.4. T (γ) is a regular homotopy invariant for generic regular

closed curves.

Proof. If we deform γ by a regular homotopy, then the regular homotopy lifts to

regular homotopies of the covers. According to [2], births/deaths of double points
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•p •p
d

e

Figure 5. A curve γ on a cylinder.

• • • • • •• • • • • •
d̃ẽ

Figure 6. Two covers of γ.

always occur in pairs. If a birth/death of two double points d, e of γ occurs,

then corresponding births/deaths occur for self- and/or mutual intersections of the

covers, and each birth/death pair in M̃ must be one of the following:

(1) mutual intersections of distinct covers,

(2) double points of the same cover with opposite signs.

In case (1), d and e are both points in D0(γ), and, in case (2), they are both points

in D±(γ). □

Proposition 4.5. The definition of T (γ) extends to non-null-homotopic non-

generic regular closed curves.

Proof. A non-generic regular closed curve γ can be approximated by a generic

sine-like curve γ′ along γ, and we set T (γ) = T (γ′). Since this approximation is

given by a regular homotopy, Proposition 4.4 insures that this defines a well-defined

regular homotopy invariant. □

Proposition 4.6. For any non-null-homotopic regular closed curve γ and

any integer k, T (γ(k)) = k.

Proof. Let us consider the case when k = 0. If γ(0) is generic, all of the covers

of γ(0) are either geodesic or horocycles, and they do not have self-intersections;

therefore, T (γ(0)) = 0. If γ(0) is not generic, we approximate it by a sine-like curve
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along it. Its covers are also sine-like curves along geodesics or horocycles, and they

do not have self-intersections, either. Therefore, T (γ(0)) = 0.

When k ̸= 0, γ(k) is obtained by adding |k| appropriate kinks to γ(0); therefore,

T (γ(k)) = k is obvious. □

So we have proved the following:

Theorem 4.7 (Theorem 1.2). For any non-null-homotopic regular closed

curve γ on an oriented complete euclidean or hyperbolic surface, the equality

W (γ) = T (γ) holds.
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