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Introduction to variations of Hodge structure over Sasakian

manifolds

Hisashi Kasuya

Abstract. We define basic variations of Hodge structures over
manifolds with transverse holomorphic foliations. We prove some im-
portant properties of basic variations of Hodge structures over compact

Sasakian manifolds.

1. Introduction

A real Hodge structure of weight n on a real vector space V is a bigrading

VC =
⊕

p+q=n

V p,q

on the complexification VC = V ⊗ C such that

V p,q = V q,p.

It is a well-known fact that the cohomology of a compact Kähler manifold admits

a canonical real Hodge structure. Hence, corresponding to a holomorphic family

of compact Kähler manifolds, we obtain a family of real Hodge structures. In

[Gri2], Griffiths discovered the significant property of such family so-called Grif-

fiths ’ transversality. This leads to define variations of Hodge structures over

complex manifolds as flat bundles with certain structures. Now there are many

applications of variations of Hodge structures. In particular, considering variations

of Hodge structures over compact Kähler manifolds are very fruitful.

A Sasakian manifold is viewed as an important odd-dimensional analogue of a

Kähler manifold ([Sa]). The purpose of this paper is to give analogies of variations

of Hodge structures on Sasakian manifolds.
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2. Variations of Hodge structures over complex manifolds

Let M be a complex manifold.

Definition 2.1. A polarized complex variation of Hodge structure of weight

w over M is (E =
⊕

p+q=w Ep,q, D, h) so that

1. E is a C∞-complex vector bundle with a decomposition
⊕

p+q=w Ep,q in a

direct sum of C∞-subbundles,

2. D is a flat connection satisfying the Griffiths transversality condition

D : A0(M,Ep,q)

→ A0,1(M,Ep+1,q−1)⊕A1,0(M,Ep,q)⊕A0,1(M,Ep,q)⊕A1,0(M,Ep−1,q+1)

and

3. h is a parallel Hermitian form so that the decomposition
⊕

p+q=w Ep,q is

orthogonal and h is positive on Ep,q for even p and negative for odd p.

Let G = Aut(Ex, hx) and V = Πp+q=wAut(Ep,q
x , hx). By the definition, the

monodromy representation ρ : π1(M,x) → GL(Ex) corresponding to the flat bun-

dle (E,D) satisfies ρ(π1(M,x)) ⊂ G ∼= U(s, t) where s =
∑

p even dimEp,q and

t =
∑

p odd dimEp,q. We notice that a polarized complex variation of Hodge struc-

ture over M with a monodromy representation ρ : π1(M,x) → G is equivalent to a

ρ-equivalent ”horizontal” holomorphic map from the universal covering of M to a

classifying space of polarized Hodge structures expressed as a homogeneous space

G/V with an appropriate complex structure.

Theorem 2.2 ([Gri3]). Let M be a complex projective manifold. For any

polarized complex variation of Hodge structure (E =
⊕

p+q=w Ep,q, D, h) of w over

M , the flat bundle (E,D) is semi-simple.

By the Griffiths transversality, the differential D on A∗(M,E) decomposes D =

∂ + θ + ∂̄ + θ̄ so that:

∂ : Aa,b(M,Ec,d) → Aa+1,b(M,Ec,d),

∂̄ : Aa,b(M,Ec,d) → Aa,b+1(M,Ec,d),

θ : Aa,b(M,Ec,d) → Aa+1,b(M,Ec−1,d+1)
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and

θ̄ : Aa,b(M,Ec,d) → Aa,b+1(M,Ec+1,d−1).

We define

A∗(M,E)p,q =
⊕

a+c=p,b+d=q

Aa,b(M,Ec,d),

D′ = ∂ + θ̄ : A∗(M,E)p,q → A∗(M,E)p+1,q and D′′ = ∂̄ + θ : A∗(M,E)p,q →
A∗(M,E)p,q+1. By the flatness DD = 0, we have

D′D′ = D′′D′′ = D′D′′ +D′′D′ = 0.

We have the double complex

(A∗(M,E)p,q, D′, D′′)

as the usual Dolbeault complex.

Definition 2.3. A polarized real variation of Hodge structure of weight w

over M is (ER, E =
⊕

p+q=w Ep,q, D,Q) so that:

• (E,D) is a flat complex vector bundle with a real structure ER ⊂ E,

• Q is a parallel (−1)w-symmetric bilinear form on ER.

• defining h(u, v) = Q(u, v̄) on E, (E =
⊕

p+q=w Ep,q, D, h) is a polarized

complex variation of Hodge structure and

• Ep,q = Eq,p.

Polarized real variations of Hodge structure extend Hodge structures on the de

Rham cohomology of compact Kähler manifolds.

Theorem 2.4 ([Zu]). Let M be a compact Kähler manifold. For any polarized

real variation of Hodge structure of weight w (ER, E =
⊕

p+q=w Ep,q, D,Q) over

M , the filtration F r =
⊕

r≤p A
∗(M,E)p,q induces a functorial real Hodge structure

of weight i+ w on the cohomology Hi(M,ER).

3. Basic variations of Hodge structures over foliated manifolds

Let (M,F) be a foliated manifold of co-dimension 2q. (M,F) is transverse

holomorphic if there is a foliation atlas {Uα} with local submersions fα : Uα → Cq
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and transition functions ταβ : fβ(Uα ∩ Uβ) → fα(Uα ∩ Uβ) satisfying the relations

fα = ταβfβ such that each ταβ is biholomorphic. Let TF be the tangent bundle of F
and NF = TM/TF the normal bundle. Then we have the canonical decomposition

NFC = N1,0F ⊕N0,1F satisfying N1,0F = N0,1F .

On a smooth manifold M , if we have a sub-bundle E ⊂ TMC of complex co-

dimension q so that E+E = TMC and E is involutive, then M admits a transverse

holomorphic foliation F such that TFC = E∩E and N1,0F = E/E∩E (see [DK]).

A differential form ω on M is called basic if the equations

(1) iXω = 0 = LXω

hold for any X ∈ TF . We denote by A∗
B(M) the subspace of basic forms in the

de Rham complex A∗(M). Then A∗
B(M) is sub-complex of the de Rham complex

A∗(M). Denote by H∗
B(M) the cohomology of the basic de Rham complex A∗

B(M).

Suppose (M, F) is transverse holomorphic. Corresponding to the decomposition

NFC = N1,0F ⊕N0,1F , we have the bigrading

Ar
B(M)C =

⊕
p+q=r

Ap,q
B (M)

as well as the decomposition of the exterior differential d|Ar
B(M)C = ∂B + ∂B on

Ar
B(M)C, so that

∂B : Ap,q
B (M) → Ap+1,q

B (M) and ∂B : Ap,q
B (M) → Ap,q+1

B (M) .

A basic vector bundle E over a foliated manifold (M, F) is a C∞ vector bundle

overM which has local trivializations with respect to an open coveringM =
∪

α Uα

satisfying the condition that each transition function fαβ : Uα ∩ Uβ → GLr(C) is

basic on Uα∩Uβ i.e. it is constant on the leaves of the foliation F . Suppose (M, F)

is transverse holomorphic. We say that a basic vector bundle E is holomorphic if

we can take each transition function transverse holomorphic. For a basic vector

bundle E, a differential form ω ∈ A∗(M, E) with values in E is called basic if ω

is basic on every Uα, meaning ω|Uα
∈ A∗

BF
(Uα)⊗ Cr for every α. Let

A∗
B(M, E) ⊂ A∗(M, E)

denote the subspace of basic forms in the space A∗(M, E) of differential forms

with values in E. Corresponding to the decomposition NFC = N1,0F ⊕ N0,1F ,

we have the bigrading Ar
B(M, E) =

⊕
p+q=r A

p,q
B (M, E). If E is holomorphic,

we can extend the operator ∂B to the operator ∂E : Ap,q
B (M, E) → Ap,q+1

B (M, E)
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satisfying ∂E∂E = 0. Conversely, if we have a connection ∇ of E which de-

fined as ∇ : A∗(M, E) → A∗+1(M, E) and decomposing ∇ = ∇′ + ∇′′ with

∇′ : Ap,q
B (M, E) → Ap+1,q

B (M, E) and ∇′′ : Ap,q
B (M, E) → Ap,q+1

B (M, E) we have

∇′′∇′′ = 0, then there exists a unique holomorphic bundle structure on E such

that ∇′′ = ∂E like the complex manifold case (see [Ko, Proposition 3.7]).

Example 3.1. Consider the 3-dimensional Heisenberg group

H3 =






1 x t

0 1 y

0 0 1


 : x, y, t ∈ R


 .

We have the left-invariant vector fields

⟨
∂

∂x
,
∂

∂y
+ x

∂

∂t
,
∂

∂t

⟩

and the left-invariant differential forms

⟨dx, dy, dt− xdy⟩ .

We consider the discrete subgroup

Γ =







1 x t

0 1 y

0 0 1


 : x, y, t ∈ Z




and the compact 3-dimensional manifold M = Γ\H3. Then the left-invariant vector

field ∂
∂t generates a foliation F of co-dimension 2-dimensional so that each leaf is

an S1-orbit. Consider the parameter (x, y, t) as a local coordinates of Γ\H3. Then

the transition functions may be given by (x, y, t) �→ (a+x, b+y, c+ay+ t) for some

a, b, c ∈ Z. We have the transverse holomorphic structure on (M = Γ\H3,F) by

local submersions (x, y, t) �→ x+
√
−1y. The basic de Rham complex A∗

B(M) is

A∗
B(M) = C∞(C)Z+

√
−1Z ⊗

∧
⟨dx, dy⟩.

This is identified with the de Rham complex of the complex torus C/Z +
√
−1Z.

Hence,

H∗
B(M) ∼=

∧
⟨dx, dy⟩
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and

Hp,q
B (M) ∼=

p∧
⟨dz⟩ ⊗

q∧
⟨dz̄⟩.

Consider the C∞-trivial complex line bundle E = M ×C. For each local coordinate

(x, y, t), taking nowhere vanishing section e−Ct of E for a constant C ∈ C as a

local frame, the transition functions will be written by the basic functions ec+ay.

For C ̸= 0, this gives a non-trivial basic vector bundle structure EC on E. Consider

the connection ∇ = d+C(dt−xdy) on E. Then ∇ is defined as ∇ : A∗
B(M, E) →

A∗+1
B (M, E). The curvature of ∇ is −Cdx ∧ dy. The basic cohomology class of
1

2π
√
−1

Cdx ∧ dy is the basic first Chern class of the basic vector bundle EC . Like

the usual Chern class, this is an invariant of a basic vector bundle. Thus {EC}
is a family of basic vector bundles such that EC ̸∼= EC′ for C ̸= C ′. Obviously,

∇′′∇′′ = 0 and hence we have a holomorphic structure on each EC .

We consider a flat vector bundle (E,D) over M as a basic vector bundle by local

flat frames. Then, A∗
B(M,E) is a sub-complex of the de Rham complex A∗(M,E)

equipped with the differential associated to the flat connection D. Denote by

H∗
B(M,E) the cohomology of A∗

B(M,E).

A polarized complex basic variation of Hodge structure of weight w over (M,F)

is (E =
⊕

p+q=w Ep,q, D, h) so that

1. (E,D) is a complex flat vector bundle.

2.
⊕

p+q=w Ep,q is a direct sum of basic C∞-subbundles,

3. The basic Griffiths transversality condition

D : A0
B(M,Ep,q)

→ A0,1
B (M,Ep+1,q−1)⊕A1,0

B (M,Ep,q)⊕A0,1
B (M,Ep,q)⊕A1,0

B (M,Ep−1,q+1)

holds and

4. h is a parallel Hermitian form so that the decomposition
⊕

p+q=w Ep,q is

orthogonal and h is positive on Ep,q for even p and negative for odd p.

By the basic Griffiths transversality, the differentialD on A∗
B(M,E) decomposes

D = ∂ + θ + ∂̄ + θ̄ so that:

∂ : Aa,b
B (M,Ec,d) → Aa+1,b

B (M,Ec,d),
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∂̄ : Aa,b
B (M,Ec,d) → Aa,b+1

B (M,Ec,d),

θ : Aa,b
B (M,Ec,d) → Aa+1,b(M,Ec−1,d+1)

and

θ̄ : Aa,b
B (M,Ec,d) → Aa,b+1

B (M,Ec+1,d−1).

We define

A∗
B(M,E)p,q =

⊕
a+c=p,b+d=q

Aa,b
B (M,Ec,d),

D′ = ∂ + θ̄ : A∗
B(M,E)p,q → A∗

B(M,E)p+1,q and D′′ = ∂̄ + θ : A∗
B(M,E)p,q →

A∗
B(M,E)p,q+1. By the flatness DD = 0, we have

D′D′ = D′′D′′ = D′D′′ +D′′D′ = 0.

We have the double complex

(A∗
B(M,E)p,q, D′, D′′)

as the usual Dolbeault complex. By D′′D′ = 0, we have ∂̄∂̄ = 0. As [Ko, Chapter

1. Proposition 3.7], each Ep,q can be seen as a holomorphic basic vector bundle.

A polarized real basic variation of Hodge structure of weight w over (M,F) is

(ER, E =
⊕

p+q=w Ep,q, D,Q) so that:

• (E,D) is a flat complex vector bundle with a real structure ER ⊂ E,

• Q is a parallel (−1)w-symmetric bilinear form on ER.

• defining h(u, v) = Q(u, v̄) on E, (E =
⊕

p+q=w Ep,q, D, h) is a polarized

complex basic variation of Hodge structure and

• Ep,q = Eq,p.

Theorem 3.2. Let (M,F) be a foliated manifold. Suppose (M,F) is trans-

verse holomorphic and admits a transverse Kähler structure ω. Then the filtration

F r =
⊕

r≤p A
∗(M,E)p,q induces a functorial real Hodge structure of weight i+ w

on the cohomology Hi
B(M,ER).
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Proof. We have the Hodge theory on the basic differential forms (see [EKA] and

[KT]). As usual, we have the Kähler identities

[Λ, D′] = −
√
−1(D′′)∗ and [Λ, D′′] = (D′)∗

on the operators D′ and D′′. The proof is given by the standard argument. □

4. Variations of Hodge structure over Sasakian manifolds

Let M be a (2n+ 1)-dimensional real smooth manifold. A CR-structure on M

is an n-dimensional complex sub-bundle T 1,0 of the complexified tangent bundle

TMC = TM ⊗R C such that T 1,0 ∩ T 1,0 = {0} and T 1,0 is integrable (i.e., the

locally defined sections of T 1,0 are closed under the Lie bracket operation). We

shall denote T 1,0 by T 0,1. For a CR-structure T 1,0 on M , there is a unique sub-

bundle S of rank 2n of the real tangent bundle TM together with a vector bundle

homomorphism I : S −→ S satisfying the conditions that

1. I2 = −IdS , and

2. T 1,0 is the
√
−1-eigenbundle of I.

A (2n+1)-dimensional manifold M equipped with a triple (T 1,0, S, I) as above

is called a CR-manifold. A contact CR-manifold is a CR-manifoldM with a contact

1-form η on M such that ker η = S. Let ξ denote the Reeb vector field for the

contact form η i.e. the unique vector field characterized by η(ξ) = 1 and iξdη = 0.

On a contact CR-manifold, the above homomorphism I extends to entire TM by

setting I(ξ) = 0.

Definition 4.1. A contact CR-manifold (M, (T 1,0, S, I), (η, ξ)) is a

strongly pseudo-convex CR-manifold if the Hermitian form (called the Levi form)

Lη on Sx defined by Lη(X,Y ) = dη(X, IY ), X,Y ∈ Sx, is positive definite for

every point x ∈ M .

Given any strongly pseudo-convex CR-manifold (M, (T 1,0, S, I), (η, ξ)), there

is a canonical Riemann metric gη on M , called the Webster metric, which is defined

to be

gη(X,Y ) := Lη(X,Y ) + η(X)η(Y ) , X, Y ∈ TxM , x ∈ M .

For another strongly pseudo-convex CR-manifold (M ′, (T 1,0′, S′, I ′), (η′, ξ′)),

a map f : M → M ′ is CR-holomorphic if df ◦ I = I ′ ◦ df . For any x ∈ M , by
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ker(Ix) = ⟨ξx⟩, we have dfx(ξx) = c(x)ξ′f(x) and f∗η′ = c(x)η for some positive

function c(x) on M .

Remark 4.2. For two CR manifolds (M, (T 1,0, S, I)) and (M ′, (T 1,0′, S′, I ′)),

a map f : M → M ′ is a CR-map if df(T 1,0
x ) ⊂ T 1,0′

f(x) for any x ∈ M . On

strongly pseudo-convex CR-manifolds, CR-holomorphic maps are CR maps. But

the converse may not be true.

For a complex manifold (N, J), a map f : M → N is CR-holomorphic if df ◦I =

J ◦ df . By 0 = df ◦ I(ξ) = J ◦ df(ξ), we have dfx(ξx) = 0 for any x ∈ M . A map

f : M → N satisfies dfx(ξx) = 0 and dfx(T
1,0) ⊂ T 1,0N for any x ∈ M if and only

if f : M → N is CR-holomorphic.

Definition 4.3. A Sasakian manifold is a strongly pseudo-convex CR-

manifold

(M, (T 1,0, S, I), (η, ξ))

such that for any section ζ of T 1,0, [ξ, ζ] is also a section of T 1,0.

Let (M, (T 1,0, S, I), (η, ξ)) be a compact Sasakian manifold. The flow of Reeb

vector field ξ defines a 1-dimensional foliation Fξ on M . By the definition of

the Sasakian manifold, the CR-structure T 1,0 defines a transverse holomorphic

structure on the foliated manifold (M,Fξ). Furthermore, the closed basic 2-form

dη is a transverse Kähler structure with respect to this transverse holomorphic

structure.

Example 4.4. Consider the Heisenberg Lie group H3 as in Example 3.1. Then,

the complex sub-bundle T 1,0 in TH3C generated by

⟨
∂

∂x
−
√
−1

(
∂

∂y
+ x

∂

∂t

)⟩

is a left-invariant CR structure on H3. Take η = dt − xdy and ξ = ∂
∂t . Then

η = dt− xdy is a contact structure and ξ is its Reeb vector field. Since we have

[
ξ,

∂

∂x
−
√
−1

(
∂

∂y
+ x

∂

∂t

)]
= 0,

we obtain a left-invariant Sasakian structure on H3. By the left-invariance, this

induces a Sasakian structure on the compact quotient Γ\H3.
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The main purpose of this paper is to study a basic polarized variation of Hodge

structure over the foliated manifold (M,Fξ). We first show the semi-simplicity as

Theorem 2.2.

Theorem 4.5. Let (M, (T 1,0, S, I), (η, ξ)) be a compact Sasakian man-

ifold. For any basic polarized complex variation of Hodge structure (E =⊕
p+q=w Ep,q, D, h) of weight w over (M,Fξ), the flat bundle (E,D) is semi-simple.

Proof. Define the Hermitian metric H on E so that H(v, w) = (−1)ph(v, w) for

v, w ∈ Ep,q. Since
⊕

p+q=w Ep,q is a direct sum of basic C∞-subbundles, H is

basic. But it may not be parallel. Consider ϕ = θ + θ̄ and ∇ = D − ϕ. Then ∇
is a unitary connection and ϕ is a basic 1-form with values in the self-adjoint part

of End(E) corresponding to H. Applying [BK, Theorem 4.2], we can say that the

Hermitian metric H is harmonic (i.e. ∇∗ϕ = 0). By [Co, Proposition 3.2], the flat

bundle (E,D) is semi-simple.

□

Remark 4.6. In [Co], Corlette proved the semi-simplicity for polarized complex

variations of Hodge structures over compact Kähler manifolds by using harmonic

metrics. This is different from Griffiths’s proof in [Gri3]. The proof of Theorem

4.5 is based on Corlette’s idea.

For two Sasakian manifolds (M, (T 1,0, S, I), (η, ξ)) and

(M ′, (T 1,0′, S′, I ′), (η′, ξ′)), consider a CR-holomorphic map f : M → M ′.

We have f∗η′ = c(x)η for some positive function c(x) on M . Since dη′ is basic, we

have

df∗η′(ξx, X) = f∗dη′(ξx, X) = dη′(df(ξx), df(X)) = dη′(c(x)ξ′f(x), df(X)) = 0

for any X ∈ TMx. By Lξdη = 0, this implies

Lξ(c)η = Lξ(f
∗η′) = (iξd+ diξ)(f

∗η′) = diξf
∗η′ = dc

and so dc = 0 on the sub-bundle S ⊂ TM . This implies the following claim (cf.

[DT, Lemma 4.1]).

Claim 4.7. c(x) is constant.

Proof. Since TM = S ⊕ ⟨ξ⟩, it is sufficient to prove dc(ξx) = 0 for any x ∈ M .

We use the Tanaka-Webster connection:
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Proposition 4.8 ([Ta], [We]). For a strongly pseudo-convex CR-manifold

(M, (T 1,0, S, I), (η, ξ))

there exists a unique affine connection ∇TW on TM such that the following hold:

1. ∇TW (C∞(S)) ⊂ A1(M, S), where Ak(M, S) is the space of differential k-

forms on M with values in the vector bundle S.

2. ∇TW ξ = 0, ∇TW I = 0, ∇TW dη = 0, ∇TW η = 0 and ∇TW gη = 0.

3. The torsion TTW of the affine connection ∇TW satisfies the equation

TTW (X,Y ) = −dη(X,Y )ξ

for all X, Y ∈ Sx and x ∈ M .

Since dη is non-degenerate on S, we can take local sections X,Y of S such that

dη(Xx, Yx) ̸= 0. By the third property of the connection ∇TW in Proposition 4.8,

we have

∇TW
X Y −∇TW

Y X − [X,Y ] = −dη(X,Y )ξ.

By the first property in Proposition 4.8, ∇TW
X Y − ∇TW

Y X is a local section of S.

Hence

−dη(X,Y )dc(ξ) = dc(∇TW
X Y −∇TW

Y X)−X(Y (c)) + Y (X(c)) = 0.

This implies dc(ξx) = 0. □

Remark 4.9. Usually, morphisms between CR manifolds are CR-maps. But

we would like to adopt CR-holomorphic maps as morphisms between Sasakian man-

ifolds rather than CR maps. A CR-holomorphic map between Sasakian manifolds

can be regarded as an analogue of a holomorphic map between Kähler manifolds

(see [IP], [Pe]). For example, CR-holomorphic maps between Sasakian manifolds

are harmonic and an analogue of the Siu theorem ([Siu]) follows.

Since the pull-back f∗φ of a basic function φ on (M ′,Fξ′) is a basic function on

(M,Fξ), the pullback f∗E of a basic vector bundle E over (M ′,Fξ′) is a basic vector

bundle E over (M,Fξ). The pull-back f∗ on the de Rham complex is restricted as

f∗ : A∗
B(M

′) → A∗
B(M) and this map is a morphism of double complexes. For a

basic polarized complex variation of Hodge structure of w (E =
⊕

p+q=w Ep,q, D, h)
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over (M ′,Fξ′), the pull-back (f∗E =
⊕

p+q=w f∗Ep,q, f∗D, f∗h) over (M,Fξ).

The pull-back f∗ : A∗(M ′, E) → A∗(M,f∗E) is restricted as f∗ : A∗
B(M

′, E) →
A∗

B(M, f∗E) and this map is a morphism of double complexes.

Like complex case, we see the correspondence between basic polarized com-

plex variations of Hodge structure over Sasakian manifolds and equivariant maps

into classifying spaces of polarized Hodge structures. For a compact Sasakian

manifold (M, (T 1,0, S, I), (η, ξ)), we take the universal cover p : M̃ → M

associated with a base point x ∈ M . We consider the Sasakian manifold

(M̃, ( ˜T 1,0, S̃, Ĩ), (η̃, ξ̃)). Let (E =
⊕

p+q=w Ep,q, D, h) a basic polarized com-

plex variation of Hodge structure of weight w over (M,Fξ). Let G = Aut(Ex, hx)

and V = Πp+q=wAut(E
p,q
x , hx). Take the monodromy ρ : π1(M,x) → GL(Ex) of

the flat bundle (E,D). Since h is parallel, we have ρ(π1(M,x)) ⊂ G. Let g be

the Lie algebra of G. The decomposition E =
⊕

p+q=w gives the Hodge structure

gC =
⊕

r g
−r,r. For the Lie algebra v of V , we have v = g ∩ g0,0. Consider the

Homogeneous space G/V . We identify

T (G/V ) = (G× g/v)/V =


G× g ∩


⊕

r ̸=0

g−r,r




 /V.

It is known that G/V is the classifying space for hx-polarized complex Hodge

structures of type {dp,q} where dp,q = dimEp,q
x . This means that every hx-polarized

complex Hodge structure of type {dp,q} is given by gEp,q
x for a unique gV ∈ G/V .

The Hermitian metric H as above corresponds to a ρ-equivariant map Φ : M̃ →
GL(Ex)/Aut(Ex, Hx) so that dΦy = ϕp(y) where we identify E = π1(M,x)\(M̃ ×
Ex) and T (GL(Ex)/Aut(Ex, Hx)) = (GL(Ex) × S(Ex, Hx))/Aut(Ex, Hx) for the

vector space S(Ex, Hx) of the self-adjoint linear operators on Ex. Since H comes

from polarized complex Hodge structures on Ex, we can define Φ : M̃ → G/V .

Defining the complex structure on G/V whose holomorphic tangent bundle is

T 1,0(G/V ) =
(
G×

⊕
r>0 g

−r,r
)
/V . We have the holomorphic sub-bundle

T 1,0
h (G/V ) =

(
G× g−1,1

)
/V ⊂ T 1,0(G/V ).

Now, for any y ∈ we have dΦy(ξ̃x) = 0 and the basic Griffiths transversality implies

dΦy(T
1,0
y M̃) = θ(T 1,0

p(y)M) ⊂ T 1,0
h (G/V )Φ(y).

In particular, the map Φ : M̃ → G/V ⊂ GL(Ex)/Aut(Ex, Hx) is CR-holomorphic.

Conversely, if we have:
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• a polarized complex Hodge structure (Ex =
⊕

p+q=w Ep,q
x , hx) on a vector

space Ex,

• a representation ρ : π1(M,x) → G and

• a CR-holomorphic ρ-equivariant map Φ : M̃ → G/V such that dΦy(T
1,0
y M̃) ⊂

T 1,0
h (G/V )Φ(y) for any y ∈ M̃

where we define G, V and T 1,0
h (G/V ) in the same manner as above, then we obtain

a basic polarized complex variation of Hodge structure (E =
⊕

p+q=w Ep,q, D, h)

so that E = π1(M,x)\(M̃ ×ρ Ex) and for each y ∈ M̃ , Ep,q
y = Ψ(y)Ep,q

x by taking

Ψ(y) ∈ G as Φ(y) = Ψ(y)V ∈ G/V .

Remark 4.10. Similarly a basic polarized real variation of Hodge structure

(ER, E =
⊕

p+q=w Ep,q, D,Q) corresponds to

• a polarized real Hodge structure (ER,x, Ex =
⊕

p+q=w Ep,q
x , hx) on a vector

space Ex,

• a representation ρ : π1(M,x) → G and

• a CR-holomorphic ρ-equivariant map Φ : M̃ → G/V such that dΦy(T
1,0
y M̃) ⊂

T 1,0
h (G/V )Φ(y) for any y ∈ M̃

where G = Aut(ER,x, Qx), V = {g ∈ G : gEp,q
x = Ep,q

x ∀(p, q)} and for the Lie

algebra g of G with the Hodge structure gC =
⊕

r g
−r,r associated with Ex =⊕

p+q=w Ep,q
x , T 1,0

h (G/V ) =
(
G× g−1,1

)
/V ⊂ T 1,0(G/V ).

Remark 4.11. For t ∈ U(1), we have τ(t) ∈ V so that τ(t)v = tp−qv for

v ∈ Ep,q
x . We consider the 1-dimensional sub-torus S ⊂ V associated with

τ : U(1) → V . Then S is contained in the center C of V . Since C is a

torus and a direct factor of V , we can take a closed subgroup V ′ ⊂ V such

that V = V ′ × S. Consider the homogeneous space G/V ′. Then we have

T (G/V ′) =
(
G× g ∩

(⊕
r ̸=0 g

−r,r
)⊕

s
)
/V ′ where s is the Lie algebra of S. We

define the CR structure T 1,0 =
(
G×

⊕
r>0 g

−r,r
)
/V ′. It may be interesting to ex-

tend CR-holomorphic maps Φ : M̃ → G/V corresponding to basic polarized complex

variations of Hodge structure to CR-holomorphic maps Φ′ : M̃ → G/V ′.

We can see G/V ′ admits a pseudo-Sasakian structure. Since the action of V ′

on s is trivial, we have a real left-invariant vector field ξ on G/V ′ correspond-

ing to s and a real left-invariant 1-form η on G/V ′ corresponding to s∗ such
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that ξ(η) = 1. Then iξdη = 0 and [ξ, T 1,0] ⊂ T 1,0. We define the symmet-

ric bilinear form B on g ∩
(⊕

r ̸=0 g
−r,r

)⊕
s such that B(X,Y ) = −Tr(XY ).

Then B polarizes the Hodge structure
⊕

r ̸=0 g
−r,r ⊕ sC where sC is the component

of type (0, 0) (see [Sch, Lemma 8.8]). For X,Y ∈ g−r,r, for some T ∈ s, we

have B([X,Y ], T ) = −B(X, [T, Y ]) = −r
√
−1B(X,Y ). This implies that the left-

invariant Hermitian form
√
−1dη(X,Y ) = −

√
−1η([X,Y ]) on T 1,0 has the same

rank and same signature as B(X,Y ). Thus η is a contact form on G/V ′ which is

compatible with the CR-structure T 1,0 and its Levi form Lη has the signature (s, t)

where s =
∑

p even dimEp,q and t =
∑

p odd dimEp,q.

We give an analogue of Theorem 2.4.

Theorem 4.12. Let (M, (T 1,0, S, I), (η, ξ)) be a compact Sasakian manifold.

For a polarized real basic variation of Hodge structure of weight w over (M,F) is

(ER, E =
⊕

p+q=w Ep,q, D,Q), there exists a functorial real Hodge structure on the

cohomology Hi(M,ER) of weight i + w for 1 ≤ i ≤ n or of weight i + w + 1 for

n+ 1 ≤ i ≤ 2n.

Proof. As [Ka], we have the quasi-isomorphisms

A∗(M, ER) ← kerDc ⊕ kerDc ∧ η → H∗
B(M, ER)⊕H∗

B(M, ER)⊗ ⟨η⟩.

By Theorem 3.2, there exists a functorial Hodge structure on Hi
B(M, ER) of weight

i+ w. Putting the Hodge structure on ⟨η⟩ so that η is of type (1, 1), we have the

Hodge structure on Hi−1
B (M, ER)⊗⟨η⟩ of weight i+w+1. As the usual Lefschetz

decomposition, the map Hr
B(M, ER) ∋ a �→ a ∧ dη ∈ Hr+2

B (M, ER) is injective

for r ≤ n − 1 and surjective for r ≥ n − 1. Thus the cohomology Hi(M,ER) is

canonically isomorphic to

Hi
B(M, ER)/H

i−2
B (M, ER) ∧ dη

for i ≤ n or canonically isomorphic to

ker
(
Hi−1

B (M, ER) ∋ a �→ a ∧ dη ∈ Hi+1
B (M, ER)

)
⊗ ⟨η⟩

for n+ 1 ≤ i ≤ 2n. Thus, the Hodge structure as in the statement exists.

We show the functoriality. Let f : M → M ′ be a CR-holomorphic map. Via

the quasi-isomorphisms as above, the pull-back f∗ : A∗(M ′, E) → A∗(M, f∗E)
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corresponds to the map

f∗ : H∗
B(M

′, ER)⊕H∗
B(M

′, ER)⊗ ⟨η′⟩ → H∗
B(M, f∗ER)⊕H∗

B(M, f∗ER)⊗ ⟨η⟩.

Since the map f∗ : Hi
B(M

′, ER) → Hi
B(M, f∗ER) is a morphism of Hodge struc-

tures and f∗η′ = cη for some constant c, the map

f∗ : H∗
B(M

′, ER)⊕H∗
B(M

′, ER)⊗ ⟨η′⟩ → H∗
B(M, f∗ER)⊕H∗

B(M, f∗ER)⊗ ⟨η⟩.

induces a morphism of Hodge structures on the cohomology. Hence the map f∗ :

Hi(M ′, ER) → Hi(M, f∗ER) is a morphism of Hodge structures.

□

5. Remarks on Sasakian manifolds and Kähler manifolds(orbifolds)

Let X be a complex projective manifold with a Hodge metric i.e. a Kähler met-

ric whose Kähler form ω determines an integral cohomology class [ω] ∈ H2(M,Z).
Then, we have a principal circle bundle (Boothby-Wang fibration) π : M → X and

a 1-form η on M such that dη = π∗ω. It is known that we can take η a contact

form on M and defining the CR-structure T 1,0 by the horizontal lifting of T 1,0X, η

and T 1,0 constitute a Sasakian structure on M (see [Bl]). Pulling back of variations

of Hodge structure over X, we obtain basic variations of Hodge structure over the

Sasakian manifold M .

An n-dimensional C∞(complex) orbifold is a paracompact Hausdorff space X

with a family U = ({Uα, Ũα,Γα, ϕα})α such that :

• For each α, Ũα is a connected open subset of Rn (Cn) containing the origin,

Γα is a finite subgroup in the orthogonal group O(n) (the unitary group U(n))

and ϕα is a Γα-invariant continuous map from Ũα into an open subset Uα in

M which induces a homeomorphism between Ũα/Γα and Uα.

• M =
∪

α Uα.

• For two {Uα, Ũα,Γα, ϕα} and {Uβ , Ũβ ,Γα, ϕα} with x ∈ Uα∩Uβ , there exists

{Uγ , Ũγ ,Γγ , ϕγ} such that x ∈ Uγ and there are C∞(holomorphic) embed-

dings λαγ : Ũγ → Ũα and λβγ : Ũγ → Ũβ satisfying ϕα ◦ λαγ = ϕγ and

ϕβ ◦ λβγ = ϕγ .

If each finite group Γα is trivial, an orbifold (X,U) is a smooth manifold. A

Riemannian (Hermitian) metric on a C∞(complex) orbifold (X,U) is a family (gα)α
consisting of a Riemannian (Hermitian) metrics on each Ũα such that each gα is
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Γα-invariant and any λαγ is an isometry. A Hermitian metric on a complex orbifold

(X,U) is Kähler if each gα is a Kähler metric on Ũα. For a Lie group G, a principal

G-orbibundle over a C∞ orbifold (X,U) consists principal G-bundles pα : Bα → Uα

with homomorphisms hα : Γα → G such that:

• pα(bhα(γ)) = γ−1p(b) for b ∈ Bα and γ ∈ Γα.

• For any λαγ : Ũγ → Ũα, there exists a bundle map Λαγ : p−1
α (λαγ(Ũγ)) → Bγ

such that for gγ ∈ Γγ and gα ∈ Γα with λαγ ◦ gγ = gα ◦ λαγ , hγ(gγ) ◦ Λαγ =

Λαγ ◦ hα(gα).

Similarly we define a (holomorphic) vector orbibundle over a C∞ (complex) orbifold

(X,U), replacing pα : Bα → Uα with vector bundles and hα : Γα → G with

homomorphisms from Γα into linear transformations. For a (holomorphic) vector

orbibundle E → X, we define a section of E as a family of Γα-equivariant sections

which are compatible with the transition structure of E. In the usual manner,

we define the de Rham (Dolbeault) complex (A∗(X), d) ((A∗,∗(X), ∂, ∂̄)) of a C∞

(complex) orbifold (X,U). We also define a connection on a vector orbibundle

E → X as a differential operator D on the space A∗(X,E) of differential forms

with values in E and we say a connection D is flat if DD = 0. Let M be a complex

orbifold. We define a polarized complex (real) variation of Hodge structure of

weight w over a complex orbifold M by the same manner as in Definition 2.1 (2.3).

A compact Sasakian manifold (M, (T 1,0, S, I), (η, ξ)) is called quasi-regular

if every leaf of the foliation Fξ is closed. For any compact Sasakian manifold

(M, (T 1,0, S, I), (η, ξ)), we can take another contact form η′ with the Reeb vec-

tor field ξ′ so that (M, (T 1,0, S, I), (η′, ξ′)) is quasi-regular (see [BG, Section

8.2.3]. Under the quasi-regular condition, the leaf space M/Fξ admits a canon-

ical Kähler orbifold structure and M is the total space of a principal S1-orbibundle

over M/Fξ(see [BG]). Precisely, the basic two form dη induces a Kähler structure

on the orbifold M/Fξ which is a representative a integral class of the orbifold co-

homology. We note that the orbifold M/Fξ is a projective algebraic variety by the

result in [1]. Since M is a smooth manifold, each homomorphism hα : Γα → S1 for

this principal S1-orbibundle is injective. Pulling back of variations of Hodge struc-

ture over M/Fξ, we obtain basic variations of Hodge structure over the Sasakian

manifold M .
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6. Examples

Consider SL2(R) and its universal covering π : �SL2(R) → SL2(R). Let

X =

(
1 0

0−1

)
, Y =

(
0 1

1 0

)
and Z =

(
0−1

1 0

)
.

For the Lie algebra sl2(R) of SL2(R), we have sl2(R) = ⟨X,Y, Z⟩ and [X,Z] =

−2Y , [Y, Z] = 2X and [X,Y ] = −2Z. We regard sl2(R) as the left-invariant

vector fields. Then, W = 1
2 (X −

√
−1Y ) defines a left-invariant CR structure T 1,0

on �SL2(R). Consider the dual sl2(R)∗ = ⟨x, y, z⟩ as the left-invariant differential

forms. Then, η = z is a left-invariant contact structure on �SL2(R) and we have

the strongly pseudo-convex CR-manifold (�SL2(R), (T 1,0, S, I), (η, ξ)) with ξ = Z.

Since [Z,W ] = 2
√
−1W , this is a Sasakian manifold.

Let �Γ ⊂ �SL2(R) be a cocompact discrete subgroup. Consider the Sasakian

manifold (�Γ\�SL2(R), (T 1,0, S, I), (η, ξ)). Let ρk : SL2(R) → GLk+1(R) be the

irreducible representation which is the k-th symmetric product of the standard

representation SL2(R) → SL2(R). For the representation ρ̃k = ρk ◦ π : �Γ →
GLk+1(R), we define the flat bundle Ek

R = �Γ\(�SL2(R)×ρ̃k
Rk+1) with the natural

flat connection D. Corresponding v ∈ Rk+1 to the section ρ̃k(g)v of Ek
R, we have

the trivialization Ek
R = �Γ\�SL2(R)× Rk+1 such that D = d+ ω with

ω = ρk(X)⊗ x+ ρk(Y )⊗ y + ρk(Z)⊗ z.

Let Ck+1 = ⊕0≤p≤kVk−2p so that ρk(Z)(v) = (k − 2p)
√
−1v for v ∈ Vk−2p. Then

we have

ρk(W )Vk−2p ⊂ Vk−2p+2 and ρk(W )Vk−2p ⊂ Vk−2p−2.

Define the subbundle Ep,k−q = �Γ\�SL2(R)× Vk−2p of Ek = Ek
R ⊗C = �Γ\�SL2(R)×

Ck+1. Taking the 1-parameter subgroup associated with the vector field ξ = Z, this

can be considered as an S1 = SO(2)-action (see [RV]). This S1-action is extended

to a S1-action on Ek
R. We can see that for t ∈ S1 and ([g], v) ∈ �Γ\�SL2(R)×Rk+1,

t · (�Γg, v) = (�Γgt, ρk(t)−1v). By this condition, Ek =
⊕

p+q=k E
p,q is a direct sum

of basic C∞-subbundles. Let D = ∇+ θ + θ̄ where

∇ = d+ ρk(Z)⊗ z, θ =
1

2
ρk(W )⊗ w and θ̄ =

1

2
ρk(W )⊗ w̄
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where w = x+
√
−1y. Since we have

∇ : A0
B(

�Γ\�SL2(R), Ep,q) → A1
B(

�Γ\�SL2(R), Ep,q),

θ : A0,0
B (�Γ\�SL2(R), Ep,q) → A1,0

B (�Γ\�SL2(R), Ep−1,q+1)

and

θ̄ : A0,0
B (�Γ\�SL2(R), Ep,q) → A0,1

B (�Γ\�SL2(R), Ep+1,q−1),

the basic Griffiths transversality condition holds. We define a parallel (−1)k-

symmetric bilinear form Q on Ek
R induced by the skew-symmetric form on R2

associated with the determinant on GL2(R). Finally, we have the polarized real

basic variation of Hodge structure (Ek
R, E

k =
⊕

p+q=k E
p,q, D,Q) of weight k over

(�Γ\�SL2(R),Fξ).

Remark 6.1. The compact Sasakian manifold (�Γ\�SL2(R), (T 1,0, S, I), (η, ξ))

is quasi-regular. The leaf space M/Fξ is a hyperbolic orbifold Riemann surface

π(�Γ)\H where H is the upper-half plane with the hyperbolic metric. The basic

vector bundle Ep,q is the pull-back of the vector orbibundle Lp−q over π(�Γ)\H
where L is a square root of the canonical bundle of the orbifold Riemann surface

π(�Γ)\H.

Let G be a connected non-compact simple Lie group and K a maximal compact

subgroup of G. We assume that G is of Hermitian type i.e. G/K is a Hermitian

symmetric space of non-compact type. Consider the universal covering π : �G → G

and the subgroup �K = π−1(K). Then �K has a unique maximal compact subgroup
�K1 which is a maximal compact subgroup in �G. Let g = Lie(G) = Lie( �G), k =

Lie(K) = Lie( �K) and k1 = Lie( �K1). Denote by c the the center of k. We have

dim c = 1 and k = c⊕ k1.

Let p ⊂ g be the orthogonal complement of k associated with the Cartan-Killing

form. Consider the Cartan decomposition g = k ⊕ p. Then, we can take T ∈ c so

that pC = p+ ⊕ p− for

p+ = {X ∈ pC|[T,X] =
√
−1X} and p− = {X ∈ pC|[T,X] = −

√
−1X}.

The decomposition pC = p+ ⊕ p− induces a G-invariant complex structure J on

G/K and a �G-invariant CR structure T 1,0 on �G/ �K1 so that T
1,0

eK̃
= p+. Consider the
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�G-invariant 1-forms
(
(g/k1)

∗)k1
= c∗ ⊂ A1( �G/ �K1) and 2-forms

(∧2
(g/k1)

∗
)k1

=
(∧2

p∗
)k1

⊂ A2( �G/ �K1). Then
(∧2

p∗
)k1

is spanned by G-invariant Kähler form

ω on G/K and the differential d : c∗ →
(∧2

p∗
)k1

is bijective. Take η ∈ c∗

so that dη = ω and ξ ∈ c so that η(ξ) = 1. Then we have the Sasakian manifold

( �G/ �K1, (T
1,0, S, I), (η, ξ)). The homogeneous space �G/ �K1 is a principal R-bundle

over G/K. We notice that this Sasakian manifold can be seen as the Boothby-Wang

fibration of the Hermitian symmetric space G/K (see [BaK]).

Let �Γ ⊂ �G be a cocompact discrete subgroup so that �Γ acts freely on �G/ �K1.

Then we have the compact Sasakian manifold (�Γ\ �G/ �K1, (T
1,0, S, I), (η, ξ)). We

assume that π(�Γ) is discrete in G. We do not assume π(�Γ) acts freely on G/K.

Hence the quotient π(�Γ)\G/K is a Kähler orbifold.

We construct polarized complex basic variation of Hodge structure over

(�Γ\ �G/ �K1,Fξ) by the idea of Locally homogeneous variations of Hodge structure

as in [Zu2]. Let Z be the center of K. Then we have an isomorphism Z ∼= U(1).

For the adjoint group Ad(G) of G and the subgroup ZAd ⊂ Ad(G) corresponding

to Z, the homomorphism Z → ZAd is a covering map. Denote by µ the degree of

this covering map. Let ρ : G → GL(V ) be an irreducible representation of G on a

finite-dimensional C-vector space V . Let Vn = {v ∈ V |ρ(z)v = znv, z ∈ Z} where

we regard Z = U(1). Then we have non-negative integers m,n such that m ≥ n
µ

and V =
⊕m

k=0 Vn−kµ. We have

ρ∗(p+)Vn−kµ ⊂ Vn−kµ+µ, ρ∗(p−)Vn−kµ ⊂ Vn−kµ−µ

and

ρ∗(k)Vn−kµ ⊂ Vn−kµ.

Taking a compact real form of g, we can define a Hermitian inner product (, ) on

V satisfying

(ρ∗(X)v1, v2) = −(v1, ρ∗(X)v2)

for X ∈ k and

(ρ∗(X)v1, v2) = (v1, ρ∗(X)v2)

for X ∈ p (see [MM, Lemma 3.1]).



50 H. Kasuya

Let ρ̃ = ρ ◦ π : �G → GL(V ) We consider the flat bundles

E = �Γ\( �G/ �K1 ×ρ̃ V ) and E′ = �Γ\( �G×ρ̃ V ).

Corresponding v ∈ V to the section ρ̃(g)v of E, we have the trivialization E′ =
�Γ\ �G × V . We can see that for k ∈ �K and ([g], v) ∈ �Γ\ �G × V , k · (�Γg, v) =

(�Γgk, ρ̃(k)−1v). We have E = E′/ �K1 and define the subbundle

Ek,n−k = (�Γ\ �G× Vn−kµ)/ �K1 ⊂ E = E′/ �K1.

Then they are basic and we have E =
⊕

p+q=n E
p,q. By the relations

ρ∗(p+)Vn−kµ ⊂ Vn−kµ+µ and ρ∗(p−)Vn−kµ ⊂ Vn−kµ−µ, the basic Griffiths transver-

sality condition holds. By the relation (ρ∗(X)v1, v2) = −(v1, ρ∗(X)v2) for X ∈ k,

the Hermitian inner product (, ) induces Hermitian metric H on E and the direct

sum E =
⊕

p+q=n E
p,q is orthogonal with respect to H. Define the Hermitian form

h on E so that E =
⊕

p+q=n E
p,q is orthogonal with respect to h and h = (−1)pH

on Ep,q. Then, by the relations ρ∗(p+)Vn−kµ ⊂ Vn−kµ+µ, ρ∗(p−)Vn−kµ ⊂ Vn−kµ−µ

and (ρ∗(X)v1, v2) = (v1, ρ∗(X)v2) for X ∈ p, h is a parallel Hermitian form on

the flat bundle E. Hence, we have the polarized complex basic variation of Hodge

structure (E =
⊕

p+q=n E
p,q, D, h) of weight n over (�Γ\ �G/ �K1,Fξ).
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