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Construction of contractible complete quaternionic almost
Hermitian manifolds with compact isometry group

Yoshinobu KAMISHIMA

Abstract. The 4n + 3-dimensional quaternionic Heisenberg
nilpotent Lie group M admits a quaternionic contact structure. There
exists a three dimensional simply connected non-abelian solvable Lie
group R acting properly on M. We show that the quotient of M by
R admits a quaternionic almost Hermitian metric g. Moreover, one al-
most complex structure, say J from the quaternionic structure is shown
to be integrable for which (M/R, J) is a Bochner flat Kahler manifold.

1. Introduction

A quaternionic contact structure is a codimension 3-subbundle D on a 4n + 3-
dimensional smooth manifold X such that D+[D,D] = TX. (See [3].) If there exists

3
an Im H-valued 1-form w = wyi+wsj+wsk on X such that ker w = ﬂl ker w, =D
a=

3
and Aw A dw # 0 on X, then w is said to be a quaternionic contact form. The
endomorphisms {.J1, Ja, J3} defined by

(1) J, = (dws|D) ™" o (dwa|D) : DD (@, B7) ~ (1,2,3))

constitutes a hypercomplex structure on D. Then (X, (D,w,{Ja}3_;)) is called
a quaternionic contact manifold (gc-manifold for short). See [3], [4], [1] for the
definition and the reference therein.

Using the equality dw,(X,Y") = dwg(J,X,Y’) on D, we have the reciprocity:

(2) dwl(JlX, Y) == dLUQ(JQX, Y) = dW3(J3X, Y)

This shows dwe (JoX, JoY) = dwe(X,Y). If the distribution E = {£ | dwy(§, A) =
dwy (€, A) = dws(€,A) =0, Y A € TX} generates a three dimensional local abelian
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Lie group preserving the ge-structure (D, {wa, Jo }5_;) on X, then it is shown in [4],
[7] that X is a ge-Finstein manifold of vanishing qc-scalar curvature. Furthermore
if a local abelian group extends to an R3-action, then the smooth quotient manifold
X/R? supports a hyperKihler structure. (Of course this is always true locally.)

In this paper, given a 4n+3-dimensional gc-manifold (X, D, {w, Jo }2_;), we take
only one-form w; to study the distribution E; = {¢ | dw;(£,4) =0, YA € TX }.
Let Autye(X) (= Auty.(X,D, {J.}2_,)) be the group of ge-transformations of X.
We have the subgroup of Aut,.(X) defined by

3
(3) E(X,w) = {h € Diff(X) |h'w=a-w-@ h.Jo =Y aapJsh.}
B=1

for some smooth maps a : X— Sp(1) and maps (aq3) < SO(3) obtained by the
conjugation of a. If E; generates a three dimensional Lie subgroup R < E(X,w)
consisting of gc-transformations of X. Then we study the quotients of X by sub-
groups of R.

THEOREM 1.1.  Suppose E; generates a three dimensional simply connected
Lie group R lying in E(X,w). Then the quotient manifold Y = X/R admits a
quaternionic almost Hermitian metric g compatible with an induced quaternionic
structure {ja}‘z:l. If g, = 25’21 w; + w; + dwy o J1 is a Riemannian metric on X,
then the projection m gives a Riemannian submersion : R—(X, g.) — (Y, g).

Moreover if R is a nontrivial solvable Lie group of the form R? x R in which
R? preserves {Jo}2_1 and wi|rre = 0. Put X; = X/R%. Then (w1, J1) induces
a strictly pseudoconvexr pseudo-Hermitian structure (wi,J7) on X1 and a Kdhler
structure (€1, jl) on'Y for which 7 gives rise to a Sasaki fibering : R—»X; ==Y
such that QO = go Jy, 71 = dwi and T, 0 J] = Jio T ker wf -

Here a quaternionic almost Hermitian metric g is a Riemannian metric on Y
such that g(Jou, Jov) = g(u, v) with respect to a quaternionic structure {ja}zzl.
We apply these results to the quaternionic Heisenberg Lie group M which has the
standard gc-structure (Do,wo, {Ja}>_;) where wp is the standard ge-form on M
with Dy = ker wy.

THEOREM 1.2.  There is a qc-structure (Do, {nNa, Jato—1) on M where n =
mi + m2j + nsk is a ge-form qc-conformal to wy. This induces a quaternionic
almost Hermitian structure (g,{ja}izl) on the quaternion space H". Moreover
the quotient M/R? is isomorphic to the Heisenberg nilpotent Lie group Ny such
that
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(i) There is a strictly pseudoconvexr pseudo-Hermitian structure (ni,J]) on N
where R—(N1, (0}, J})) = (H",{g,J1}) is a Sasaki fibering over the complete
Bochner flat Kihler manifold (H™, {g, J1}).
(ii) The holomorphic isometry group Isomy, (H™, (g,.J1)) is isomorphic to U(2n).
(iti) The quaternioic almost Hermitian isometry group Tsomgp,(H", (g, {Ja}2_1))
is isomorphic to Sp(n) - S*.

In particular (H™, (g, J1)) is not holomorphically flat or (H", (g, {J.}3_,)) is
not flat.

2. Proper action of R

Put dw; o Ji(u,v) = dw;i(Jiu,v) (Yu,v € D). It follows that E(X,w) leaves
dwy o J1|D invariant. Using the Carnot-Carathéodory metric for w (see [8]), we
note that

LEMMA 2.1.  Any closed subgroup of E(X,w) acts properly.
Fix a form wy from among w,’s (o =1,2,3). Let
(4> Elz{g‘dwl(faA):Oa VAETX}

Suppose the distribution E; generates a 3-dimensional Lie group R of gc-
transformations of X. If R < E(X,w), then as in the proof of [7, Proposition
2.3], it follows R is a closed subgroup in E(X,w) and so R acts properly on X.
Furthermore if R is simply connected, then it acts freely on X. Put Y = X/R as
a 4n-dimensional smooth manifold.

PROPOSITION 2.2.  Suppose R is a simply connected Lie subgroup of E(X,w).

(i) The quotient manifold Y = X/R admits a quaternionic structure {Jo}3_;.
(i) Y admits a quaternionic almost Hermitian metric g compatible with {Jo}2_;.

ProoF. (i) Let R—+X — Y be the principal bundle. As R is simply connected,
there is a section s : Y —=X. Given y € Y and u, € T,)Y, choose u,(,) € D, such
that m.us,) = @,. Since m. : Dy, —T,Y is an isomorphism, wu(,) is uniquely
determined. Define a quaternionic structure on Y to be

(5) Jo(iny) = T (Jas(y)) (a=1,2,3).

Thus {ja}a:m’g gives a quaternionic structure on Y.
Note that this does not imply 7 : (X, {Ja}i:l)%(Y, {Ja}2_)) is equivariant.
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(ii) Let @, € T,Y. Choose u,v € Dy such that m,u = 4, m,v = ¥ with
7m(g) = y. Define a positive definite 2-form on Y to be

(6) g(, V) = dwa (Jau, v) = dwg(Jpu,v) = dw,(Jyu,v).

Noting R < E(X,w) by the hypothesis, it is easy to check that (6) is well-defined
as well as g(Jaty, Jo®y) = g(@,,v,). Thus g is a compatible metric on Y with

respect to {Jo}2_;. O
Put myu = a,m,v =0 € TY for u,v € D. Define Q, to be

(7) Qo (4, D) = g(@, Jo®) = dwa(u,v) (o= 1,2,3).
COROLLARY 2.3.  Suppose R < E(X,w). Then the following holds:

Q (Jia, 8) = Qo (Jotr, 0) = Q3(Jstt,d) (@,d € TY).

(8) .
0 = dwi on X.

In particular, Q1 is a closed 2-form on Y .

Remark 2.4. Let R be a 3-dimensional Lie group generated by E1 consisting
of ge-transformations of X, that is R < Auty.(X, D). Suppose each a € R satisfies
o*w = a-w-a such that a € Sp(1). Then it follows R < E(X,w), but not
necessarily R < Isom(X,g,). In fact we determine {&,a = 1,2,3} uniquely such
as Wo(€5) = dup, dwa(€a,v) =0 (Yv € D). Then J, on D naturally extends to
the whole X by Jo(&1) = Jo(&2) = Ju(&3) = 0. If g, = Z?_lwi cw; +dwy o Jy is
the canonical Riemannian metric on X, then g, (£a,v) = OZI;y the definition but it

is not true whether or not a, preserves {&,,a = 1,2,3}. In general note neither
R < E(X,w) nor E(X) < Isom(X,g,).

3. A pseudo-Hermitian structure on X/R; and Kihler structure Q;
on the complex manifold (Y, Jq)

Let E; = {&1,&2,&3} generate a three dimensional simply connected Lie group
R. We assume further

(i) Ris solvable such that [R, R] = Ry which induces {&2,&3}.
(9) (i) R <E(X,w).
(ili) For each t € R, t.J; = Jit, and t.{J2, J5} = {J2, J3} on D.
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Put X; = X/R4y. Then R = R/R; acts properly on X;. The bundle R—X SR e
induces a principal bundle:

R — x5 —25v
(10) I I
R/Rl e X/Rl

Let D be the gc-structure on X. Let p; : X—X; be the projection such that
w1 0p1 = w. Note that p1, : D—p1.(D) is an isomorphism at each point of X;. Put

D = p1+(D) on Xy. If By = {&1,&2, &3}, then recall wi(§1) =1, wi(§2) = wa(§3) =0
for which {&2,&3} generates Rq. Then p; : X—X; induces a one-form @& on X3
such that pfw; = wy.

LEMMA 3.1. &4 is a contact structure on X such that ker w; = D.

PROOF. As wy A wy Aws A (dw1)®™ # 0 on X and TX = E; @ D with TR =
Ey = {&,&,&}, it follows pi(@1 A (d1)*™) = w1 A (dw1)2n|{§1,D} # 0. Thus,
1 A (d@1)®™ # 0 on X;. Since ker w; = {&,&) @ D by the assumption (9), it
implies ker w; = D. O

Note that pi, : D—D C T'X; is an isomorphism at each point of X;. Since
J1 is an almost complex structure on T X; and t.J; = Jit. by the hypothesis, J;
induces an almost complex structure J; on D with the commutative diagram:

D 1, D.
If D C =D" @ D%! is the eigenspace decomposition for Ji, then p;, maps D'*°

isomorphically onto D0 where D@C = D10 D! is the eigenspace decomposition
for J;. We have the following. (See [1].)

LEMMA 3.2. For any X,Y € D''0, there is an element u € D ® C such that
[X,Y]=a(é i) +u (FacR),

PROOF. As dwy(X,Y) = g(X, J2Y), dws : D10 x D1 C is non-degenerate. Put
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dwe(X,Y) = —g for some a € R. Then wy([X,Y]) = a so that wa([X,Y]—a&s) = 0.
Put

(11) v=[X,Y]—a& € ker we ® C.

d(U3(X, Y) = dW3(J3(—J3X),Y) = dWQ(JQ(—J?,X),Y)

= _dUJQ(JlX7Y) = —’ichJQ(X, Y) = B

it follows w3([X,Y]) = —ia. By (11), ws(v) = —ia, or w3(v + itaf3) = 0. Putting
u = v + ia€s, it follows

(12) u = v +1a€s € ker wy ® C.

Thus,

(13) (X, Y] =v+a& =u—iaks + ale = u + a(§ — i63).
As

70.)1([X, YD = del(X, Y) = 2dw1(J1X, J1Y) = del(iX, ’LY) = —del(X, Y),

note wy ([X,Y]) = 0. Since w1 ([X,Y]) = wi(u + a(§& — i&3)) = wi(u) by (13),
wi(u) = 0. Similarly we(u) = wa(v + ia€s) = we(v) = 0 by (11). By (12)
ws(u) = 0. As a consequence, it follows u € D ® C.

9

Since {3 generates an element of R, [£g, D] C D. Noting w,(£g) = dap, for any
v € D it follows

(14) 2dwa(8p,v) = {pwa(v) — vwa(p) — wallés,v]) = 0.

ProprosiTION 3.3.  For the element u of Lemma 3.2, J1u = iu.

PROOF. First recall from [9, Proposition 3.10 (p.35)] that for any k-form 0 (k > 1),

(15) ,Cx(byg) - Ly,CXe = L[X7y]9.
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For X € D'% v € D we obtain that

txdws(v) = dwa (X, v) = —dws(J2(J2X),v)
(16) = *de(Jg(JQX),'U) = dW3(J1X,1))
= idOJ3(X,U) = iLxdW3(’U).

It follows by (14) that txdwe(£8) = dwa(X,€3) = 0 for X € D ® C and &g
(8=1,2,3). Since TX = E; & D, (16) implies

(17) txdws = itxdws on TX.

Noting Lxdws = (ditx + txd)dws = dvxdws, substitute (17) so that
(18) Lxdws = d(itxdws) = idixdws = i(Lx — txd)dws = iL xdws.
Applying Y € D*9 we have

(19) ty Lxdws = ity Lxdws.

For Y € D0, it follows similarly

(20) tydwe = itydws on TX.

Apply 6 = dws to (15).

21) Lx(tydws) = ;.Cx(iLydw;g) =iLx(tydws) ((20)) |
=ity Lxdws + 1 x,y)dws) = ty Lxdws + it x y1dws ((19))
Comparing to (15) with 0 = dw,,

(22) itx,yjdws = x,yjdwz on TX.

By Lemma 3.2 with [X,Y] = a(& — i€3) 4+ u, for any w € D,

idws([X, Y], w) = dwa([X, Y], w)
(23) idws(a(&a — i€3) + u, w) = dws(a(&a — i€3) + u, w)

idws(uw, w) = dws(u, w).



60 Y. KAMISHIMA

On the other hand, putting w = —Jov,

idws(u, w) = idwz(u, —Jov) = idws(J2(v), u)
= idws(J3.J1(v),u) = idw (J1(J1v), u)
(24) = —idwi(v,u) = —dw; (v, iu)
dws(u, w) = dwz(u, —J2(v)) = dwa(J2(v), u)
= dwy (J1(v),u) = —dw; (v, J1u),

thus dwy (v,iu) = dwi (v, Jiuw). Since dw;(v,iu — Jyu) = 0 for any v € D, the
non-degeneracy of dw; implies iu — Jyu = 0. O

THEOREM 3.4.  Suppose (9) is satisfied, that is R < E(X,w), t.J1 = Jits,
tu{Jo, J3} = {J2,J3} on D for eacht € R. Then
(i) (@1,d1) is a strictly pseudoconver pseudo-Hermitian structure on Xy for which
R—X; =5 Y gives rise to a pseudo-Hermitian fibering such that i = do.
(ii) Jy is a complex structure on'Y . In particular, (Y, (Qy,.J1)) is a Kdihler mani-
fold.

PROOF. (i) It is sufficient to show that J; is integrable on D. Let D ® C =
D10 ®DO%! be the elgenspace decomposition for J1. As the isomorphism py : D—D
satisfies p1,0J1 = J1 op1x, Note that p, D0 = = D9, Since [X,Y] = a(& —253) +u
( a € R), it follows p1.([X,Y]) = [p1. X, pl*Y} = pr.u. Put p.X = X, pr.Y =
Y € D0 and @ = PLsu € D. We have [X, Y] = 4. As Jiu = iu by Proposition
3.3, we obtain J{([X,Y]) = i[X,Y]. Hence [X,Y] € D', ], is integrable.

Let R—X; =5 Y be the principal bundle. Here R induces the vector field
€1 (= p1.&1) such that &1 (&) = 1. As 7*Qy = dw; (cf. (8)), it is easy to see that

(25) ﬂTQl = d(:]l

(i) Since 7y, : D=TY is an isomorphism at each point, recall from (5) that
there is an almost complex structure J1 on Y which satisfies 71,J 1 = J17m1.. Then
we check that J; is a complex structure on Y. Let my,(D%') = TY10 where
TY ® C = TY'0 @ TY%! with respect to Ji. If we note [D10,D10] ¢ DO by
Theorem 3.4, then w1, (J1[@, d]) = mp. (i@, ®)) = i[m @, 71,0] for @, € DO
Since m,(J1[@,]) = Jim[a, 9] = Ji|[rd,.0], it follows Ji[r.@, m1.9] =
i[m1et, w1, ®). Noting 71,4, 71,9 € TY1O, Jy is integrable on Y. As Qy (J1 4, J10) =
Qi (e, d) from (25), (€, J1) is a Kahler structure on Y with g = Q; o Jj. O

This proves Theorem 1.1 of Introduction.
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4. Quaternionic contact structure on M

Let H™ be the 4n-dimensional vector space over the quaternion field H and
ImH = Ri + Rj + Rk identifies the three dimensional vector space R3. The
quaternionic Heisenberg Lie group M is the product R? x H" with group law:
(t,2) - (s,w) = (t + s — Im(z,w), z + w) where (z,w) = ‘Zw is the Hermitian inner
product on H". ((¢,s) € R® = ImH, and z,w € H".) M is a nilpotent Lie group
whose center is [M, M] = R3 consisting of elements (¢,0). See [1] for the details.
Let wp be an Im H-valued one-form on M defined by

(26) W = dtll + dtg] —+ dtgk =+ Im(z, dZ>

Put wg = w1t + waj + wsk. The codimension 3-subbundle Dy = ﬂ ker w; = ker wy

on M together with the hypercomplex structure {.Jy, Ja, J3} is called the standard
qc-structure on M. Alternatively, for this hypercomplex structure, if 7 : M—H"
is the canonical projection (homomorphism), then 7, : D—TH" is an isomorphism
at each point for which each J, on D is defined by the commutative rule:

(27) Te 0 Joy = Jo 0T

where {Ja, a=1,2 3} is the standard quaternionic structure {i,7,k} on H", that
is Jiz = zi, Joz = zj, J3z = zk respectively. By calculation, D satisfies [D,D] =
<d/dt1,d/dt2, d/dt3> mod ker wo-

Let Sim(M) = M x (Sp(n)-Sp(1) x RT) be the full group of ge-transformations
of M (cf.[1]). If h = ((t,u),A-aX) (A € RT,a € Sp(1)) is an element of Sim(M),
then h acts on M as

(28) hp = h(s,z) = (t + Nasa — Im(u, \NAza),u + MNza) (“p= (s,2) € M).
Then it follows
(29) h*wo = A? - awp .

Thus every element of E(M) leaves Dy = ker wp invariant in general. On the
other hand, the euclidean group of M is denoted by E(M) = E(M,wq) = M x
(Sp(n) - Sp(1)) which is a normal subgroup of Sim(M). By (29), each element
h = ((t,v),(A- @) € E(M) satisfies

(30) h*wy = awpa.
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Remark 4.1.  In particular, if h € M x Sp(n), then h*wy = wg. For the
Riemannian metric g, = 23:1 w; - w; + dwy o J1 on M, the identity component
Isom(M, g, )° coincides with E(M). Note that this metric is neither a 3-Sasaki
metric nor defines a quaternionic CR structure on M.

5. Conformal change of wg

Fix a number a > 0. For each ¢ = 1,2,3, define the elements p(t1) =
(((tl,0,0),O), I- 67Mtl))ap(t2) = (((O,tQ,O),O), I)), p(tg) = (((0507t3)70)’ I)) in
(R3,0) x S* < E(M). More precisely, the action of p(¢;) on M has the form:

p(t1)((s14, 527, s3k), 2) = ((t1 + s1)i, """ (527, s3k)e™ ™), ze''),
(31) p(ta) ((512', s2J, s3k), z) = ((sli, (s2 + t2)], s3k), z),
p(ts)((s1i, 24, s3k), z) = ((s1i, 524, (53 + t3)k), 2)
for ((s1i,s24, s3k),z) € M =R3 x H". As p(t1) normalizes the vector space R? =

(p(t2), p(t3)), (p(t1), p(ta), p(t3)) forms a 3-dimensional solvable Lie group R4 such
that

(32) R1=R? x {p(t1)} <R>x ({1} x SY).

Take x1 + ixo + jrs + kx4 as the standard real coordinate of z; € H and identify

d d d

H" with R*". Let (~—, —, —) be the standard basis of R? = Ri + Rj + Rk also.
dty’ dty’ dits

From (31) it follows

d(e"" (594, s3k)e’®™) d d
= 2081 — — 250 —— .
dt; =0 = 2ass g — 2asa g
. d d
Then R induces three vector fields (£, T E> at (s, z) € M such that
2 dl3
d d d
= — 2 [ —_
&1 i + 2a(s3 i dtg)
(33) n d p J .
+ ;a(x%—z& dZah — T4k—2 dZar_3 + Tak dTan 1 - mk_lduk).

Since wg = w1t + waj + wsk, using (26) it follows

(34) wi(&) =1+a(|z1f + -+ |za]?).
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As we assumed a > 0, note wy(&1) > 1. We introduce new one-forms on M:

1 1 1

(35) m= @wlv N2 = @w% N3 = m‘*@'

PROPOSITION 5.1.  Then the following hold.

d d
m&) =1, nl(dt )= 771(d73)—0,
d d
(36) dmi (&, X )—dm(dt X)de(d—tg,X)zo(vXeTML
d
Ei={{[dm(§X)=0}= {517 - %}

d d 1

In addition, ng(dt )= (dT‘L; = ) > 0.

PRrROOF. It follows from (30) that p(¢;).D = D for each p(¢;) € R (i = 1,2, 3). Since
m(&1) =1 from (35), calculate 2dn; (&1, u) = —m1([é1,u]) =0 (Yu € D).

d
For a = 2,3, wl(dt ) = 0. As (p(t1)) normalizes R? = (p(t2), p(t3)), it follows
d d d d
—_— _— —) = 0. Thi =
(€1, dta] € <dt2’ dt3> so that dn (&, dta) 0 is shows that dm (&1, X) = 0
(Y X € TM). Similarly at p = ((t1,t2,t3), 21, - -, 2n) € M,
1

d d., d d d

2d — ) (e —
g an) = dta(1+a2?:1\zi|2) mllG g

:0’

d d d
Iso 2 = — — = v D). It foll —,X) =
also dnl(dt u) nl([dta’u]) 0 ("u € D). It follows dnl(dta’ ) =0
. d d

(VX S TM) We obtain E1 = {fl7 E, d7t3} O
d . . .

Remark that dng( e X), dna(— T ,X) are not zero in general. Since dn,, is con-
3

formal to dw, on Do,

LEMMA 5.2.  The hypercomplex structure obtained from {ns} is the same as

{Ja}g=1 Of {wa}a:1,2,3-

By (2), we have dn(JoX, JoY) = dno(X,Y) (o = 1,2,3). Using (27), (31),
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note that
p(t1)«J1 = Jip(t1)s,
Jo cos2at; —sin2aty | | Jo
* = . t ke
(37) p(ty) {JJ Lm?atl cos 2atq ] |:J3:| Pt

p<t2)*Ja = Jap(t2)*7 p(t?))*Ja = Jap<t3)* (a = 172a3)~

As above each element of R = R? x1 p(R) satisfies (9).
Letting n = mi + 25 + nsk at p = (s,2) = ((s1,52,3),2) € M, it follows
= f - wg such that = = where |z]% = |22+ - + |z0]?
n f 0 f(p) Wl((&l)p) 1—|—a|z\2 | | | 1| | ‘
(cf. (34)). As n is conformal to wy, E(M,n) < Sim(M).

PROPOSITION 5.3. If h € E(M,n), then h € R® x (Sp(n) - Sp(1)). A4s a
consequence, E(M,n) = R3 x (Sp(n) - Sp(1)). In addtion, R1 < E(M,n).

PROOF. For h = ((t,u), A-aX) (A € RT,a € Sp(1)), (28) implies

1 1
wi((€)np) 1+ alu+ AAzaf?’

(38) h*f(p) = f(hp) =

Since h € E(M,n), as in (30), h*n = BnB for some 3 € Sp(1). Noting n = f - wo,
the action of Sim(M) shows that h*n = h*f - h*wy = h*f - N2awpa. Then the
equality BnB = h*f - Nawpa implies

In| = |BnB| = |h* f - Nawod| = h* f - X?|wo|.

(Here |t1i + taj + tsk| = /t? + ¢34+ ¢3 is the norm.) Evaluated at p, it follows
[l = f(p)lwo|, that is f(p)lwo| = h*f(p) - N*|wo|. Thus f(p) = f(hp)A* which
implies

1 A2

(39) 1+ alz|? - 1+ alu + AAza|?

1
by (38). Take 2o = ﬁA_luoz € H", that is Azoax = u + AAzga. Substitute this
into (39):

I A? S
1+alz? 1+a|lAzal2 1+ alzl?’

thus A =1 (A > 0). Then |2]? = |u+ Aza|? from (39). Taking z = 0 shows u = 0.
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So h € R3 x (Sp(n) - Sp(1)). Conversely if h = ((¢,0), A-«) € R3 x (Sp(n) - Sp(1)),
then h*wy = awpa. Then h*f(p) = f(hp) = 1T Azar = f(p). It follows
3

h'n = h*f - h'wy = f - awpa = ana. Obviously h.J, = Zaaﬁjﬁ- Hence

B=1
h € E(M,n) by the definition. O

We apply Theorem 3.4 to obtain

THEOREM 5.4. (1) There emists a quaternionic almost Hermitian structure
(9,{Ja}3_)) on the quaternion vector space H" such that R—(M, g,,) — (H", g)
is a Riemannian submersion.

(IT) There is a strictly pseudoconvex pseudo-Hermitian structure (1, J;) on the
nilpotent Lie group N7 = M/R? such that

gives rise to a pseudo-Hermitian (Sasaki) fibering over the complete Kdhler mani-

fold (H™, g) such that 7§y = dij; .

PRrOOF. Let p(t1) = (((t1,0,0),0), I-e~"*"*)) where R = R? x p(R) < R%x (1-5)
from (32). Then R/R? = p(R) such that p(t;) = ((t1,0), e71)) € R x S'. By
Theorem 3.4, note that Y = Ny /p(R) = M/R = H". (I) follows from Proposition
2.2. (H",g,J;) is a complete Kiihler manifold by [6, Proposition 3.5]. O

This proves (i) of Theorem 1.2 of Introduction.

6. Isometry group of H"

Let p : R—R3 x S* be the representation as in (31) where R? x S* < E(M,7) =
R3 » (Sp(n) - Sp(1)) (cf. Proposition 5.3). If Cra,n (p(R)) is the centralizer of
p(R), then it follows Cray (p(R)) = R x (Sp(n) - S') where R = (R,0,0) and
S = {e}. Then the equivariant Riemannian submersion induces the equivariant
pseudo-Hermitian (Sasaki) fibration of (II) of Theorem 5.4:

R —— (R3xSp(n)-S'\, M) —"— (Sp(n)- S, H")
(41) | | e I
p(R) —— (R (Sp(n) - S*),N1) —=— (Sp(n)- S*,H").
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Denote Tsomgy, (H", (g, {Ja}3_,)) the quaternionic almost Hermitian isometry
group and Isomy(H™, (g,.J1)) the holomorphic isometry group respectively. Note
from (41)

(42) Sp(n) - ' < Tsomgn (H", (9, {Ja}or1))-

Let (NV,&o,Jo) be the standard pseudo-Hermitian structure on the 2n + 1-
dimensional Heisenberg nilpotent Lie group. Moreover, Ry < E(M,n) by
(31).group N such that Psh(N, (&g, Jo)) = N x U(2n) is the group of pseudo-
Hermitian transformations of A'. Consider the representation p; : R—N x U(2n)
defined by

(43) pr(t1) = ((t1,0), diag () € (R,0) x U(2n).

As in [7], there is the commutative diagram:

l |
(44) M —Es N
| /|

satisfying that

1) ¢ : Mi = M/R* = R x H"-N = R x C*" is a Lie group isomorphism
between nilpotent Lie groups defined by ¢(s, (u + vj)) = (s, (u,v)) where
z=utvj € H" (u,v € C™). Note that p(p(t1)(s, ut+vj)) = p1(t1)e(s, u+vj).

(2) ¢ : H*—C?" is the induced diffeomorphism : @(u + wj) = (u,v). If p;(R)
induces the vector field £&; on A, then it follows &o(€1) = 14 a(jul* + |[v]?).

Putting @ = A;L:)o, &1 turns to the Reeb field of @;.
@o(&1)

(3) It follows ¢*w; = 71 and @« o J; = Jj o ¢. where Jj is the anti-complex
structure of Jy on N. As a consequence, ¢ becomes a pseudo-Hermtian dif-
feomorphism of (N7, (71, J7)) onto a strictly pseudoconvex pseudo-Hermitian
structure (N, (&1, JY)).

Since p1(R) induces the Reeb field of &; on N, the uniqueness of Reeb field implies
that Psh(N, (@1, J))) centralizes p1(R) and so Cpgnnry (p1(R)) = Psh(N, (@1, Jp)).
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As the centralizer of p1(R) in Psh(N) is R x U(2n) from (43),
(45) Psh(VN, (@1, J3)) = R x U(2n).
Recall from [2, Proposition 3.4] that there is an exact sequence:
(46)  1—5py(R) —— Psh(W, (@1, J3)) —2— Tsomy(C2", (go,J}))— 1,

where (go, j(’)) is a complete Kdhler metric on the complex vector space C2" =
N/p1(R). (Compare [6, Proposition 3.5].) Hence we have

PROPOSITION 6.1.  The holomorphic isometry group Isomy(C2", (go,J})) is
isomorphic to U(2n).

If ¢ : H"»C?" is the diffeomorphism of (2), then it follows from (3)
that ¢*gp = ¢ with ¢. o J; = J, o ¢.. Let p : Diff(H")— Diff(C*")
be an isomorphism defined by u(h) = ¢ o h o ¢~ L Then (p,®)
(Isomy, (H", (g, J1)), H")—s (Isomp (C?", (g0, J}))), C*") is an equivariant holomor-
phic isometry such that y(Isom,(H", (g, jl))) = U(2n) = S* - SU(2n). By forget-
ting the almost complex structures {J3, J3}, there is a natural inclusion:

Sp(n) - 81 < Isomgn (H", (9, {Ja}io1)) < Isomy (H", (g, 1)) = S* - SU(2n).
THEOREM 6.2.  Tsomg, (H™, (g, {Ja}3_;)) = Sp(n) - S*.

Combining Proposition 6.1 with this theorem proves (ii), (iii) of Theorem 1.2.
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