Construction of contractible complete quaternionic almost Hermitian manifolds with compact isometry group

Yoshinobu KAMISHIMA

Abstract. The 4n + 3-dimensional quaternionic Heisenberg nilpotent Lie group \mathcal{M} admits a quaternionic contact structure. There exists a three dimensional simply connected non-abelian solvable Lie group \mathcal{R} acting properly on \mathcal{M} . We show that the quotient of \mathcal{M} by \mathcal{R} admits a quaternionic almost Hermitian metric g. Moreover, one almost complex structure, say J from the quaternionic structure is shown to be integrable for which $(\mathcal{M}/\mathcal{R}, J)$ is a Bochner flat Kähler manifold.

1. Introduction

A quaternionic contact structure is a codimension 3-subbundle D on a 4n + 3dimensional smooth manifold X such that D+[D, D] = TX. (See [3].) If there exists an Im \mathbb{H} -valued 1-form $\omega = \omega_1 i + \omega_2 j + \omega_3 k$ on X such that ker $\omega = \bigcap_{\alpha=1}^{3} \ker \omega_\alpha = D$ and $\bigwedge^3 \omega \bigwedge^n d\omega \neq 0$ on X, then ω is said to be a quaternionic contact form. The endomorphisms $\{J_1, J_2, J_3\}$ defined by

(1)
$$J_{\gamma} = (d\omega_{\beta}|\mathsf{D})^{-1} \circ (d\omega_{\alpha}|\mathsf{D}) : \mathsf{D} \to \mathsf{D} \ ((\alpha, \beta, \gamma) \sim (1, 2, 3))$$

constitutes a hypercomplex structure on D. Then $(X, (\mathsf{D}, \omega, \{J_{\alpha}\}_{\alpha=1}^{3}))$ is called a *quaternionic contact* manifold (*qc*-manifold for short). See [3], [4], [1] for the definition and the reference therein.

Using the equality $d\omega_{\alpha}(X,Y) = d\omega_{\beta}(J_{\gamma}X,Y)$ on D, we have the reciprocity:

(2)
$$d\omega_1(J_1X,Y) = d\omega_2(J_2X,Y) = d\omega_3(J_3X,Y).$$

This shows $d\omega_{\alpha}(J_{\alpha}X, J_{\alpha}Y) = d\omega_{\alpha}(X, Y)$. If the distribution $\mathsf{E} = \{\xi \mid d\omega_1(\xi, A) = d\omega_2(\xi, A) = d\omega_3(\xi, A) = 0, \forall A \in TX\}$ generates a three dimensional local abelian

²⁰²⁰ Mathematics Subject Classification. Primary 53C55; Secondary 57S25, 51M10.

Key Words and Phrases. Quaternionic Hermitian structure, Quaternionic contact structure, Quaternionic Heisenberg Lie group.

Lie group preserving the qc-structure (D, $\{\omega_{\alpha}, J_{\alpha}\}_{\alpha=1}^{3}$) on X, then it is shown in [4], [7] that X is a qc-Einstein manifold of vanishing qc-scalar curvature. Furthermore if a local abelian group extends to an \mathbb{R}^{3} -action, then the smooth quotient manifold X/\mathbb{R}^{3} supports a hyperKähler structure. (Of course this is always true locally.)

In this paper, given a 4n+3-dimensional qc-manifold $(X, \mathsf{D}, \{\omega, J_{\alpha}\}_{\alpha=1}^{3})$, we take only one-form ω_{1} to study the distribution $\mathsf{E}_{1} = \{\xi \mid d\omega_{1}(\xi, A) = 0, \forall A \in TX\}$. Let $\operatorname{Aut}_{qc}(X) (= \operatorname{Aut}_{qc}(X, \mathsf{D}, \{J_{\alpha}\}_{\alpha=1}^{3}))$ be the group of qc-transformations of X. We have the subgroup of $\operatorname{Aut}_{qc}(X)$ defined by

(3)
$$E(X,\omega) = \{h \in Diff(X) \mid h^*\omega = a \cdot \omega \cdot \bar{a}, \ h_*J_\alpha = \sum_{\beta=1}^3 a_{\alpha\beta}J_\beta h_*\}$$

for some smooth maps $a: X \to \operatorname{Sp}(1)$ and maps $(a_{\alpha\beta}) \leq \operatorname{SO}(3)$ obtained by the conjugation of a. If E_1 generates a three dimensional Lie subgroup $\mathcal{R} \leq \operatorname{E}(X, \omega)$ consisting of qc-transformations of X. Then we study the quotients of X by subgroups of \mathcal{R} .

THEOREM 1.1. Suppose E_1 generates a three dimensional simply connected Lie group \mathcal{R} lying in $\mathsf{E}(X,\omega)$. Then the quotient manifold $Y = X/\mathcal{R}$ admits a quaternionic almost Hermitian metric g compatible with an induced quaternionic structure $\{\hat{J}_{\alpha}\}_{\alpha=1}^3$. If $g_{\omega} = \sum_{i=1}^3 \omega_i \cdot \omega_i + d\omega_1 \circ J_1$ is a Riemannian metric on X, then the projection π gives a Riemannian submersion : $\mathcal{R} \to (X, g_{\omega}) \xrightarrow{\pi} (Y, g)$.

Moreover if \mathcal{R} is a nontrivial solvable Lie group of the form $\mathbb{R}^2 \rtimes \mathbb{R}$ in which \mathbb{R}^2 preserves $\{J_{\alpha}\}_{\alpha=1}^3$ and $\omega_1|_{T\mathbb{R}^2} = 0$. Put $X_1 = X/\mathbb{R}^2$. Then (ω_1, J_1) induces a strictly pseudoconvex pseudo-Hermitian structure (ω'_1, J'_1) on X_1 and a Kähler structure (Ω_1, \hat{J}_1) on Y for which π gives rise to a Sasaki fibering : $\mathbb{R} \to X_1 \xrightarrow{\pi_1} Y$ such that $\Omega_1 = g \circ \hat{J}_1$, $\pi_1^* \Omega_1 = d\omega'_1$ and $\pi_{1*} \circ J'_1 = \hat{J}_1 \circ \pi_{1*}|_{\ker \omega'_1}$.

Here a quaternionic almost Hermitian metric g is a Riemannian metric on Y such that $g(J_{\alpha}\boldsymbol{u}, J_{\alpha}\boldsymbol{v}) = g(\boldsymbol{u}, \boldsymbol{v})$ with respect to a quaternionic structure $\{\hat{J}_{\alpha}\}_{\alpha=1}^{3}$. We apply these results to the quaternionic Heisenberg Lie group \mathcal{M} which has the standard qc-structure $(\mathsf{D}_{0}, \omega_{0}, \{J_{\alpha}\}_{\alpha=1}^{3})$ where ω_{0} is the standard qc-form on \mathcal{M} with $\mathsf{D}_{0} = \ker \omega_{0}$.

THEOREM 1.2. There is a qc-structure $(\mathsf{D}_0, \{\eta_\alpha, J_\alpha\}_{\alpha=1}^3)$ on \mathcal{M} where $\eta = \eta_1 i + \eta_2 j + \eta_3 k$ is a qc-form qc-conformal to ω_0 . This induces a quaternionic almost Hermitian structure $(g, \{\hat{J}_\alpha\}_{\alpha=1}^3)$ on the quaternion space \mathbb{H}^n . Moreover the quotient \mathcal{M}/\mathbb{R}^2 is isomorphic to the Heisenberg nilpotent Lie group \mathcal{N}_1 such that

(i) There is a strictly pseudoconvex pseudo-Hermitian structure (η'_1, J'_1) on \mathcal{N}_1 where $\mathbb{R} \to (\mathcal{N}_1, (\eta'_1, J'_1)) \xrightarrow{\pi_1} (\mathbb{H}^n, \{g, \hat{J}_1\})$ is a Sasaki fibering over the complete Bochner flat Kähler manifold $(\mathbb{H}^n, \{g, \hat{J}_1\})$.

(ii) The holomorphic isometry group $\operatorname{Isom}_h(\mathbb{H}^n, (g, \hat{J}_1))$ is isomorphic to $\operatorname{U}(2n)$.

(iii) The quaternioic almost Hermitian isometry group $\operatorname{Isom}_{qh}(\mathbb{H}^n, (g, \{\hat{J}_{\alpha}\}_{\alpha=1}^3))$ is isomorphic to $\operatorname{Sp}(n) \cdot S^1$.

In particular $(\mathbb{H}^n, (g, \hat{J}_1))$ is not holomorphically flat or $(\mathbb{H}^n, (g, \{\hat{J}_\alpha\}_{\alpha=1}^3))$ is not flat.

2. Proper action of \mathcal{R}

Put $d\omega_1 \circ J_1(\boldsymbol{u}, \boldsymbol{v}) = d\omega_1(J_1\boldsymbol{u}, \boldsymbol{v}) \ (\forall \boldsymbol{u}, \boldsymbol{v} \in \mathsf{D})$. It follows that $\mathsf{E}(X, \omega)$ leaves $d\omega_1 \circ J_1 | \mathsf{D}$ invariant. Using the Carnot-Carathéodory metric for ω (see [8]), we note that

LEMMA 2.1. Any closed subgroup of $E(X, \omega)$ acts properly.

Fix a form ω_1 from among ω_{α} 's ($\alpha = 1, 2, 3$). Let

(4)
$$\mathsf{E}_{1} = \{\xi \mid d\omega_{1}(\xi, A) = 0, \ \forall A \in TX\}.$$

Suppose the distribution E_1 generates a 3-dimensional Lie group \mathcal{R} of *qc*-transformations of X. If $\mathcal{R} \leq \mathsf{E}(X,\omega)$, then as in the proof of [7, Proposition 2.3], it follows \mathcal{R} is a closed subgroup in $\mathsf{E}(X,\omega)$ and so \mathcal{R} acts properly on X. Furthermore if \mathcal{R} is simply connected, then it acts freely on X. Put $Y = X/\mathcal{R}$ as a 4*n*-dimensional smooth manifold.

PROPOSITION 2.2. Suppose \mathcal{R} is a simply connected Lie subgroup of $E(X, \omega)$. (i) The quotient manifold $Y = X/\mathcal{R}$ admits a quaternionic structure $\{\hat{J}_{\alpha}\}_{\alpha=1}^{3}$. (ii) Y admits a quaternionic almost Hermitian metric g compatible with $\{\hat{J}_{\alpha}\}_{\alpha=1}^{3}$.

PROOF. (i) Let $\mathcal{R} \to X \xrightarrow{\pi} Y$ be the principal bundle. As \mathcal{R} is simply connected, there is a section $s: Y \to X$. Given $y \in Y$ and $\hat{\boldsymbol{u}}_y \in T_yY$, choose $\boldsymbol{u}_{s(y)} \in D_{s(y)}$ such that $\pi_*\boldsymbol{u}_{s(y)} = \hat{\boldsymbol{u}}_y$. Since $\pi_*: D_{s(y)} \to T_yY$ is an isomorphism, $\boldsymbol{u}_{s(y)}$ is uniquely determined. Define a quaternionic structure on Y to be

(5)
$$\hat{J}_{\alpha}(\hat{\boldsymbol{u}}_{y}) = \pi_{*}(J_{\alpha}\boldsymbol{u}_{s(y)}) \ (\alpha = 1, 2, 3).$$

Thus $\{\hat{J}_{\alpha}\}_{\alpha=1,2,3}$ gives a quaternionic structure on Y. Note that this does not imply $\pi: (X, \{J_{\alpha}\}_{\alpha=1}^{3}) \to (Y, \{\hat{J}_{\alpha}\}_{\alpha=1}^{3})$ is equivariant.

(ii) Let $\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}} \in T_y Y$. Choose $\boldsymbol{u}, \boldsymbol{v} \in D_{\tilde{y}}$ such that $\pi_* \boldsymbol{u} = \hat{\boldsymbol{u}}, \pi_* \boldsymbol{v} = \hat{\boldsymbol{v}}$ with $\pi(\tilde{y}) = y$. Define a positive definite 2-form on Y to be

(6)
$$g(\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}) = d\omega_{\alpha}(J_{\alpha}\boldsymbol{u}, \boldsymbol{v}) = d\omega_{\beta}(J_{\beta}\boldsymbol{u}, \boldsymbol{v}) = d\omega_{\gamma}(J_{\gamma}\boldsymbol{u}, \boldsymbol{v}).$$

Noting $\mathcal{R} \leq \mathrm{E}(X, \omega)$ by the hypothesis, it is easy to check that (6) is well-defined as well as $g(\hat{J}_{\alpha}\hat{\boldsymbol{u}}_{y}, \hat{J}_{\alpha}\hat{\boldsymbol{v}}_{y}) = g(\hat{\boldsymbol{u}}_{y}, \hat{\boldsymbol{v}}_{y})$. Thus g is a compatible metric on Y with respect to $\{\hat{J}_{\alpha}\}_{\alpha=1}^{3}$.

Put $\pi_* \boldsymbol{u} = \hat{\boldsymbol{u}}, \pi_* \boldsymbol{v} = \hat{\boldsymbol{v}} \in TY$ for $\boldsymbol{u}, \boldsymbol{v} \in \mathsf{D}$. Define Ω_{α} to be

(7)
$$\Omega_{\alpha}(\hat{\boldsymbol{u}},\hat{\boldsymbol{v}}) = g(\hat{\boldsymbol{u}},\hat{J}_{\alpha}\hat{\boldsymbol{v}}) = d\omega_{\alpha}(\boldsymbol{u},\boldsymbol{v}) \quad (\alpha = 1,2,3).$$

COROLLARY 2.3. Suppose $\mathcal{R} \leq E(X, \omega)$. Then the following holds:

(8)
$$\Omega_1(\hat{J}_1\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}) = \Omega_2(\hat{J}_2\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}) = \Omega_3(\hat{J}_3\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}) \quad (\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}} \in TY).$$
$$\pi^*\Omega_1 = d\omega_1 \text{ on } X.$$

In particular, Ω_1 is a closed 2-form on Y.

Remark 2.4. Let \mathcal{R} be a 3-dimensional Lie group generated by E_1 consisting of qc-transformations of X, that is $\mathcal{R} \leq \operatorname{Aut}_{qc}(X, \mathsf{D})$. Suppose each $\alpha \in \mathcal{R}$ satisfies $\alpha^*\omega = a \cdot \omega \cdot \bar{a}$ such that $a \in \operatorname{Sp}(1)$. Then it follows $\mathcal{R} \leq \operatorname{E}(X,\omega)$, but not necessarily $\mathcal{R} \leq \operatorname{Isom}(X, g_{\omega})$. In fact we determine $\{\xi_{\alpha}, \alpha = 1, 2, 3\}$ uniquely such as $\omega_{\alpha}(\xi_{\beta}) = \delta_{\alpha\beta}$, $d\omega_{\alpha}(\xi_{\alpha}, \mathbf{v}) = 0$ ($\forall \mathbf{v} \in \mathsf{D}$). Then J_{α} on D naturally extends to the whole X by $J_{\alpha}(\xi_1) = J_{\alpha}(\xi_2) = J_{\alpha}(\xi_3) = 0$. If $g_{\omega} = \sum_{i=1}^{3} \omega_i \cdot \omega_i + d\omega_1 \circ J_1$ is the canonical Riemannian metric on X, then $g_{\omega}(\xi_{\alpha}, \mathbf{v}) = 0$ by the definition but it is not true whether or not α_* preserves $\{\xi_{\alpha}, \alpha = 1, 2, 3\}$. In general note neither $\mathcal{R} \leq \operatorname{E}(X, \omega)$ nor $\operatorname{E}(X) \leq \operatorname{Isom}(X, g_{\omega})$.

3. A pseudo-Hermitian structure on X/\mathcal{R}_1 and Kähler structure Ω_1 on the complex manifold (Y, \hat{J}_1)

Let $\mathsf{E}_1 = \{\xi_1, \xi_2, \xi_3\}$ generate a three dimensional simply connected Lie group \mathcal{R} . We assume further

(i) \mathcal{R} is solvable such that $[\mathcal{R}, \mathcal{R}] = \mathcal{R}_1$ which induces $\{\xi_2, \xi_3\}$.

(9) (ii) $\mathcal{R} \leq \mathrm{E}(X, \omega).$

(iii) For each $t \in \mathcal{R}$, $t_*J_1 = J_1t_*$ and $t_*\{J_2, J_3\} = \{J_2, J_3\}$ on D.

Put $X_1 = X/\mathcal{R}_1$. Then $\mathbb{R} = \mathcal{R}/\mathcal{R}_1$ acts properly on X_1 . The bundle $\mathcal{R} \to X \xrightarrow{\pi} Y$ induces a principal bundle:

(10)
$$\mathbb{R} \longrightarrow X_{1} \xrightarrow{\pi_{1}} Y$$
$$|| \qquad || \\ \mathcal{R}/\mathcal{R}_{1} \longrightarrow X/\mathcal{R}_{1}.$$

Let D be the *qc*-structure on X. Let $p_1 : X \to X_1$ be the projection such that $\pi_1 \circ p_1 = \pi$. Note that $p_{1*} : D \to p_{1*}(D)$ is an isomorphism at each point of X_1 . Put $\hat{D} = p_{1*}(D)$ on X_1 . If $\mathsf{E}_1 = \{\xi_1, \xi_2, \xi_3\}$, then recall $\omega_1(\xi_1) = 1$, $\omega_1(\xi_2) = \omega_2(\xi_3) = 0$ for which $\{\xi_2, \xi_3\}$ generates \mathcal{R}_1 . Then $p_1 : X \to X_1$ induces a one-form $\hat{\omega}_1$ on X_1 such that $p_1^*\hat{\omega}_1 = \omega_1$.

LEMMA 3.1. $\hat{\omega}_1$ is a contact structure on X_1 such that ker $\hat{\omega}_1 = \hat{\mathsf{D}}$.

PROOF. As $\omega_1 \wedge \omega_2 \wedge \omega_3 \wedge (d\omega_1)^{2n} \neq 0$ on X and $TX = \mathsf{E}_1 \oplus \mathsf{D}$ with $T\mathcal{R} = \mathsf{E}_1 = \{\xi_1, \xi_2, \xi_3\}$, it follows $p_1^*(\hat{\omega}_1 \wedge (d\hat{\omega}_1)^{2n}) = \omega_1 \wedge (d\omega_1)^{2n}|_{\{\xi_1,\mathsf{D}\}} \neq 0$. Thus, $\hat{\omega}_1 \wedge (d\hat{\omega}_1)^{2n} \neq 0$ on X_1 . Since ker $\omega_1 = \{\xi_2, \xi_3\} \oplus \mathsf{D}$ by the assumption (9), it implies ker $\hat{\omega}_1 = \hat{\mathsf{D}}$.

Note that $p_{1*} : D \to \hat{D} \subset TX_1$ is an isomorphism at each point of X_1 . Since J_1 is an almost complex structure on TX_1 and $t_*J_1 = J_1t_*$ by the hypothesis, J_1 induces an almost complex structure \hat{J}_1 on \hat{D} with the commutative diagram:

$$\begin{array}{ccc} \mathsf{D} & \stackrel{J_1}{\longrightarrow} & \mathsf{D} \\ \\ p_{1*} & & p_{1*} \\ \hat{\mathsf{D}} & \stackrel{\hat{\mathsf{J}}_1}{\longrightarrow} & \hat{\mathsf{D}}. \end{array}$$

If $\mathsf{D} \otimes \mathbb{C} = \mathsf{D}^{1,0} \oplus \mathsf{D}^{0,1}$ is the eigenspace decomposition for J_1 , then p_{1*} maps $\mathsf{D}^{1,0}$ isomorphically onto $\hat{\mathsf{D}}^{1,0}$ where $\hat{\mathsf{D}} \otimes \mathbb{C} = \hat{\mathsf{D}}^{1,0} \oplus \hat{\mathsf{D}}^{0,1}$ is the eigenspace decomposition for $\hat{\mathsf{J}}_1$. We have the following. (See [1].)

LEMMA 3.2. For any $X, Y \in D^{1,0}$, there is an element $u \in D \otimes \mathbb{C}$ such that

$$[X,Y] = a(\xi_2 - i\xi_3) + \boldsymbol{u} \quad (\exists \ a \in \mathbb{R}).$$

PROOF. As $d\omega_2(X,Y) = g(X,J_2Y), d\omega_2 : \mathsf{D}^{1,0} \times \mathsf{D}^{1,0} \to \mathbb{C}$ is non-degenerate. Put

 $d\omega_2(X,Y) = -\frac{a}{2}$ for some $a \in \mathbb{R}$. Then $\omega_2([X,Y]) = a$ so that $\omega_2([X,Y]-a\xi_2) = 0$. Put

(11)
$$\boldsymbol{v} = [X, Y] - a\xi_2 \in \ker \omega_2 \otimes \mathbb{C}.$$

$$d\omega_3(X,Y) = d\omega_3(J_3(-J_3X),Y) = d\omega_2(J_2(-J_3X),Y)$$

= $-d\omega_2(J_1X,Y) = -id\omega_2(X,Y) = \frac{ia}{2},$

it follows $\omega_3([X,Y]) = -ia$. By (11), $\omega_3(\mathbf{v}) = -ia$, or $\omega_3(\mathbf{v} + ia\xi_3) = 0$. Putting $\mathbf{u} = \mathbf{v} + ia\xi_3$, it follows

(12)
$$\boldsymbol{u} = \boldsymbol{v} + ia\xi_3 \in \ker \, \omega_3 \otimes \mathbb{C}.$$

Thus,

(13)
$$[X,Y] = \boldsymbol{v} + a\xi_2 = \boldsymbol{u} - ia\xi_3 + a\xi_2 = \boldsymbol{u} + a(\xi_2 - i\xi_3).$$

As

$$-\omega_1([X,Y]) = 2d\omega_1(X,Y) = 2d\omega_1(J_1X,J_1Y) = 2d\omega_1(iX,iY) = -2d\omega_1(X,Y),$$

note $\omega_1([X,Y]) = 0$. Since $\omega_1([X,Y]) = \omega_1(\boldsymbol{u} + a(\xi_2 - i\xi_3)) = \omega_1(\boldsymbol{u})$ by (13), $\omega_1(\boldsymbol{u}) = 0$. Similarly $\omega_2(\boldsymbol{u}) = \omega_2(\boldsymbol{v} + ia\xi_3) = \omega_2(\boldsymbol{v}) = 0$ by (11). By (12), $\omega_3(\boldsymbol{u}) = 0$. As a consequence, it follows $\boldsymbol{u} \in \mathsf{D} \otimes \mathbb{C}$.

Since ξ_{β} generates an element of \mathcal{R} , $[\xi_{\beta}, \mathsf{D}] \subset \mathsf{D}$. Noting $\omega_{\alpha}(\xi_{\beta}) = \delta_{\alpha\beta}$, for any $v \in \mathsf{D}$ it follows

(14)
$$2d\omega_{\alpha}(\xi_{\beta}, \boldsymbol{v}) = \xi_{\beta}\omega_{\alpha}(\boldsymbol{v}) - \boldsymbol{v}\omega_{\alpha}(\xi_{\beta}) - \omega_{\alpha}([\xi_{\beta}, \boldsymbol{v}]) = 0.$$

PROPOSITION 3.3. For the element \boldsymbol{u} of Lemma 3.2, $J_1\boldsymbol{u} = i\boldsymbol{u}$.

PROOF. First recall from [9, Proposition 3.10 (p.35)] that for any k-form θ ($k \ge 1$),

(15)
$$\mathcal{L}_X(\iota_Y\theta) - \iota_Y\mathcal{L}_X\theta = \iota_{[X,Y]}\theta.$$

58

For $X \in \mathsf{D}^{1,0}, \, \boldsymbol{v} \in \mathsf{D}$ we obtain that

(16)

$$\iota_X d\omega_2(\boldsymbol{v}) = d\omega_2(X, \boldsymbol{v}) = -d\omega_2(J_2(J_2X), \boldsymbol{v})$$

$$= -d\omega_3(J_3(J_2X), \boldsymbol{v}) = d\omega_3(J_1X, \boldsymbol{v})$$

$$= id\omega_3(X, \boldsymbol{v}) = i\iota_X d\omega_3(\boldsymbol{v}).$$

It follows by (14) that $\iota_X d\omega_\alpha(\xi_\beta) = d\omega_\alpha(X,\xi_\beta) = 0$ for $X \in \mathsf{D} \otimes \mathbb{C}$ and ξ_β $(\beta = 1, 2, 3)$. Since $TX = \mathsf{E}_1 \oplus \mathsf{D}$, (16) implies

(17)
$$\iota_X d\omega_2 = i\iota_X d\omega_3 \quad \text{on } TX.$$

Noting $\mathcal{L}_X d\omega_2 = (d\iota_X + \iota_X d) d\omega_2 = d\iota_X d\omega_2$, substitute (17) so that

(18)
$$\mathcal{L}_X d\omega_2 = d(i\iota_X d\omega_3) = id\iota_X d\omega_3 = i(\mathcal{L}_X - \iota_X d)d\omega_3 = i\mathcal{L}_X d\omega_3.$$

Applying $Y \in \mathsf{D}^{1,0}$, we have

(19)
$$\iota_Y \mathcal{L}_X d\omega_2 = i \iota_Y \mathcal{L}_X d\omega_3.$$

For $Y \in \mathsf{D}^{1,0}$, it follows similarly

(20)
$$\iota_Y d\omega_2 = i\iota_Y d\omega_3 \quad \text{on } TX$$

Apply $\theta = d\omega_3$ to (15).

(21)
$$\mathcal{L}_X(\iota_Y d\omega_2) = \mathcal{L}_X(i\iota_Y d\omega_3) = i\mathcal{L}_X(\iota_Y d\omega_3) \ ((20)) \\ = i(\iota_Y \mathcal{L}_X d\omega_3 + \iota_{[X,Y]} d\omega_3) = \iota_Y \mathcal{L}_X d\omega_2 + i\iota_{[X,Y]} d\omega_3 \ ((19))$$

Comparing to (15) with $\theta = d\omega_2$,

(22)
$$i\iota_{[X,Y]}d\omega_3 = \iota_{[X,Y]}d\omega_2 \text{ on } TX$$

By Lemma 3.2 with $[X, Y] = a(\xi_2 - i\xi_3) + \boldsymbol{u}$, for any $\boldsymbol{w} \in \mathsf{D}$,

(23)
$$id\omega_{3}([X,Y],\boldsymbol{w}) = d\omega_{2}([X,Y],\boldsymbol{w})$$
$$id\omega_{3}(a(\xi_{2}-i\xi_{3})+\boldsymbol{u},\boldsymbol{w}) = d\omega_{2}(a(\xi_{2}-i\xi_{3})+\boldsymbol{u},\boldsymbol{w})$$
$$id\omega_{3}(\boldsymbol{u},\boldsymbol{w}) = d\omega_{2}(\boldsymbol{u},\boldsymbol{w}).$$

On the other hand, putting $\boldsymbol{w} = -J_2 \boldsymbol{v}$,

$$id\omega_{3}(\boldsymbol{u},\boldsymbol{w}) = id\omega_{3}(\boldsymbol{u},-J_{2}\boldsymbol{v}) = id\omega_{3}(J_{2}(\boldsymbol{v}),\boldsymbol{u})$$
$$= id\omega_{3}(J_{3}J_{1}(\boldsymbol{v}),\boldsymbol{u}) = id\omega_{1}(J_{1}(J_{1}\boldsymbol{v}),\boldsymbol{u})$$
$$(24) \qquad \qquad = -id\omega_{1}(\boldsymbol{v},\boldsymbol{u}) = -d\omega_{1}(\boldsymbol{v},i\boldsymbol{u})$$
$$d\omega_{2}(\boldsymbol{u},\boldsymbol{w}) = d\omega_{2}(\boldsymbol{u},-J_{2}(\boldsymbol{v})) = d\omega_{2}(J_{2}(\boldsymbol{v}),\boldsymbol{u})$$
$$= d\omega_{1}(J_{1}(\boldsymbol{v}),\boldsymbol{u}) = -d\omega_{1}(\boldsymbol{v},J_{1}\boldsymbol{u}),$$

thus $d\omega_1(\boldsymbol{v}, i\boldsymbol{u}) = d\omega_1(\boldsymbol{v}, J_1\boldsymbol{u})$. Since $d\omega_1(\boldsymbol{v}, i\boldsymbol{u} - J_1\boldsymbol{u}) = 0$ for any $\boldsymbol{v} \in \mathsf{D}$, the non-degeneracy of $d\omega_1$ implies $i\boldsymbol{u} - J_1\boldsymbol{u} = 0$.

THEOREM 3.4. Suppose (9) is satisfied, that is $\mathcal{R} \leq E(X,\omega)$, $t_*J_1 = J_1t_*$, $t_*\{J_2, J_3\} = \{J_2, J_3\}$ on D for each $t \in \mathcal{R}$. Then (i) $(\hat{\omega}_1, \hat{J}_1)$ is a strictly pseudoconvex pseudo-Hermitian structure on X_1 for which $\mathbb{R} \to X_1 \xrightarrow{\pi_1} Y$ gives rise to a pseudo-Hermitian fibering such that $\pi_1^*\Omega_1 = d\hat{\omega}_1$. (ii) \hat{J}_1 is a complex structure on Y. In particular, $(Y, (\Omega_1, \hat{J}_1))$ is a Kähler manifold.

PROOF. (i) It is sufficient to show that \hat{J}_1 is integrable on \hat{D} . Let $\hat{D} \otimes \mathbb{C} = \hat{D}^{1,0} \oplus \hat{D}^{0,1}$ be the eigenspace decomposition for \hat{J}_1 . As the isomorphism $p_{1*}: D \to \hat{D}$ satisfies $p_{1*} \circ J_1 = \hat{J}_1 \circ p_{1*}$, note that $p_{1*}D^{1,0} = \hat{D}^{1,0}$. Since $[X, Y] = a(\xi_2 - i\xi_3) + u$ $(\exists a \in \mathbb{R})$, it follows $p_{1*}([X,Y]) = [p_{1*}X, p_{1*}Y] = p_{1*}u$. Put $p_{1*}X = \hat{X}, p_{1*}Y = \hat{Y} \in \hat{D}^{1,0}$ and $\hat{u} = p_{1*}u \in \hat{D}$. We have $[\hat{X}, \hat{Y}] = \hat{u}$. As $J_1u = iu$ by Proposition 3.3, we obtain $\hat{J}_1([\hat{X}, \hat{Y}]) = i[\hat{X}, \hat{Y}]$. Hence $[\hat{X}, \hat{Y}] \in D^{1,0}$. \hat{J}_1 is integrable.

Let $\mathbb{R} \to X_1 \xrightarrow{\pi_1} Y$ be the principal bundle. Here \mathbb{R} induces the vector field $\hat{\xi}_1 (= p_{1*}\xi_1)$ such that $\hat{\omega}_1(\hat{\xi}_1) = 1$. As $\pi^*\Omega_1 = d\omega_1$ (cf. (8)), it is easy to see that

(25)
$$\pi_1^*\Omega_1 = d\hat{\omega}_1$$

(ii) Since $\pi_{1*}: \hat{\mathbf{D}} \to TY$ is an isomorphism at each point, recall from (5) that there is an almost complex structure \hat{J}_1 on Y which satisfies $\pi_{1*}\hat{\mathbf{J}}_1 = \hat{J}_1\pi_{1*}$. Then we check that \hat{J}_1 is a complex structure on Y. Let $\pi_{1*}(\hat{\mathbf{D}}^{0,1}) = TY^{1,0}$ where $TY \otimes \mathbb{C} = TY^{1,0} \oplus TY^{0,1}$ with respect to \hat{J}_1 . If we note $[\hat{\mathbf{D}}^{1,0}, \hat{\mathbf{D}}^{1,0}] \subset \hat{\mathbf{D}}^{1,0}$ by Theorem 3.4, then $\pi_{1*}(\hat{\mathbf{J}}_1[\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}]) = \pi_{1*}(i[\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}]) = i[\pi_{1*}\hat{\boldsymbol{u}}, \pi_{1*}\hat{\boldsymbol{v}}]$ for $\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}} \in \hat{\mathbf{D}}^{1,0}$. Since $\pi_{1*}(\hat{\mathbf{J}}_1[\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}]) = \hat{J}_1\pi_{1*}[\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}}] = \hat{J}_1[\pi_{1*}\hat{\boldsymbol{u}}, \pi_{1*}\hat{\boldsymbol{v}}]$, it follows $\hat{J}_1[\pi_{1*}\hat{\boldsymbol{u}}, \pi_{1*}\hat{\boldsymbol{v}}] =$ $i[\pi_{1*}\hat{\boldsymbol{u}}, \pi_{1*}\hat{\boldsymbol{v}}]$. Noting $\pi_{1*}\hat{\boldsymbol{u}}, \pi_{1*}\hat{\boldsymbol{v}} \in TY^{1,0}, \hat{J}_1$ is integrable on Y. As $\Omega_1(\hat{J}_1\hat{\boldsymbol{u}}, \hat{J}_1\hat{\boldsymbol{v}}) =$ $\Omega_1(\hat{\boldsymbol{u}}, \hat{\boldsymbol{v}})$ from (25), (Ω_1, \hat{J}_1) is a Kähler structure on Y with $g = \Omega_1 \circ \hat{J}_1$.

This proves Theorem 1.1 of Introduction.

4. Quaternionic contact structure on \mathcal{M}

Let \mathbb{H}^n be the 4*n*-dimensional vector space over the quaternion field \mathbb{H} and Im $\mathbb{H} = \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$ identifies the three dimensional vector space \mathbb{R}^3 . The quaternionic Heisenberg Lie group \mathcal{M} is the product $\mathbb{R}^3 \times \mathbb{H}^n$ with group law: $(t, z) \cdot (s, w) = (t + s - \operatorname{Im}\langle z, w \rangle, z + w)$ where $\langle z, w \rangle = {}^t \bar{z}w$ is the Hermitian inner product on \mathbb{H}^n . $((t, s) \in \mathbb{R}^3 = \operatorname{Im} \mathbb{H}$, and $z, w \in \mathbb{H}^n$.) \mathcal{M} is a nilpotent Lie group whose center is $[\mathcal{M}, \mathcal{M}] = \mathbb{R}^3$ consisting of elements (t, 0). See [1] for the details. Let ω_0 be an Im \mathbb{H} -valued one-form on \mathcal{M} defined by

(26)
$$\omega_0 = dt_1 i + dt_2 j + dt_3 k + \operatorname{Im}\langle z, dz \rangle.$$

Put $\omega_0 = \omega_1 i + \omega_2 j + \omega_3 k$. The codimension 3-subbundle $\mathsf{D}_0 = \bigcap_{i=1}^{3} \ker \omega_i = \ker \omega_0$ on \mathcal{M} together with the hypercomplex structure $\{J_1, J_2, J_3\}$ is called the *standard qc-structure* on \mathcal{M} . Alternatively, for this hypercomplex structure, if $\pi : \mathcal{M} \to \mathbb{H}^n$ is the canonical projection (homomorphism), then $\pi_* : \mathsf{D} \to T\mathbb{H}^n$ is an isomorphism at each point for which each J_α on D is defined by the commutative rule:

(27)
$$\pi_* \circ J_\alpha = \hat{J}_\alpha \circ \pi_*$$

where $\{\hat{J}_{\alpha}, \alpha = 1, 2, 3\}$ is the standard quaternionic structure $\{i, j, k\}$ on \mathbb{H}^n , that is $\hat{J}_1 z = z\bar{i}, \ \hat{J}_2 z = z\bar{j}, \ \hat{J}_3 z = z\bar{k}$ respectively. By calculation, D satisfies $[\mathsf{D}, \mathsf{D}] \equiv \langle d/dt_1, d/dt_2, d/dt_3 \rangle$ mod ker ω_0 .

Let $\operatorname{Sim}(\mathcal{M}) = \mathcal{M} \rtimes (\operatorname{Sp}(n) \cdot \operatorname{Sp}(1) \times \mathbb{R}^+)$ be the full group of *qc*-transformations of \mathcal{M} (cf. [1]). If $h = ((t, u), A \cdot \alpha \lambda)$ ($\lambda \in \mathbb{R}^+, \alpha \in \operatorname{Sp}(1)$) is an element of $\operatorname{Sim}(\mathcal{M})$, then *h* acts on \mathcal{M} as

(28)
$$hp = h(s, z) = (t + \lambda^2 \alpha s \bar{\alpha} - \operatorname{Im}\langle u, \lambda A z \bar{\alpha} \rangle, u + \lambda A z \bar{\alpha}) \quad (\forall p = (s, z) \in \mathcal{M}).$$

Then it follows

(29)
$$h^*\omega_0 = \lambda^2 \cdot \alpha \omega_0 \bar{\alpha}.$$

Thus every element of $E(\mathcal{M})$ leaves $D_0 = \ker \omega_0$ invariant in general. On the other hand, the euclidean group of \mathcal{M} is denoted by $E(\mathcal{M}) = E(\mathcal{M}, \omega_0) = \mathcal{M} \rtimes (\operatorname{Sp}(n) \cdot \operatorname{Sp}(1))$ which is a normal subgroup of $\operatorname{Sim}(\mathcal{M})$. By (29), each element $h = ((t, v), (A \cdot \alpha)) \in E(\mathcal{M})$ satisfies

(30)
$$h^*\omega_0 = \alpha\omega_0\bar{\alpha}.$$

Remark 4.1. In particular, if $h \in \mathcal{M} \rtimes \operatorname{Sp}(n)$, then $h^*\omega_0 = \omega_0$. For the Riemannian metric $g_{\omega_0} = \sum_{i=1}^3 \omega_i \cdot \omega_i + d\omega_1 \circ J_1$ on \mathcal{M} , the identity component $\operatorname{Isom}(\mathcal{M}, g_{\omega_0})^0$ coincides with $\operatorname{E}(\mathcal{M})$. Note that this metric is neither a 3-Sasaki metric nor defines a quaternionic CR structure on \mathcal{M} .

5. Conformal change of ω_0

Fix a number $a \ge 0$. For each i = 1, 2, 3, define the elements $\rho(t_1) = (((t_1, 0, 0), 0), I \cdot e^{-iat_1})), \rho(t_2) = (((0, t_2, 0), 0), I)), \rho(t_3) = (((0, 0, t_3), 0), I))$ in $(\mathbb{R}^3, 0) \rtimes S^1 \le \mathbb{E}(\mathcal{M})$. More precisely, the action of $\rho(t_i)$ on \mathcal{M} has the form:

$$\rho(t_1)\big((s_1i, s_2j, s_3k), z\big) = \big((t_1 + s_1)i, e^{-iat_1}(s_2j, s_3k)e^{iat_1}), ze^{iat_1}\big),$$

$$(31) \qquad \rho(t_2)\big((s_1i, s_2j, s_3k), z\big) = \big((s_1i, (s_2 + t_2)j, s_3k), z\big),$$

$$\rho(t_3)\big((s_1i, s_2j, s_3k), z\big) = \big((s_1i, s_2j, (s_3 + t_3)k), z\big)$$

for $((s_1i, s_2j, s_3k), z) \in \mathcal{M} = \mathbb{R}^3 \times \mathbb{H}^n$. As $\rho(t_1)$ normalizes the vector space $\mathbb{R}^2 = \langle \rho(t_2), \rho(t_3) \rangle$, $\langle \rho(t_1), \rho(t_2), \rho(t_3) \rangle$ forms a 3-dimensional solvable Lie group \mathcal{R}_1 such that

(32)
$$\mathcal{R}_1 = \mathbb{R}^2 \rtimes \{\rho(t_1)\} \le \mathbb{R}^3 \rtimes (\{1\} \times S^1).$$

Take $x_1 + ix_2 + jx_3 + kx_4$ as the standard real coordinate of $z_1 \in \mathbb{H}$ and identify \mathbb{H}^n with \mathbb{R}^{4n} . Let $\langle \frac{d}{dt_1}, \frac{d}{dt_2}, \frac{d}{dt_3} \rangle$ be the standard basis of $\mathbb{R}^3 = \mathbb{R}i + \mathbb{R}j + \mathbb{R}k$ also. From (31) it follows

$$\frac{d(e^{-iat_1}(s_2j, s_3k)e^{iat_1})}{dt_1}|_{t_1=0} = 2as_3\frac{d}{dt_2} - 2as_2\frac{d}{dt_3}.$$

Then \mathcal{R}_1 induces three vector fields $\langle \xi_1, \frac{d}{dt_2}, \frac{d}{dt_3} \rangle$ at $(s, z) \in \mathcal{M}$ such that

(33)
$$\xi_1 = \frac{d}{dt_1} + 2a(s_3\frac{d}{dt_2} - s_2\frac{d}{dt_3}) + \sum_{k=1}^n a(x_{4k-3}\frac{d}{dx_{4k-2}} - x_{4k-2}\frac{d}{dx_{4k-3}} + x_{4k}\frac{d}{dx_{4k-1}} - x_{4k-1}\frac{d}{dx_{4k}}).$$

Since $\omega_0 = \omega_1 i + \omega_2 j + \omega_3 k$, using (26) it follows

(34)
$$\omega_1(\xi_1) = 1 + a(|z_1|^2 + \dots + |z_n|^2).$$

As we assumed $a \ge 0$, note $\omega_1(\xi_1) \ge 1$. We introduce new one-forms on \mathcal{M} :

(35)
$$\eta_1 = \frac{1}{\omega_1(\xi_1)}\omega_1, \ \eta_2 = \frac{1}{\omega_1(\xi_1)}\omega_2, \ \eta_3 = \frac{1}{\omega_1(\xi_1)}\omega_3.$$

PROPOSITION 5.1. Then the following hold.

(36)

$$\eta_{1}(\xi_{1}) = 1, \ \eta_{1}(\frac{d}{dt_{2}}) = \eta_{1}(\frac{d}{dt_{3}}) = 0,$$

$$d\eta_{1}(\xi_{1}, X) = d\eta_{1}(\frac{d}{dt_{2}}, X) = d\eta_{1}(\frac{d}{dt_{3}}, X) = 0 \ (\forall X \in T\mathcal{M}),$$

$$E_{1} = \{\xi \mid d\eta_{1}(\xi, X) = 0\} = \{\xi_{1}, \frac{d}{dt_{2}}, \frac{d}{dt_{3}}\}.$$

In addition, $\eta_2(\frac{d}{dt_2}) = \eta_3(\frac{d}{dt_3}) = \frac{1}{\omega_1(\xi_1)} > 0.$

PROOF. It follows from (30) that $\rho(t_i)_* \mathsf{D} = \mathsf{D}$ for each $\rho(t_i) \in \mathcal{R}$ (i = 1, 2, 3). Since $\eta_1(\xi_1) = 1$ from (35), calculate $2d\eta_1(\xi_1, \boldsymbol{u}) = -\eta_1([\xi_1, \boldsymbol{u}]) = 0$ $(\forall \boldsymbol{u} \in \mathsf{D})$.

For $\alpha = 2, 3, \omega_1(\frac{d}{dt_{\alpha}}) = 0$. As $\langle \rho(t_1) \rangle$ normalizes $\mathbb{R}^2 = \langle \rho(t_2), \rho(t_3) \rangle$, it follows $[\xi_1, \frac{d}{dt_{\alpha}}] \in \langle \frac{d}{dt_2}, \frac{d}{dt_3} \rangle$ so that $d\eta_1(\xi_1, \frac{d}{dt_{\alpha}}) = 0$. This shows that $d\eta_1(\xi_1, X) = 0$ ($\forall X \in T\mathcal{M}$). Similarly at $p = ((t_1, t_2, t_3), z_1, \dots, z_n) \in \mathcal{M}$,

$$2d\eta_1(\frac{d}{dt_{\alpha}}, \frac{d}{dt_1}) = \frac{d}{dt_{\alpha}}(\frac{1}{1 + a\sum_{i=1}^n |z_i|^2}) - \eta_1([\frac{d}{dt_{\alpha}}, \frac{d}{dt_1}]) = 0,$$

also $2d\eta_1(\frac{d}{dt_{\alpha}}, \boldsymbol{u}) = -\eta_1([\frac{d}{dt_{\alpha}}, \boldsymbol{u}]) = 0 \ (\forall \boldsymbol{u} \in \mathsf{D}).$ It follows $d\eta_1(\frac{d}{dt_{\alpha}}, X) = 0$ $(\forall X \in T\mathcal{M}).$ We obtain $\mathsf{E}_1 = \{\xi_1, \frac{d}{dt_2}, \frac{d}{dt_3}\}.$

Remark that $d\eta_2(\frac{d}{dt_2}, X)$, $d\eta_2(\frac{d}{dt_3}, X)$ are not zero in general. Since $d\eta_\alpha$ is conformal to $d\omega_\alpha$ on D_0 ,

LEMMA 5.2. The hypercomplex structure obtained from $\{\eta_{\alpha}\}$ is the same as $\{J_{\alpha}\}_{\alpha=1}^{3}$ of $\{\omega_{\alpha}\}_{\alpha=1,2,3}$.

By (2), we have $d\eta_{\alpha}(J_{\alpha}X, J_{\alpha}Y) = d\eta_{\alpha}(X, Y)$ ($\alpha = 1, 2, 3$). Using (27), (31),

note that

(37)
$$\rho(t_{1})_{*}J_{1} = J_{1}\rho(t_{1})_{*},$$
$$\rho(t_{1})_{*}\begin{bmatrix}J_{2}\\J_{3}\end{bmatrix} = \begin{bmatrix}\cos 2at_{1} - \sin 2at_{1}\\\sin 2at_{1} \ \cos 2at_{1}\end{bmatrix}\begin{bmatrix}J_{2}\\J_{3}\end{bmatrix}\rho(t_{1})_{*}.$$
$$\rho(t_{2})_{*}J_{\alpha} = J_{\alpha}\rho(t_{2})_{*}, \ \rho(t_{3})_{*}J_{\alpha} = J_{\alpha}\rho(t_{3})_{*} \ (\alpha = 1, 2, 3).$$

As above each element of $\mathcal{R}_1 = \mathbb{R}^2 \rtimes \rho(\mathbb{R})$ satisfies (9).

Letting $\eta = \eta_1 i + \eta_2 j + \eta_3 k$ at $p = (s, z) = ((s_1, s_2, s_3), z) \in \mathcal{M}$, it follows $\eta = f \cdot \omega_0$ such that $f(p) = \frac{1}{\omega_1((\xi_1)_p)} = \frac{1}{1 + a|z|^2}$ where $|z|^2 = |z_1|^2 + \cdots + |z_n|^2$ (cf. (34)). As η is conformal to ω_0 , $E(\mathcal{M}, \eta) \leq Sim(\mathcal{M})$.

PROPOSITION 5.3. If $h \in E(\mathcal{M}, \eta)$, then $h \in \mathbb{R}^3 \rtimes (\operatorname{Sp}(n) \cdot \operatorname{Sp}(1))$. As a consequence, $E(\mathcal{M}, \eta) = \mathbb{R}^3 \rtimes (\operatorname{Sp}(n) \cdot \operatorname{Sp}(1))$. In addition, $\mathcal{R}_1 \leq E(\mathcal{M}, \eta)$.

PROOF. For $h = ((t, u), A \cdot \alpha \lambda)$ $(\lambda \in \mathbb{R}^+, \alpha \in \text{Sp}(1)), (28)$ implies

(38)
$$h^*f(p) = f(hp) = \frac{1}{\omega_1((\xi_1)_{hp})} = \frac{1}{1 + a|u + \lambda Az\bar{\alpha}|^2}$$

Since $h \in E(\mathcal{M}, \eta)$, as in (30), $h^*\eta = \beta\eta\bar{\beta}$ for some $\beta \in \text{Sp}(1)$. Noting $\eta = f \cdot \omega_0$, the action of $\text{Sim}(\mathcal{M})$ shows that $h^*\eta = h^*f \cdot h^*\omega_0 = h^*f \cdot \lambda^2 \alpha \omega_0 \bar{\alpha}$. Then the equality $\beta\eta\bar{\beta} = h^*f \cdot \lambda^2 \alpha \omega_0 \bar{\alpha}$ implies

$$|\eta| = |\beta\eta\bar{\beta}| = |h^*f \cdot \lambda^2 \alpha \omega_0 \bar{\alpha}| = h^*f \cdot \lambda^2 |\omega_0|.$$

(Here $|t_1i + t_2j + t_3k| = \sqrt{t_1^2 + t_2^2 + t_3^2}$ is the norm.) Evaluated at p, it follows $|\eta| = f(p)|\omega_0|$, that is $f(p)|\omega_0| = h^*f(p) \cdot \lambda^2 |\omega_0|$. Thus $f(p) = f(hp)\lambda^2$ which implies

(39)
$$\frac{1}{1+a|z|^2} = \frac{\lambda^2}{1+a|u+\lambda Az\bar{\alpha}|^2}$$

by (38). Take $z_0 = \frac{1}{1-\lambda} A^{-1} u \alpha \in \mathbb{H}^n$, that is $A z_0 \bar{\alpha} = u + \lambda A z_0 \bar{\alpha}$. Substitute this into (39):

$$\frac{1}{1+a|z_0|^2} = \frac{\lambda^2}{1+a|Az_0\bar{\alpha}|^2} = \frac{\lambda^2}{1+a|z_0|^2}$$

thus $\lambda = 1$ ($\lambda > 0$). Then $|z|^2 = |u + Az\overline{\alpha}|^2$ from (39). Taking z = 0 shows u = 0.

64

So $h \in \mathbb{R}^3 \rtimes (\operatorname{Sp}(n) \cdot \operatorname{Sp}(1))$. Conversely if $h = ((t, 0), A \cdot \alpha) \in \mathbb{R}^3 \rtimes (\operatorname{Sp}(n) \cdot \operatorname{Sp}(1))$, then $h^*\omega_0 = \alpha\omega_0\bar{\alpha}$. Then $h^*f(p) = f(hp) = \frac{1}{1 + |Az\bar{\alpha}|^2} = f(p)$. It follows $h^*\eta = h^*f \cdot h^*\omega_0 = f \cdot \alpha\omega_0\bar{\alpha} = \alpha\eta\bar{\alpha}$. Obviously $h_*J_\alpha = \sum_{\beta=1}^3 a_{\alpha\beta}J_\beta$. Hence $h \in \operatorname{E}(\mathcal{M}, \eta)$ by the definition. \Box

We apply Theorem 3.4 to obtain

THEOREM 5.4. (I) There exists a quaternionic almost Hermitian structure $(g, \{\hat{J}_{\alpha}\}_{\alpha=1}^{3})$ on the quaternion vector space \mathbb{H}^{n} such that $\mathcal{R} \to (\mathcal{M}, g_{\omega}) \xrightarrow{\pi} (\mathbb{H}^{n}, g)$ is a Riemannian submersion.

(II) There is a strictly pseudoconvex pseudo-Hermitian structure $(\hat{\eta}_1, J'_1)$ on the nilpotent Lie group $\mathcal{N}_1 = \mathcal{M}/\mathbb{R}^2$ such that

(40)
$$\rho(\mathbb{R}) \longrightarrow (\mathcal{N}_1, (\hat{\eta}_1, J'_1)) \xrightarrow{\pi_1} (\mathbb{H}^n, (g, \hat{J}_1))$$

gives rise to a pseudo-Hermitian (Sasaki) fibering over the complete Kähler manifold (\mathbb{H}^n, g) such that $\pi_1^* \Omega_1 = d\hat{\eta}_1$.

PROOF. Let $\rho(t_1) = (((t_1, 0, 0), 0), I \cdot e^{-iat_1}))$ where $\mathcal{R} = \mathbb{R}^2 \rtimes \rho(\mathbb{R}) \leq \mathbb{R}^3 \rtimes (1 \cdot S^1)$ from (32). Then $\mathcal{R}/\mathbb{R}^2 = \rho(\mathbb{R})$ such that $\rho(t_1) = ((t_1, 0), e^{-iat_1})) \in \mathbb{R} \times S^1$. By Theorem 3.4, note that $Y = \mathcal{N}_1/\rho(\mathbb{R}) = \mathcal{M}/\mathcal{R} = \mathbb{H}^n$. (I) follows from Proposition 2.2. $(\mathbb{H}^n, g, \hat{J}_1)$ is a complete Kähler manifold by [6, Proposition 3.5]. \Box

This proves (i) of Theorem 1.2 of Introduction.

6. Isometry group of \mathbb{H}^n

Let $\rho : \mathbb{R} \to \mathbb{R}^3 \rtimes S^1$ be the representation as in (31) where $\mathbb{R}^3 \rtimes S^1 \leq \mathrm{E}(\mathcal{M}, \eta) = \mathbb{R}^3 \rtimes (\mathrm{Sp}(n) \cdot \mathrm{Sp}(1))$ (cf. Proposition 5.3). If $C_{\mathrm{E}(\mathcal{M},\eta)}(\rho(\mathbb{R}))$ is the centralizer of $\rho(\mathbb{R})$, then it follows $C_{\mathrm{E}(\mathcal{M},\eta)}(\rho(\mathbb{R})) = \mathbb{R} \rtimes (\mathrm{Sp}(n) \cdot S^1)$ where $\mathbb{R} = (\mathbb{R}, 0, 0)$ and $S^1 = \{e^{i\theta}\}$. Then the equivariant Riemannian submersion induces the equivariant pseudo-Hermitian (Sasaki) fibration of (II) of Theorem 5.4:

Denote $\operatorname{Isom}_{qh}(\mathbb{H}^n, (g, \{\hat{J}_{\alpha}\}_{\alpha=1}^3))$ the quaternionic almost Hermitian isometry group and $\operatorname{Isom}_h(\mathbb{H}^n, (g, \hat{J}_1))$ the holomorphic isometry group respectively. Note from (41)

(42)
$$\operatorname{Sp}(n) \cdot S^{1} \leq \operatorname{Isom}_{qh}(\mathbb{H}^{n}, (g, \{\hat{J}_{\alpha}\}_{\alpha=1}^{3})).$$

Let $(\mathcal{N}, \hat{\omega}_0, J_0)$ be the standard pseudo-Hermitian structure on the 2n + 1dimensional Heisenberg nilpotent Lie group. Moreover, $\mathcal{R}_1 \leq \mathrm{E}(\mathcal{M}, \eta)$ by (31).group \mathcal{N} such that $\mathrm{Psh}(\mathcal{N}, (\hat{\omega}_0, J_0)) = \mathcal{N} \rtimes \mathrm{U}(2n)$ is the group of pseudo-Hermitian transformations of \mathcal{N} . Consider the representation $\rho_1 : \mathbb{R} \to \mathcal{N} \rtimes \mathrm{U}(2n)$ defined by

(43)
$$\rho_1(t_1) = ((t_1, 0), \operatorname{diag}(e^{iat_1})) \in (\mathbb{R}, 0) \times \mathrm{U}(2n)$$

As in [7], there is the commutative diagram:

satisfying that

- (1) $\varphi : \mathcal{N}_1 = \mathcal{M}/\mathbb{R}^2 = \mathbb{R} \times \mathbb{H}^n \to \mathcal{N} = \mathbb{R} \times \mathbb{C}^{2n}$ is a Lie group isomorphism between nilpotent Lie groups defined by $\varphi(s, (u + vj)) = (s, (u, \bar{v}))$ where $z = u + vj \in \mathbb{H}^n \ (u, v \in \mathbb{C}^n)$. Note that $\varphi(\rho(t_1)(s, u + vj)) = \rho_1(t_1)\varphi(s, u + vj)$.
- (2) $\hat{\varphi} : \mathbb{H}^n \to \mathbb{C}^{2n}$ is the induced diffeomorphism : $\hat{\varphi}(u+wj) = (u,\bar{v})$. If $\rho_1(\mathbb{R})$ induces the vector field ξ_1 on \mathcal{N} , then it follows $\hat{\omega}_0(\xi_1) = 1 + a(|u|^2 + |v|^2)$. Putting $\hat{\omega}_1 = \frac{1}{\hat{\omega}_0(\xi_1)}\hat{\omega}_0, \,\xi_1$ turns to the Reeb field of $\hat{\omega}_1$.
- (3) It follows $\varphi^*\hat{\omega}_1 = \hat{\eta}_1$ and $\varphi_* \circ J'_1 = J'_0 \circ \varphi_*$ where J'_0 is the anti-complex structure of J_0 on \mathcal{N} . As a consequence, φ becomes a pseudo-Hermitian diffeomorphism of $(\mathcal{N}_1, (\hat{\eta}_1, J'_1))$ onto a strictly pseudoconvex pseudo-Hermitian structure $(\mathcal{N}, (\hat{\omega}_1, J'_0))$.

Since $\rho_1(\mathbb{R})$ induces the Reeb field of $\hat{\omega}_1$ on \mathcal{N} , the uniqueness of Reeb field implies that $\operatorname{Psh}(\mathcal{N}, (\hat{\omega}_1, J'_0))$ centralizes $\rho_1(\mathbb{R})$ and so $C_{\operatorname{Psh}(\mathcal{N})}(\rho_1(\mathbb{R})) = \operatorname{Psh}(\mathcal{N}, (\hat{\omega}_1, J'_0))$. As the centralizer of $\rho_1(\mathbb{R})$ in $Psh(\mathcal{N})$ is $\mathbb{R} \times U(2n)$ from (43),

(45)
$$\operatorname{Psh}(\mathcal{N}, (\hat{\omega}_1, J'_0)) = \mathbb{R} \times \mathrm{U}(2n).$$

Recall from [2, Proposition 3.4] that there is an exact sequence:

(46)
$$1 \longrightarrow \rho_1(\mathbb{R}) \longrightarrow \operatorname{Psh}(\mathcal{N}, (\hat{\omega}_1, J'_0)) \xrightarrow{\phi} \operatorname{Isom}_h(\mathbb{C}^{2n}, (g_0, \hat{J}'_0)) \longrightarrow 1,$$

where (g_0, \hat{J}'_0) is a *complete Kähler* metric on the complex vector space $\mathbb{C}^{2n} = \mathcal{N}/\rho_1(\mathbb{R})$. (Compare [6, Proposition 3.5].) Hence we have

PROPOSITION 6.1. The holomorphic isometry group $\operatorname{Isom}_h(\mathbb{C}^{2n}, (g_0, \hat{J}'_0))$ is isomorphic to U(2n).

If $\hat{\varphi}$: $\mathbb{H}^n \to \mathbb{C}^{2n}$ is the diffeomorphism of (2), then it follows from (3) that $\hat{\varphi}^* g_0 = g$ with $\hat{\varphi}_* \circ \hat{J}_1 = \hat{J}'_0 \circ \hat{\varphi}_*$. Let μ : $\mathrm{Diff}(\mathbb{H}^n) \to \mathrm{Diff}(\mathbb{C}^{2n})$ be an isomorphism defined by $\mu(h) = \hat{\varphi} \circ h \circ \hat{\varphi}^{-1}$. Then $(\mu, \hat{\varphi})$: $(\mathrm{Isom}_h(\mathbb{H}^n, (g, \hat{J}_1)), \mathbb{H}^n) \longrightarrow (\mathrm{Isom}_h(\mathbb{C}^{2n}, (g_0, \hat{J}'_0)), \mathbb{C}^{2n})$ is an equivariant holomorphic isometry such that $\mu(\mathrm{Isom}_h(\mathbb{H}^n, (g, \hat{J}_1))) = \mathrm{U}(2n) = S^1 \cdot \mathrm{SU}(2n)$. By forgetting the almost complex structures $\{J_2, J_3\}$, there is a natural inclusion:

$$\operatorname{Sp}(n) \cdot S^{1} \leq \operatorname{Isom}_{qh}(\mathbb{H}^{n}, (g, \{\hat{J}_{\alpha}\}_{\alpha=1}^{3})) \leq \operatorname{Isom}_{h}(\mathbb{H}^{n}, (g, \hat{J}_{1})) = S^{1} \cdot \operatorname{SU}(2n).$$

THEOREM 6.2. Isom_{qh}($\mathbb{H}^n, (g, \{\hat{J}_\alpha\}_{\alpha=1}^3)) = \operatorname{Sp}(n) \cdot S^1.$

Combining Proposition 6.1 with this theorem proves (ii), (iii) of Theorem 1.2.

ACKNOWLEDGEMENTS. This work was supported by the President Research grants 2019 at Josai University.

References

- D. V Alekseevsky and Y. Kamishima, Pseudo-conformal quaternionic CR structure on (4n+3)-dimensional manifolds, Annali di Mat. 187, 487-529 (2008).
- [2] O. Baues and Y. Kamishima, Locally homogeneous aspherical Sasaki manifolds, Differential Geom. Appl., 70 (2020), 101607, 41 pp. arXiv:1906.05049v1 [math.DG].
- [3] O. Biquard, Métriques d'Einstein asymptotiquement symétriques, Astérisque 265 (2000).
- [4] S. Ivanov, I. Minchev and D. Vassilev, Quaternionic contact Einstein manifolds, Math. Res. Lett. 23 (5), 1405-1432 (2016).
- [5] S. Ivanov and D. Vassilev, Quaternionic contact manifolds with a closed fundamental 4form, Bull. London Math. Soc. 42 1021-1030 (2010).
- [6] Y. Kamishima, Heisenberg, Spherical CR geometry and Bochner flat locally conformal Kähler manifolds, International Journal of Geometric Methods in Modern Physics, 3(5-6),

1089-1116 (2006).

- [7] Y. Kamishima, Quaternionic contact (4n + 3)-manifolds and their 4n-quotients, to appear in Annals of Global Analysis and Geometry.
- [8] Y. Kamishima, Contractible complete quaternionic almost Hermitian manifolds with compact isometry group, Preprint.
- [9] S. Kobayashi and K. Nomizu, 'Foundations of differential geometry I,' Interscience John Wiley & Sons, New York, 1969.

Yoshinobu KAMISHIMA

Department of Mathematics, Josai University Keyakidai 1-1, 350-0295, JAPAN E-mail: kami@tmu.ac.jp