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Construction of contractible complete quaternionic almost

Hermitian manifolds with compact isometry group

Yoshinobu Kamishima

Abstract. The 4n + 3-dimensional quaternionic Heisenberg
nilpotent Lie group M admits a quaternionic contact structure. There
exists a three dimensional simply connected non-abelian solvable Lie
group R acting properly on M. We show that the quotient of M by

R admits a quaternionic almost Hermitian metric g. Moreover, one al-
most complex structure, say J from the quaternionic structure is shown
to be integrable for which (M/R, J) is a Bochner flat Kähler manifold.

1. Introduction

A quaternionic contact structure is a codimension 3-subbundle D on a 4n+ 3-

dimensional smooth manifoldX such that D+[D,D] = TX. (See [3].) If there exists

an ImH-valued 1-form ω = ω1i+ω2j+ω3k on X such that ker ω =
3
∩

α=1
ker ωα = D

and
3
∧ω

n
∧ dω ̸= 0 on X, then ω is said to be a quaternionic contact form. The

endomorphisms {J1, J2, J3} defined by

(1) Jγ = (dωβ |D)−1 ◦ (dωα|D) : D→D ((α, β, γ) ∼ (1, 2, 3))

constitutes a hypercomplex structure on D. Then (X, (D, ω, {Jα}3α=1)) is called

a quaternionic contact manifold (qc-manifold for short). See [3], [4], [1] for the

definition and the reference therein.

Using the equality dωα(X,Y ) = dωβ(JγX,Y ) on D, we have the reciprocity:

dω1(J1X,Y ) = dω2(J2X,Y ) = dω3(J3X,Y ).(2)

This shows dωα(JαX, JαY ) = dωα(X,Y ). If the distribution E = {ξ | dω1(ξ, A) =

dω2(ξ, A) = dω3(ξ, A) = 0, ∀ A ∈ TX} generates a three dimensional local abelian
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Lie group preserving the qc-structure (D, {ωα, Jα}3α=1) on X, then it is shown in [4],

[7] that X is a qc-Einstein manifold of vanishing qc-scalar curvature. Furthermore

if a local abelian group extends to an R3-action, then the smooth quotient manifold

X/R3 supports a hyperKähler structure. (Of course this is always true locally.)

In this paper, given a 4n+3-dimensional qc-manifold (X,D, {ω, Jα}3α=1), we take

only one-form ω1 to study the distribution E1 = {ξ | dω1(ξ, A) = 0, ∀ A ∈ TX }.
Let Autqc(X) (= Autqc(X,D, {Jα}3α=1)) be the group of qc-transformations of X.

We have the subgroup of Autqc(X) defined by

(3) E(X,ω) = {h ∈ Diff(X) | h∗ω = a · ω · ā, h∗Jα =
3∑

β=1

aαβJβh∗}

for some smooth maps a : X→Sp(1) and maps (aαβ) ≤ SO(3) obtained by the

conjugation of a. If E1 generates a three dimensional Lie subgroup R ≤ E(X,ω)

consisting of qc-transformations of X. Then we study the quotients of X by sub-

groups of R.

Theorem 1.1. Suppose E1 generates a three dimensional simply connected

Lie group R lying in E(X,ω). Then the quotient manifold Y = X/R admits a

quaternionic almost Hermitian metric g compatible with an induced quaternionic

structure {Ĵα}3α=1. If gω =
∑3

i=1 ωi · ωi + dω1 ◦ J1 is a Riemannian metric on X,

then the projection π gives a Riemannian submersion : R→(X, gω)
π−→ (Y, g).

Moreover if R is a nontrivial solvable Lie group of the form R2 ⋊ R in which

R2 preserves {Jα}3α=1 and ω1|TR2 = 0. Put X1 = X/R2. Then (ω1, J1) induces

a strictly pseudoconvex pseudo-Hermitian structure (ω′
1, J

′
1) on X1 and a Kähler

structure (Ω1, Ĵ1) on Y for which π gives rise to a Sasaki fibering : R→X1
π1−→ Y

such that Ω1 = g ◦ Ĵ1, π∗
1Ω1 = dω′

1 and π1∗ ◦ J ′
1 = Ĵ1 ◦ π1∗|ker ω′

1
.

Here a quaternionic almost Hermitian metric g is a Riemannian metric on Y

such that g(Jαu, Jαv) = g(u,v) with respect to a quaternionic structure {Ĵα}3α=1.

We apply these results to the quaternionic Heisenberg Lie group M which has the

standard qc-structure (D0, ω0, {Jα}3α=1) where ω0 is the standard qc-form on M
with D0 = ker ω0.

Theorem 1.2. There is a qc-structure (D0, {ηα, Jα}3α=1) on M where η =

η1i + η2j + η3k is a qc-form qc-conformal to ω0. This induces a quaternionic

almost Hermitian structure (g, {Ĵα}3α=1) on the quaternion space Hn. Moreover

the quotient M/R2 is isomorphic to the Heisenberg nilpotent Lie group N1 such

that
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(i) There is a strictly pseudoconvex pseudo-Hermitian structure (η′1, J
′
1) on N1

where R→(N1, (η
′
1, J

′
1))

π1−→ (Hn, {g, Ĵ1}) is a Sasaki fibering over the complete

Bochner flat Kähler manifold (Hn, {g, Ĵ1}).
(ii) The holomorphic isometry group Isomh(Hn, (g, Ĵ1)) is isomorphic to U(2n).

(iii) The quaternioic almost Hermitian isometry group Isomqh(Hn, (g, {Ĵα}3α=1) )

is isomorphic to Sp(n) · S1.

In particular (Hn, (g, Ĵ1)) is not holomorphically flat or (Hn, (g, {Ĵα}3α=1) ) is

not flat.

2. Proper action of R

Put dω1 ◦ J1(u,v) = dω1(J1u,v) (∀u,v ∈ D). It follows that E(X,ω) leaves

dω1 ◦ J1|D invariant. Using the Carnot-Carathéodory metric for ω (see [8]), we

note that

Lemma 2.1. Any closed subgroup of E(X,ω) acts properly.

Fix a form ω1 from among ωα’s (α = 1, 2, 3). Let

(4) E1 = {ξ | dω1(ξ, A) = 0, ∀ A ∈ TX}.

Suppose the distribution E1 generates a 3-dimensional Lie group R of qc-

transformations of X. If R ≤ E(X,ω), then as in the proof of [7, Proposition

2.3], it follows R is a closed subgroup in E(X,ω) and so R acts properly on X.

Furthermore if R is simply connected, then it acts freely on X. Put Y = X/R as

a 4n-dimensional smooth manifold.

Proposition 2.2. Suppose R is a simply connected Lie subgroup of E(X,ω).

(i) The quotient manifold Y = X/R admits a quaternionic structure {Ĵα}3α=1.

(ii) Y admits a quaternionic almost Hermitian metric g compatible with {Ĵα}3α=1.

Proof. (i) Let R→X
π−→ Y be the principal bundle. As R is simply connected,

there is a section s : Y→X. Given y ∈ Y and ûy ∈ TyY , choose us(y) ∈ Ds(y) such

that π∗us(y) = ûy. Since π∗ : Ds(y)→TyY is an isomorphism, us(y) is uniquely

determined. Define a quaternionic structure on Y to be

(5) Ĵα(ûy) = π∗(Jαus(y)) (α = 1, 2, 3).

Thus {Ĵα}α=1,2,3 gives a quaternionic structure on Y .

Note that this does not imply π : (X, {Jα}3α=1)→(Y, {Ĵα}3α=1) is equivariant.
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(ii) Let û, v̂ ∈ TyY . Choose u,v ∈ Dỹ such that π∗u = û, π∗v = v̂ with

π(ỹ) = y. Define a positive definite 2-form on Y to be

(6) g(û, v̂) = dωα(Jαu,v) = dωβ(Jβu,v) = dωγ(Jγu,v).

Noting R ≤ E(X,ω) by the hypothesis, it is easy to check that (6) is well-defined

as well as g(Ĵαûy, Ĵαv̂y) = g(ûy, v̂y). Thus g is a compatible metric on Y with

respect to {Ĵα}3α=1. □

Put π∗u = û, π∗v = v̂ ∈ TY for u,v ∈ D. Define Ωα to be

(7) Ωα(û, v̂) = g(û, Ĵαv̂) = dωα(u,v) (α = 1, 2, 3).

Corollary 2.3. Suppose R ≤ E(X,ω). Then the following holds:

Ω1(Ĵ1û, v̂) = Ω2(Ĵ2û, v̂) = Ω3(Ĵ3û, v̂) (û, v̂ ∈ TY ).

π∗Ω1 = dω1 on X.
(8)

In particular, Ω1 is a closed 2-form on Y .

Remark 2.4. Let R be a 3-dimensional Lie group generated by E1 consisting

of qc-transformations of X, that is R ≤ Autqc(X,D). Suppose each α ∈ R satisfies

α∗ω = a · ω · ā such that a ∈ Sp(1). Then it follows R ≤ E(X,ω), but not

necessarily R ≤ Isom(X, gω). In fact we determine {ξα, α = 1, 2, 3} uniquely such

as ωα(ξβ) = δαβ, dωα(ξα,v) = 0 (∀ v ∈ D). Then Jα on D naturally extends to

the whole X by Jα(ξ1) = Jα(ξ2) = Jα(ξ3) = 0. If gω =
∑3

i=1
ωi · ωi + dω1 ◦ J1 is

the canonical Riemannian metric on X, then gω(ξα,v) = 0 by the definition but it

is not true whether or not α∗ preserves {ξα, α = 1, 2, 3}. In general note neither

R ≤ E(X,ω) nor E(X) ≤ Isom(X, gω).

3. A pseudo-Hermitian structure on X/R1 and Kähler structure Ω1

on the complex manifold (Y, Ĵ1)

Let E1 = {ξ1, ξ2, ξ3} generate a three dimensional simply connected Lie group

R. We assume further

(i) R is solvable such that [R,R] = R1 which induces {ξ2, ξ3}.
(ii) R ≤ E(X,ω).

(iii) For each t ∈ R, t∗J1 = J1t∗ and t∗{J2, J3} = {J2, J3} on D.

(9)
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Put X1 = X/R1. Then R = R/R1 acts properly on X1. The bundle R→X
π−→ Y

induces a principal bundle:

(10)

R −−−−→ X1
π1−−−−→ Y

|| ||

R/R1 −−−−→ X/R1.

Let D be the qc-structure on X. Let p1 : X→X1 be the projection such that

π1 ◦ p1 = π. Note that p1∗ : D→p1∗(D) is an isomorphism at each point of X1. Put

D̂ = p1∗(D) on X1. If E1 = {ξ1, ξ2, ξ3}, then recall ω1(ξ1) = 1, ω1(ξ2) = ω2(ξ3) = 0

for which {ξ2, ξ3} generates R1. Then p1 : X→X1 induces a one-form ω̂1 on X1

such that p∗1ω̂1 = ω1.

Lemma 3.1. ω̂1 is a contact structure on X1 such that ker ω̂1 = D̂.

Proof. As ω1 ∧ ω2 ∧ ω3 ∧ (dω1)
2n ̸= 0 on X and TX = E1 ⊕ D with TR =

E1 = {ξ1, ξ2, ξ3}, it follows p∗1(ω̂1 ∧ (dω̂1)
2n) = ω1 ∧ (dω1)

2n|{ξ1,D} ̸= 0. Thus,

ω̂1 ∧ (dω̂1)
2n ̸= 0 on X1. Since ker ω1 = {ξ2, ξ3} ⊕ D by the assumption (9), it

implies ker ω̂1 = D̂. □

Note that p1∗ : D→D̂ ⊂ TX1 is an isomorphism at each point of X1. Since

J1 is an almost complex structure on TX1 and t∗J1 = J1t∗ by the hypothesis, J1
induces an almost complex structure Ĵ 1 on D̂ with the commutative diagram:

D
J1−−−−→ D

p1∗

� p1∗

�
D̂

Ĵ 1−−−−→ D̂.

If D⊗C = D1,0 ⊕D0,1 is the eigenspace decomposition for J1, then p1∗ maps D1,0

isomorphically onto D̂1,0 where D̂⊗C = D̂1,0⊕D̂0,1 is the eigenspace decomposition

for Ĵ 1. We have the following. (See [1].)

Lemma 3.2. For any X,Y ∈ D1,0, there is an element u ∈ D⊗ C such that

[X,Y ] = a(ξ2 − iξ3) + u (∃ a ∈ R).

Proof. As dω2(X,Y ) = g(X, J2Y ), dω2 : D1,0 × D1,0→C is non-degenerate. Put
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dω2(X,Y ) = −a

2
for some a ∈ R. Then ω2([X,Y ]) = a so that ω2([X,Y ]−aξ2) = 0.

Put

(11) v = [X,Y ]− aξ2 ∈ ker ω2 ⊗ C.

dω3(X,Y ) = dω3(J3(−J3X), Y ) = dω2(J2(−J3X), Y )

= −dω2(J1X,Y ) = −idω2(X,Y ) =
ia

2
,

it follows ω3([X,Y ]) = −ia. By (11), ω3(v) = −ia, or ω3(v + iaξ3) = 0. Putting

u = v + iaξ3, it follows

(12) u = v + iaξ3 ∈ ker ω3 ⊗ C.

Thus,

(13) [X,Y ] = v + aξ2 = u− iaξ3 + aξ2 = u+ a(ξ2 − iξ3).

As

−ω1([X,Y ]) = 2dω1(X,Y ) = 2dω1(J1X, J1Y ) = 2dω1(iX, iY ) = −2dω1(X,Y ),

note ω1([X,Y ]) = 0. Since ω1([X,Y ]) = ω1(u + a(ξ2 − iξ3)) = ω1(u) by (13),

ω1(u) = 0. Similarly ω2(u) = ω2(v + iaξ3) = ω2(v) = 0 by (11). By (12),

ω3(u) = 0. As a consequence, it follows u ∈ D⊗ C. □

Since ξβ generates an element of R, [ξβ ,D] ⊂ D. Noting ωα(ξβ) = δαβ , for any

v ∈ D it follows

(14) 2dωα(ξβ ,v) = ξβωα(v)− vωα(ξβ)− ωα([ξβ ,v]) = 0.

Proposition 3.3. For the element u of Lemma 3.2, J1u = iu.

Proof. First recall from [9, Proposition 3.10 (p.35)] that for any k-form θ (k ≥ 1),

(15) LX(ιY θ)− ιY LXθ = ι[X,Y ]θ.
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For X ∈ D1,0, v ∈ D we obtain that

ιXdω2(v) = dω2(X,v) = −dω2(J2(J2X),v)

= −dω3(J3(J2X),v) = dω3(J1X,v)

= idω3(X,v) = iιXdω3(v).

(16)

It follows by (14) that ιXdωα(ξβ) = dωα(X, ξβ) = 0 for X ∈ D ⊗ C and ξβ
(β = 1, 2, 3). Since TX = E1 ⊕ D, (16) implies

(17) ιXdω2 = iιXdω3 on TX.

Noting LXdω2 = (dιX + ιXd)dω2 = dιXdω2, substitute (17) so that

LXdω2 = d(iιXdω3) = idιXdω3 = i(LX − ιXd)dω3 = iLXdω3.(18)

Applying Y ∈ D1,0, we have

(19) ιY LXdω2 = iιY LXdω3.

For Y ∈ D1,0, it follows similarly

(20) ιY dω2 = iιY dω3 on TX.

Apply θ = dω3 to (15).

LX(ιY dω2) = LX(iιY dω3) = iLX(ιY dω3) ((20))

= i(ιY LXdω3 + ι[X,Y ]dω3) = ιY LXdω2 + iι[X,Y ]dω3 ((19))
(21)

Comparing to (15) with θ = dω2,

(22) iι[X,Y ]dω3 = ι[X,Y ]dω2 on TX.

By Lemma 3.2 with [X,Y ] = a(ξ2 − iξ3) + u, for any w ∈ D,

idω3([X,Y ],w) = dω2([X,Y ],w)

idω3(a(ξ2 − iξ3) + u,w) = dω2(a(ξ2 − iξ3) + u,w)

idω3(u,w) = dω2(u,w).

(23)
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On the other hand, putting w = −J2v,

idω3(u,w) = idω3(u,−J2v) = idω3(J2(v),u)

= idω3(J3J1(v),u) = idω1(J1(J1v),u)

= −idω1(v,u) = −dω1(v, iu)

dω2(u,w) = dω2(u,−J2(v)) = dω2(J2(v),u)

= dω1(J1(v),u) = −dω1(v, J1u),

(24)

thus dω1(v, iu) = dω1(v, J1u). Since dω1(v, iu − J1u) = 0 for any v ∈ D, the

non-degeneracy of dω1 implies iu− J1u = 0. □

Theorem 3.4. Suppose (9) is satisfied, that is R ≤ E(X,ω), t∗J1 = J1t∗,

t∗{J2, J3} = {J2, J3} on D for each t ∈ R. Then

(i) (ω̂1, Ĵ 1) is a strictly pseudoconvex pseudo-Hermitian structure on X1 for which

R→X1
π1−→ Y gives rise to a pseudo-Hermitian fibering such that π∗

1Ω1 = dω̂1.

(ii) Ĵ1 is a complex structure on Y . In particular, (Y, (Ω1, Ĵ1)) is a Kähler mani-

fold.

Proof. (i) It is sufficient to show that Ĵ 1 is integrable on D̂. Let D̂ ⊗ C =

D̂1,0⊕D̂0,1 be the eigenspace decomposition for Ĵ 1. As the isomorphism p1∗ : D→D̂

satisfies p1∗ ◦J1 = Ĵ 1 ◦p1∗, note that p1∗D1,0 = D̂1,0. Since [X,Y ] = a(ξ2− iξ3)+u

(∃ a ∈ R), it follows p1∗([X,Y ]) = [p1∗X, p1∗Y ] = p1∗u. Put p1∗X = X̂, p1∗Y =

Ŷ ∈ D̂1,0 and û = p1∗u ∈ D̂. We have [X̂, Ŷ ] = û. As J1u = iu by Proposition

3.3, we obtain Ĵ 1([X̂, Ŷ ]) = i[X̂, Ŷ ]. Hence [X̂, Ŷ ] ∈ D1,0. Ĵ 1 is integrable.

Let R→X1
π1−→ Y be the principal bundle. Here R induces the vector field

ξ̂1 (= p1∗ξ1) such that ω̂1(ξ̂1) = 1. As π∗Ω1 = dω1 (cf. (8)), it is easy to see that

(25) π∗
1Ω1 = dω̂1.

(ii) Since π1∗ : D̂→TY is an isomorphism at each point, recall from (5) that

there is an almost complex structure Ĵ1 on Y which satisfies π1∗Ĵ 1 = Ĵ1π1∗. Then

we check that Ĵ1 is a complex structure on Y . Let π1∗(D̂
0,1) = TY 1,0 where

TY ⊗ C = TY 1,0 ⊕ TY 0,1 with respect to Ĵ1. If we note [D̂1,0, D̂1,0] ⊂ D̂1,0 by

Theorem 3.4, then π1∗(Ĵ 1[û, v̂]) = π1∗(i[û, v̂]) = i[π1∗û, π1∗v̂] for û, v̂ ∈ D̂1,0.

Since π1∗(Ĵ 1[û, v̂]) = Ĵ1π1∗[û, v̂] = Ĵ1[π1∗û, π1∗v̂], it follows Ĵ1[π1∗û, π1∗v̂] =

i[π1∗û, π1∗v̂]. Noting π1∗û, π1∗v̂ ∈ TY 1,0, Ĵ1 is integrable on Y . As Ω1(Ĵ1û, Ĵ1v̂) =

Ω1(û, v̂) from (25), (Ω1, Ĵ1) is a Kähler structure on Y with g = Ω1 ◦ Ĵ1. □

This proves Theorem 1.1 of Introduction.
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4. Quaternionic contact structure on M

Let Hn be the 4n-dimensional vector space over the quaternion field H and

ImH = Ri + Rj + Rk identifies the three dimensional vector space R3. The

quaternionic Heisenberg Lie group M is the product R3 × Hn with group law:

(t, z) · (s, w) = (t+ s− Im⟨z, w⟩, z + w) where ⟨z, w⟩ = tz̄w is the Hermitian inner

product on Hn. ((t, s) ∈ R3 = ImH, and z, w ∈ Hn.) M is a nilpotent Lie group

whose center is [M,M] = R3 consisting of elements (t, 0). See [1] for the details.

Let ω0 be an ImH-valued one-form on M defined by

ω0 = dt1i+ dt2j + dt3k + Im⟨z, dz⟩.(26)

Put ω0 = ω1i+ ω2j + ω3k. The codimension 3-subbundle D0 =
3
∩
i=1

kerωi = kerω0

on M together with the hypercomplex structure {J1, J2, J3} is called the standard

qc-structure on M. Alternatively, for this hypercomplex structure, if π : M→Hn

is the canonical projection (homomorphism), then π∗ : D→THn is an isomorphism

at each point for which each Jα on D is defined by the commutative rule:

(27) π∗ ◦ Jα = Ĵα ◦ π∗

where {Ĵα, α = 1, 2, 3} is the standard quaternionic structure {i, j, k} on Hn, that

is Ĵ1z = zī, Ĵ2z = zj̄, Ĵ3z = zk̄ respectively. By calculation, D satisfies [D,D] ≡
⟨d/dt1, d/dt2, d/dt3⟩ mod ker ω0.

Let Sim(M) = M⋊(Sp(n) ·Sp(1)×R+) be the full group of qc-transformations

of M (cf. [1]). If h =
(
(t, u), A · αλ

)
(λ ∈ R+, α ∈ Sp(1)) is an element of Sim(M),

then h acts on M as

(28) hp = h(s, z) = (t+ λ2αsᾱ− Im⟨u, λAzᾱ⟩, u+ λAzᾱ) (∀ p = (s, z) ∈ M).

Then it follows

(29) h∗ω0 = λ2 · αω0ᾱ.

Thus every element of E(M) leaves D0 = ker ω0 invariant in general. On the

other hand, the euclidean group of M is denoted by E(M) = E(M, ω0) = M ⋊(
Sp(n) · Sp(1)

)
which is a normal subgroup of Sim(M). By (29), each element

h =
(
(t, v), (A · α)

)
∈ E(M) satisfies

(30) h∗ω0 = αω0ᾱ.
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Remark 4.1. In particular, if h ∈ M ⋊ Sp(n), then h∗ω0 = ω0. For the

Riemannian metric gω0
=

∑3
i=1 ωi · ωi + dω1 ◦ J1 on M, the identity component

Isom(M, gω0
)0 coincides with E(M). Note that this metric is neither a 3-Sasaki

metric nor defines a quaternionic CR structure on M.

5. Conformal change of ω0

Fix a number a ≥ 0. For each i = 1, 2, 3, define the elements ρ(t1) =(
((t1, 0, 0), 0), I · e−iat1)

)
, ρ(t2) =

(
((0, t2, 0), 0), I)

)
, ρ(t3) =

(
((0, 0, t3), 0), I)

)
in

(R3, 0)⋊ S1 ≤ E(M). More precisely, the action of ρ(ti) on M has the form:

ρ(t1)
(
(s1i, s2j, s3k), z

)
=

(
(t1 + s1)i, e

−iat1(s2j, s3k)e
iat1), zeiat1

)
,

ρ(t2)
(
(s1i, s2j, s3k), z

)
=

(
(s1i, (s2 + t2)j, s3k), z

)
,

ρ(t3)
(
(s1i, s2j, s3k), z

)
=

(
(s1i, s2j, (s3 + t3)k), z

)(31)

for
(
(s1i, s2j, s3k), z

)
∈ M = R3 ×Hn. As ρ(t1) normalizes the vector space R2 =

⟨ρ(t2), ρ(t3)⟩, ⟨ρ(t1), ρ(t2), ρ(t3)⟩ forms a 3-dimensional solvable Lie group R1 such

that

(32) R1 = R2 ⋊ {ρ(t1)} ≤ R3 ⋊ ({1} × S1).

Take x1 + ix2 + jx3 + kx4 as the standard real coordinate of z1 ∈ H and identify

Hn with R4n. Let ⟨ d

dt1
,
d

dt2
,
d

dt3
⟩ be the standard basis of R3 = Ri+Rj+Rk also.

From (31) it follows

d(e−iat1(s2j, s3k)e
iat1)

dt1
|t1=0 = 2as3

d

dt2
− 2as2

d

dt3
.

Then R1 induces three vector fields ⟨ξ1,
d

dt2
,
d

dt3
⟩ at (s, z) ∈ M such that

ξ1 =
d

dt1
+ 2a(s3

d

dt2
− s2

d

dt3
)

+

n∑
k=1

a(x4k−3
d

dx4k−2
− x4k−2

d

dx4k−3
+ x4k

d

dx4k−1
− x4k−1

d

dx4k
).

(33)

Since ω0 = ω1i+ ω2j + ω3k, using (26) it follows

(34) ω1(ξ1) = 1 + a(|z1|2 + · · ·+ |zn|2).
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As we assumed a ≥ 0, note ω1(ξ1) ≥ 1. We introduce new one-forms on M:

(35) η1 =
1

ω1(ξ1)
ω1, η2 =

1

ω1(ξ1)
ω2, η3 =

1

ω1(ξ1)
ω3.

Proposition 5.1. Then the following hold.

η1(ξ1) = 1, η1(
d

dt2
) = η1(

d

dt3
) = 0,

dη1(ξ1, X) = dη1(
d

dt2
, X) = dη1(

d

dt3
, X) = 0 (∀ X ∈ TM),

E1 = {ξ | dη1(ξ,X) = 0} = {ξ1,
d

dt2
,

d

dt3
}.

(36)

In addition, η2(
d

dt2
) = η3(

d

dt3
) =

1

ω1(ξ1)
> 0.

Proof. It follows from (30) that ρ(ti)∗D = D for each ρ(ti) ∈ R (i = 1, 2, 3). Since

η1(ξ1) = 1 from (35), calculate 2dη1(ξ1,u) = −η1([ξ1,u]) = 0 (∀ u ∈ D).

For α = 2, 3, ω1(
d

dtα
) = 0. As ⟨ρ(t1)⟩ normalizes R2 = ⟨ρ(t2), ρ(t3)⟩, it follows

[ξ1,
d

dtα
] ∈ ⟨ d

dt2
,
d

dt3
⟩ so that dη1(ξ1,

d

dtα
) = 0. This shows that dη1(ξ1, X) = 0

(∀ X ∈ TM). Similarly at p = ((t1, t2, t3), z1, . . . , zn) ∈ M,

2dη1(
d

dtα
,
d

dt1
) =

d

dtα
(

1

1 + a
∑n

i=1 |zi|2
)− η1([

d

dtα
,
d

dt1
]) = 0,

also 2dη1(
d

dtα
,u) = −η1([

d

dtα
,u]) = 0 (∀ u ∈ D). It follows dη1(

d

dtα
, X) = 0

(∀ X ∈ TM). We obtain E1 = {ξ1,
d

dt2
,

d

dt3
}. □

Remark that dη2(
d

dt2
, X), dη2(

d

dt3
, X) are not zero in general. Since dηα is con-

formal to dωα on D0,

Lemma 5.2. The hypercomplex structure obtained from {ηα} is the same as

{Jα}3α=1 of {ωα}α=1,2,3.

By (2), we have dηα(JαX, JαY ) = dηα(X,Y ) (α = 1, 2, 3). Using (27), (31),
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note that

ρ(t1)∗J1 = J1ρ(t1)∗,

ρ(t1)∗

[
J2
J3

]
=

[
cos 2at1 − sin 2at1
sin 2at1 cos 2at1

] [
J2
J3

]
ρ(t1)∗.

ρ(t2)∗Jα = Jαρ(t2)∗, ρ(t3)∗Jα = Jαρ(t3)∗ (α = 1, 2, 3).

(37)

As above each element of R1 = R2 ⋊ ρ(R) satisfies (9).
Letting η = η1i + η2j + η3k at p = (s, z) = ((s1, s2, s3), z) ∈ M, it follows

η = f · ω0 such that f(p) =
1

ω1((ξ1)p)
=

1

1 + a|z|2
where |z|2 = |z1|2 + · · · + |zn|2

(cf. (34)). As η is conformal to ω0, E(M, η) ≤ Sim(M).

Proposition 5.3. If h ∈ E(M, η), then h ∈ R3 ⋊ (Sp(n) · Sp(1)). As a

consequence, E(M, η) = R3 ⋊ (Sp(n) · Sp(1)). In addtion, R1 ≤ E(M, η).

Proof. For h =
(
(t, u), A · αλ

)
(λ ∈ R+, α ∈ Sp(1)), (28) implies

(38) h∗f(p) = f(hp) =
1

ω1((ξ1)hp)
=

1

1 + a|u+ λAzᾱ|2
.

Since h ∈ E(M, η), as in (30), h∗η = βηβ̄ for some β ∈ Sp(1). Noting η = f · ω0,

the action of Sim(M) shows that h∗η = h∗f · h∗ω0 = h∗f · λ2αω0ᾱ. Then the

equality βηβ̄ = h∗f · λ2αω0ᾱ implies

|η| = |βηβ̄| = |h∗f · λ2αω0ᾱ| = h∗f · λ2|ω0|.

(Here |t1i + t2j + t3k| =
√
t21 + t22 + t23 is the norm.) Evaluated at p, it follows

|η| = f(p)|ω0|, that is f(p)|ω0| = h∗f(p) · λ2|ω0|. Thus f(p) = f(hp)λ2 which

implies

(39)
1

1 + a|z|2
=

λ2

1 + a|u+ λAzᾱ|2

by (38). Take z0 =
1

1− λ
A−1uα ∈ Hn, that is Az0ᾱ = u+ λAz0ᾱ. Substitute this

into (39):

1

1 + a|z0|2
=

λ2

1 + a|Az0ᾱ|2
=

λ2

1 + a|z0|2
,

thus λ = 1 (λ > 0). Then |z|2 = |u+Azᾱ|2 from (39). Taking z = 0 shows u = 0.
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So h ∈ R3 ⋊ (Sp(n) · Sp(1)). Conversely if h = ((t, 0), A ·α) ∈ R3 ⋊ (Sp(n) · Sp(1)),
then h∗ω0 = αω0ᾱ. Then h∗f(p) = f(hp) =

1

1 + |Azᾱ|2
= f(p). It follows

h∗η = h∗f · h∗ω0 = f · αω0ᾱ = αηᾱ. Obviously h∗Jα =
3∑

β=1

aαβJβ . Hence

h ∈ E(M, η) by the definition. □

We apply Theorem 3.4 to obtain

Theorem 5.4. (I) There exists a quaternionic almost Hermitian structure

(g, {Ĵα}3α=1) on the quaternion vector space Hn such that R→(M, gω)
π−→ (Hn, g)

is a Riemannian submersion.

(II) There is a strictly pseudoconvex pseudo-Hermitian structure (η̂1, J
′
1) on the

nilpotent Lie group N1 = M/R2 such that

(40) ρ(R) −−−−→ (N1, (η̂1, J
′
1))

π1−−−−→ (Hn, (g, Ĵ1))

gives rise to a pseudo-Hermitian (Sasaki) fibering over the complete Kähler mani-

fold (Hn, g) such that π∗
1Ω1 = dη̂1.

Proof. Let ρ(t1) =
(
((t1, 0, 0), 0), I ·e−iat1)

)
where R = R2⋊ρ(R) ≤ R3⋊ (1 ·S1)

from (32). Then R/R2 = ρ(R) such that ρ(t1) =
(
(t1, 0), e

−iat1)
)
∈ R × S1. By

Theorem 3.4, note that Y = N1/ρ(R) = M/R = Hn. (I) follows from Proposition

2.2. (Hn, g, Ĵ1) is a complete Kähler manifold by [6, Proposition 3.5]. □

This proves (i) of Theorem 1.2 of Introduction.

6. Isometry group of Hn

Let ρ : R→R3⋊S1 be the representation as in (31) where R3⋊S1 ≤ E(M, η) =

R3 ⋊ (Sp(n) · Sp(1)) (cf.Proposition 5.3). If CE(M,η)(ρ(R)) is the centralizer of

ρ(R), then it follows CE(M,η)(ρ(R)) = R ⋊ (Sp(n) · S1) where R = (R, 0, 0) and

S1 = {eiθ}. Then the equivariant Riemannian submersion induces the equivariant

pseudo-Hermitian (Sasaki) fibration of (II) of Theorem 5.4:

(41)

R −−−−→ (R3 ⋊ Sp(n) · S1,M)
π−−−−→ (Sp(n) · S1,Hn)�/R2

�/R2 ||

ρ(R) −−−−→ (R⋊ (Sp(n) · S1),N1)
π1−−−−→ (Sp(n) · S1,Hn).
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Denote Isomqh(Hn, (g, {Ĵα}3α=1)) the quaternionic almost Hermitian isometry

group and Isomh(Hn, (g, Ĵ1)) the holomorphic isometry group respectively. Note

from (41)

(42) Sp(n) · S1 ≤ Isomqh(Hn, (g, {Ĵα}3α=1)).

Let (N , ω̂0, J0) be the standard pseudo-Hermitian structure on the 2n + 1-

dimensional Heisenberg nilpotent Lie group. Moreover, R1 ≤ E(M, η) by

(31).group N such that Psh(N , (ω̂0, J0)) = N ⋊ U(2n) is the group of pseudo-

Hermitian transformations of N . Consider the representation ρ1 : R→N ⋊ U(2n)

defined by

(43) ρ1(t1) =
(
(t1, 0), diag (e

iat1)
)
∈ (R, 0)×U(2n).

As in [7], there is the commutative diagram:

(44)

ρ(R) µ−−−−→ ρ1(R)�
�

N1
φ−−−−→ N

π̂

� p

�
Hn φ̂−−−−→ C2n,

satisfying that

(1) φ : N1 = M/R2 = R × Hn→N = R × C2n is a Lie group isomorphism

between nilpotent Lie groups defined by φ(s, (u + vj)) = (s, (u, v̄)) where

z = u+vj ∈ Hn (u, v ∈ Cn). Note that φ(ρ(t1)(s, u+vj)) = ρ1(t1)φ(s, u+vj).

(2) φ̂ : Hn→C2n is the induced diffeomorphism : φ̂(u + wj) = (u, v̄). If ρ1(R)
induces the vector field ξ1 on N , then it follows ω̂0(ξ1) = 1 + a(|u|2 + |v|2).
Putting ω̂1 =

1

ω̂0(ξ1)
ω̂0, ξ1 turns to the Reeb field of ω̂1.

(3) It follows φ∗ω̂1 = η̂1 and φ∗ ◦ J ′
1 = J ′

0 ◦ φ∗ where J ′
0 is the anti-complex

structure of J0 on N . As a consequence, φ becomes a pseudo-Hermtian dif-

feomorphism of (N1, (η̂1, J
′
1)) onto a strictly pseudoconvex pseudo-Hermitian

structure (N , (ω̂1, J
′
0)).

Since ρ1(R) induces the Reeb field of ω̂1 on N , the uniqueness of Reeb field implies

that Psh(N , (ω̂1, J
′
0)) centralizes ρ1(R) and so CPsh(N )(ρ1(R)) = Psh(N , (ω̂1, J

′
0)).
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As the centralizer of ρ1(R) in Psh(N ) is R×U(2n) from (43),

(45) Psh(N , (ω̂1, J
′
0)) = R×U(2n).

Recall from [2, Proposition 3.4] that there is an exact sequence:

(46) 1−→ρ1(R) −−−−→ Psh(N , (ω̂1, J
′
0))

ϕ−−−−→ Isomh(C2n, (g0, Ĵ
′
0))−→ 1,

where (g0, Ĵ
′
0) is a complete Kähler metric on the complex vector space C2n =

N/ρ1(R). (Compare [6, Proposition 3.5].) Hence we have

Proposition 6.1. The holomorphic isometry group Isomh(C2n, (g0, Ĵ
′
0)) is

isomorphic to U(2n).

If φ̂ : Hn→C2n is the diffeomorphism of (2), then it follows from (3)

that φ̂∗g0 = g with φ̂∗ ◦ Ĵ1 = Ĵ ′
0 ◦ φ̂∗. Let µ : Diff(Hn)→Diff(C2n)

be an isomorphism defined by µ(h) = φ̂ ◦ h ◦ φ̂−1. Then (µ, φ̂) :

(Isomh(Hn, (g, Ĵ1)),Hn)−→(Isomh(C2n, (g0, Ĵ
′
0)),C2n) is an equivariant holomor-

phic isometry such that µ
(
Isomh(Hn, (g, Ĵ1))

)
= U(2n) = S1 · SU(2n). By forget-

ting the almost complex structures {J2, J3}, there is a natural inclusion:

Sp(n) · S1 ≤ Isomqh(Hn, (g, {Ĵα}3α=1)) ≤ Isomh(Hn, (g, Ĵ1)) = S1 · SU(2n).

Theorem 6.2. Isomqh(Hn, (g, {Ĵα}3α=1)) = Sp(n) · S1.

Combining Proposition 6.1 with this theorem proves (ii), (iii) of Theorem 1.2.
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