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Area-minimizing cones over minimal embeddings of R-spaces

Shinji Ohno and Takashi Sakai

Abstract. We prove area-minimizing properties of some
cones over minimal embeddings of R-spaces by constructing area-

nonincreasing retractions.

1. Introduction

Let CB be the cone over a submanifold B of the unit sphere Sn−1 in Rn.

The cone CB is minimal in Rn if and only if B is minimal in Sn−1. We call

a cone CB area-minimizing if its truncated cone C1
B has the least area among

all integral currents with the same boundary B. Solutions of Plateau’s problem

can have singularities as integral currents. At an isolated conical singularity, the

tangent cone is area-minimizing. Hence, in order to understand such singularities,

we should study area-minimizing properties of minimal cones.

Lawlor [9] gave a sufficient condition, so-called the curvature criterion, for a

cone to be area-minimizing, using an area-nonincreasing retraction. With this cri-

terion, he obtained a complete classification of area-minimizing cones over products

of spheres and the first examples of area-minimizing cones over nonorientable man-

ifolds. Kerckhove [8] proved that some cones over isolated orbits of the adjoint

representations of SU(n) and SO(n) are area-minimizing. A symmetric R-space

can be minimally embedded in the sphere in a canonical way. Hirohashi, Kanno

and Tasaki [3] constructed area-nonincreasing retractions onto the cones over sym-

metric R-spaces associated with symmetric pairs of type Bl. Furthermore, Kanno

[6] proved that cones over some symmetric R-spaces are area-minimizing. Recently,

independently of our study, Z.Z. Tang and Y.S. Zhang [11] showed area minimizing

properties of the cones over the focal submanifolds of isoparametric hypersurfaces

in the unit sphere except for some low dimensional cases.

In this paper, we study area-minimizing properties of cones over minimal em-

beddings of R-spaces, not only symmetric R-spaces. In Theorem 3.4, we give a

construction of retractions generalizing the method given in [3]. Applying this the-

orem we give some examples of area-minimizing cones over minimal embeddings
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of R-spaces. In Section 5, we discuss area-minimizing properties of cones over

products of R-spaces.

2. Preliminaries

2.1. Area-minimizing cones.

Let B be a submanifold of the unit sphere Sn−1 in Rn. We define the cone CB

and the truncated cone C1
B over B by

CB = {tx ∈ Rn | 0 ≤ t, x ∈ B},
C1

B = {tx ∈ Rn | 0 ≤ t ≤ 1, x ∈ B}.

Both CB and C1
B have an isolated singularity at the origin 0 ∈ Rn.

Definition 2.1. A cone CB is called area-minimizing if C1
B has the least area

among all integral currents with boundary B.

Let V and W be two vector spaces with inner products, and let F : V → W be

a linear map. Suppose dimV = n ≥ dimW = m. We define the Jacobian JF of F

by

JF = sup{∥F (v1) ∧ · · · ∧ F (vm)∥},

where {v1, . . . , vm} runs over all orthonormal systems of V . If F is not surjective,

then JF = 0. If F is surjective, then

JF = ∥F (v1) ∧ · · · ∧ F (vm)∥

for any orthonormal basis of (kerF )⊥.

Definition 2.2. A retraction Φ : Rn → CB is called differentiable if Φ : Rn \
Φ−1(0) → CB \{0} is C1. A differentiable retraction Φ is called area-nonincreasing

if J(dΦ)x ≤ 1 holds for all x ∈ Rn \ Φ−1(0).

Proposition 2.3. Let B be a compact submanifold of the unit sphere Sn−1

in Rn. Suppose that there exists an area-nonincreasing retraction Φ from Rn to

CB. Then CB is area-minimizing.

Proof. Let S be an integral current which has the same boundary B as C1
B . Since
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Φ(S) ⊃ C1
B , we have

Vol(C1
B) ≤ Vol(Φ(S)) = Vol(Φ(S) \ {0}) ≤

∫

S\Φ−1(0)

∥dΦ(e1 ∧ · · · ∧ ek)∥dµS

≤
∫

S\Φ−1(0)

J(dΦ)xdµS ≤
∫

S\Φ−1(0)

1dµS ≤
∫

S

1dµS = Vol(S),

where {e1, . . . , ek} is an orthonormal frame of S. □

If CB is area-minimizing, then CB is minimal in Rn. Therefore, to find area-

minimizing cones, it suffices to consider cones over minimal submanifolds of Sn−1.

For this purpose, we use s-representations, which are the linear isotropy represen-

tations of Riemannian symmetric spaces.

2.2. Riemannian symmetric pairs and restricted root systems.

Let G be a connected Lie group and θ be an involutive automorphism of G. We

denote by F (θ,G) the fixed point set of θ, and we denote by F (θ,G)0 the identity

component of F (θ,G). For a closed subgroup K of G, the pair (G,K) is said to be

a Riemannian symmetric pair if F (θ,G)0 ⊂ K ⊂ F (θ,G) and Ad(K) is compact.

Let (G,K) be a Riemannian symmetric pair, and g and k be Lie algebras of G and

K, respectively. We immediately see that

k = {X ∈ g | dθ(X) = X}.

We put

m = {X ∈ g | dθ(X) = −X}.

We denote by ⟨·, ·⟩ an inner product on g which is invariant under the actions of

Ad(K) and dθ. Then ⟨·, ·⟩ induces a left-invariant metric on G and a G-invariant

metric on M = G/K to be a Riemannian symmetric space respectively, which we

use the same symbol ⟨·, ·⟩. Since dθ is involutive, we have an orthogonal direct sum

decomposition of g:

g = k+m.

This decomposition is called the canonical decomposition of (g, k). For the origin

o ∈ G/K, we can identify the tangent space To(G/K) with m by the differential of

the natural projection π : G → G/K.

In this paper, we consider only Riemannian symmetric spaces of compact type.
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We suppose that G is compact and semisimple. Take and fix a maximal abelian

subspace a in m and a maximal abelian subalgebra t in g including a. For λ ∈ t,

we put

g̃λ = {X ∈ gC | [H,X] =
√
−1⟨λ,H⟩X (H ∈ t)}

and define the root system R̃ of g by

R̃ = {λ ∈ t \ {0} | g̃λ ̸= {0}}.

For λ ∈ a, we put

gλ = {X ∈ gC | [H,X] =
√
−1⟨λ,H⟩X (H ∈ a)}

and define the restricted root system R of (g, k) by

R = {λ ∈ a \ {0} | gλ ̸= {0}}.

Denote the orthogonal projection from t to a by H �→ H. We extend a basis of a

to that of t and define a lexicographic orderings > on a and t with respect to these

basis. Then for H ∈ t, H > 0 implies H > 0. We denote by F̃ the fundamental

system of R̃ with respect to >, by F the fundamental system of R with respect to

>. We define

R̃0 = {λ ∈ R̃ | λ = 0}, F̃0 = {α ∈ F̃ | α = 0}.

Then we have

R = {λ | λ ∈ R̃ \ R̃0}, F = {α | α ∈ F̃ \ F̃0}.

We denote the set of positive roots by

R̃+ = {λ ∈ R̃ | λ > 0}, R+ = {λ ∈ R | λ > 0}.

We put

k0 = {X ∈ k | [H,X] = 0 (H ∈ a)}

and for each λ ∈ R+

kλ = k ∩ (gλ + g−λ), mλ = m ∩ (gλ + g−λ).
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We then have the following lemma.

Lemma 2.4 ([10]). (1) We have orthogonal direct sum decompositions:

k = k0 +
∑

λ∈R+

kλ , m = a+
∑

λ∈R+

mλ .

(2) For each µ ∈ R̃+ \ R̃0 there exist Sµ ∈ k and Tµ ∈ m such that

{Sµ | µ ∈ R̃+, µ = λ}, {Tµ | µ ∈ R̃+, µ = λ}

are, respectively, orthonormal bases of kλ and mλ and that for any H ∈ a

[H,Sµ] = ⟨µ,H⟩Tµ, [H,Tµ] = −⟨µ,H⟩Sµ.

For each λ ∈ R+ we put m(λ) = dimmλ = dim kλ. m(λ) is called the multi-

plicity of λ. We define a subset D of a by

D =
∪

λ∈R+

{H ∈ a | ⟨λ,H⟩ = 0}.

Each connected component of a \ D is called a Weyl chamber. We define the

fundamental Weyl chamber C by

C = {H ∈ a | ⟨α,H⟩ > 0 (α ∈ F )}.

The closure of C is given by

C = {H ∈ a | ⟨α,H⟩ ≥ 0 (α ∈ F )}.

For each subset ∆ ⊂ F , we define a subset C∆ ⊂ C by

C∆ = {H ∈ C | ⟨α,H⟩ > 0 (α ∈ ∆), ⟨β,H⟩ = 0 (β ∈ F \∆)}.

Then we have the following lemma.

Lemma 2.5 ([3]). (1) For ∆1 ⊂ F

C∆1 =
∪

∆⊂∆1

C∆

is a disjoint union. In particular C =
∪

∆⊂F C∆ is a disjoint union.
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(2) ∆1 ⊂ ∆2 if and only if C∆1 ⊂ C∆2 , for ∆1,∆2 ⊂ F .

For each α ∈ F we define Hα ∈ a by

⟨Hα, β⟩ = δαβ (β ∈ F ),

where δαβ is Kronecker’s delta. Then for ∆ ⊂ F we have

C∆ =

{ ∑
α∈∆

xαHα

����� xα > 0

}
.

3. Construction of retractions

The notation of the preceding section will be preserved. The linear isotropy

representation of a Riemannian symmetric space G/K is called an s-representation.

The s-representation of G/K on To(G/K) and the adjoint representation Ad(K)

on m are equivalent. Since an s-representation is an orthogonal representation,

for a unit vector H ∈ m, the orbit Ad(K)H is a submanifold of the unit sphere

S ⊂ m. Orbits of s-representations are called R-spaces. The orbit space of an

s-representation is homeomorphic to C, more precisely for any X ∈ m, there exists

k ∈ K and unique H ∈ C such that X = Ad(k)H. The decomposition of C in

Lemma 2.5 is the decomposition of the orbit type. From the following theorem, we

can see that for each orbit type, there exists a unique minimal orbit.

Theorem 3.1 ([5]). For any nonempty subset ∆ ⊂ F , there exists a unique

H ∈ S ∩ C∆ such that the linear isotropy orbit Ad(K)H is a minimal orbit of S.

Corollary 3.2. An isolated orbit (i.e. ∆ = {α}) is a minimal submanifold

of S.

Kitagawa and Ohnita ([7]) calculated the mean curvature vectormH of Ad(K)H

in m at H:

mH = −
∑

λ∈R̃+\R̃∆
+

λ

⟨λ,H⟩
.

This expression is used in the proof of Theorem 3.1. We consider cones over minimal

embeddings of R-spaces that obtained in this way, and construct retractions.

Lemma 3.3 ([3]). Suppose ϕ is a mapping of C into itself such that
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ϕ(C∆) ⊂ C∆ for each ∆ ⊂ F . Then ϕ extends to a mapping Φ of m as

Φ(X) = Ad(k)ϕ(H)

for each X = Ad(k)H (k ∈ K,H ∈ C).

The following theorem is a generalization of Proposition 2.6 in [3].

Theorem 3.4. For A ∈ C, we put ∆0 = {α ∈ F | ⟨α,A⟩ > 0}. Let f : C →
R≥0 be a continuous function. Define a continuous mapping ϕ : C → {tA | t ≥ 0}
by ϕ(x) = f(x)A. If f satisfies

(1) f(tA) = t (t ≥ 0),

(2) f |C∆ = 0 (∆ ⊂ F with ∆0 ̸⊂ ∆),

then ϕ extends to a retraction Φ : m → CAd(K)A.

Proof. First, we show that ϕ satisfies the assumption of Lemma 3.3. For ∆ ⊂ F

if ∆0 ⊂ ∆, then C∆0 ⊂ C∆. Hence

ϕ(C∆) = {tA | t ≥ 0} ⊂ C∆0 ⊂ C∆

holds. If ∆0 ̸⊂ ∆, then ϕ(C∆) = {0} since f |C∆ = 0. Therefore, ϕ satisfies the

assumption of Lemma 3.3. We also get

Φ(m) = {Ad(k)f(H)A | k ∈ K,H ∈ C}
= {tAd(k)A | k ∈ K, t ≥ 0} = CAd(K)A.

Thus Φ is a surjection from m onto CAd(K)A. Next we show that Φ is continuous.

Let {Pn}n∈N be a sequence in m with limit P∞ ∈ m. Points Pn and P∞ can

be expressed as Pn = Ad(kn)Hn, P∞ = Ad(k∞)H∞ where kn, k∞ ∈ K and

Hn, H∞ ∈ C. Since the projection m → C;X = Ad(k)H �→ H is continuous, we

have limn→∞ Hn = H∞. We put ∆∞ = {α ∈ F | ⟨α,H∞⟩ > 0}, ZH∞
K = {k ∈ K |

Ad(k)H∞ = H∞} and Z∆∞
K = {k ∈ K | Ad(k)|C∆∞ = id}. Since ZH∞

K = Z∆∞
K

([3]), for any accumulation point k̃ ∈ K of {kn}n∈N, Ad(k̃)|C∆∞ = Ad(k∞)|C∆∞ .

Thus, we have limn→∞ Ad(kn)|C∆∞ = Ad(k∞)|C∆∞ . Therefore

lim
n→∞

Φ(Pn) = lim
n→∞

Ad(kn)f(Hn)A = Ad(k∞)f(H∞)A = Φ(P∞)

Hence Φ is a retraction from m onto CAd(K)A. □
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Proposition 3.5. Let Φ : m → CAd(K)A be a retraction which constructed

by Theorem 3.4. If Φ|a\Φ−1({0}) is C1, then so is Φ|m\Φ−1({0}). In this case Φ is

area-nonincreasing if and only if J(dΦ)x ≤ 1 holds for each x ∈ C \ Φ−1({0}).

Proof. If Φ is C1 at H ∈ C, then Φ is C1 at Ad(k)H for all k ∈ K. Thus we

assume H ∈ C\Φ−1({0}). For H ∈ C\Φ−1({0}), we put ∆ = {α ∈ F | ⟨α,H⟩ > 0}.
Since f(H) > 0, we get ∆0 ⊂ ∆ and C∆0 ⊂ C∆. By Lemma 2.4, we have

m = a+
∑

λ∈R̃+\R̃0

R · Tλ.

Since Φ|a\Φ−1({0}) is C1, we consider only Tλ direction for each λ ∈ R̃+ \ R̃0. If

⟨λ,H⟩ = 0, then [Tλ, H] = ⟨λ,H⟩Sλ = 0 from Lemma 2.4. Thus there exists

k ∈ ZH
K = {k ∈ K | Ad(k)H = H} such that Ad(k)Tλ ∈ a. Therefore

Φ(H + tTλ) = Ad(k)−1Φ(Ad(k)(H + tTλ)).

Since Ad(k)(H + tTλ) ∈ a and Φ|a\Φ−1({0}) is C1, we have the directional de-

rivative of Φ along Tλ. If ⟨λ,H⟩ ̸= 0, then from Lemma 2.4 we have that

c(t) = Ad (exp(−tSλ/⟨λ,H⟩))H is curve in m with c(0) = H and c′(0) = Tλ.

Thus

d

dt

����
t=0

Φ(c(t)) =
d

dt

����
t=0

Φ

(
Ad

(
exp

−tSλ

⟨λ,H⟩

)
H

)

=
[−Sλ, ϕ(H)]

⟨λ,H⟩
=

⟨λ,A⟩
⟨λ,H⟩

f(H)Tλ.

Therefore Φ is a differentiable retraction from m into CAd(K)A. Since Φ|m\Φ−1({0})
is C1, the mapping C \ Φ−1({0}) → R;x �→ J(dΦx) is continuous. Hence, if

J(dΦx) ≤ 1 (x ∈ C \ Φ−1({0})), then J(dΦx) ≤ 1 (x ∈ C \ Φ−1({0})). □

We will compute J(dΦx) of Φ in Theorem 3.4 for x ∈ C \ Φ−1({0}).

Proposition 3.6. We denote R∆0
+ = {λ ∈ R+ | ⟨λ,A⟩ = 0}.

J(dΦx) = ∥(gradf)x∥
∏

λ∈R+\R∆0
+

(
⟨λ,A⟩
⟨λ, x⟩

f(x)

)m(λ)

(x ∈ C \ Φ−1({0})).

Proof. From the proof of Proposition 3.5, we have
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dΦx(H) = dfx(H)A (H ∈ a), dΦx(Tλ) =
⟨λ,A⟩
⟨λ, x⟩

f(x)Tλ (λ ∈ R̃+ \ R̃0)

for x ∈ C \ Φ−1({0}). Thus we get

dΦx(a) ⊂ RA ⊂ a, dΦx


 ∑

µ∈R+

mµ


 ⊂

∑
µ∈R+

mµ.

Since a and
∑

µ∈R+
mµ are orthogonal, we have

J(dΦx) = J(dΦx|a)× J(dΦx|∑
µ∈R+

mµ
).

We put J1(x) = J(dΦx|a), J2(x) = J(dΦx|∑
µ∈R+

mµ
) and compute each of these.

J1(x) = sup{∥dΦx(v)∥ | v ∈ a, ∥v∥ = 1}
= sup{⟨(gradf)x, v⟩ | v ∈ a, ∥v∥ = 1} = ∥(gradf)x∥.

Since ker
(
dΦx|∑

µ∈R+
mµ

)
=

∑
µ∈R

∆0
+

mµ, {Tλ | λ ∈ R̃+, ⟨λ,A⟩ > 0} is an or-

thonormal basis of ker
(
dΦx|∑

µ∈R+
mµ

)⊥
=

∑
µ∈R+\R∆0

+
mµ. Hence

J2(x) =

������
∧

λ∈R̃+,⟨λ,A⟩>0

dΦx(Tλ)

������
=

������
∧

λ∈R̃+,⟨λ,A⟩>0

⟨λ,A⟩
⟨λ, x⟩

f(x)Tλ

������

=
∏

λ∈R̃+,⟨λ,A⟩>0

⟨λ,A⟩
⟨λ, x⟩

f(x) =
∏

λ∈R+\R∆0
+

(
⟨λ,A⟩
⟨λ, x⟩

f(x)

)m(λ)

.

Therefore we get

J(dΦ)x = J1(x)J2(x) = ∥(gradf)x∥
∏

λ∈R+\R∆0
+

(
⟨λ,A⟩
⟨λ, x⟩

f(x)

)m(λ)

.

□
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4. Example of area-minimizing cones over R-spaces

Using Theorem 3.4, Proposition 3.5 and Proposition 3.6, we investigate area-

minimizing properties of cones over R-spaces. First we consider cones over isolated

orbits of s-representations of irreducible symmetric pairs of compact type of rank

two. Principal orbits of these representations are homogeneous hypersurfaces in the

sphere. The area-minimizing properties of the cones over homogeneous minimal

hypersurfaces were investigated in [4] and [9].

We shall follow the notations of root systems in [2]. Partly we used Maxima∗

for algebraic computations.

4.1. Type A2.

a = {ξ1e1 + ξ2e2 + ξ3e3 | ξ1 + ξ3 + ξ3 = 0},

F = {α1 = e1 − e2, α2 = e2 − e3}.

Then we have R+ = {α1, α2, α1 + α2}. For λ ∈ R+, we put m = m(λ). We have

Hα1 =
1

3
(2e1 − e2 − e3), Hα2 =

1

3
(e1 + e2 − 2e3).

We put

A1 =
Hα1

∥Hα1∥
=

1√
6
(2e1 − e2 − e3), A2 =

Hα2

∥Hα2∥
=

1√
6
(e1 + e2 − 2e3).

Since Ad(K)A1 and Ad(K)A2 are isometric, we consider only the cone over

Ad(K)A1.

4.1.1. Cones over Ad(K)A1.

We put ∆0 = {α1} then R∆0
+ = {α2}. For x = x1Hα1 + x2Hα2 ∈ C, we define

f(x) =

√
2

3

(
⟨α1, x⟩2

⟨
α1 +

3

2
α2, x

⟩) 1
3

=

√
2

3

(
x2
1

(
x1 +

3

2
x2

)) 1
3

.

Since

(1) f(tA1) =
√

2
3

((√
3
2 t
)3

) 1
3

= t,

∗http://maxima.sourceforge.net/



Area-minimizing cones over minimal embeddings of R-spaces 79

(2) for each ∆ ⊂ F , if ∆0 ̸⊂ ∆, then f |C∆ = 0,

we can apply Theorem 3.4 to this case. It is clear that Φ|a\Φ−1({0}) is C
1. Thus Φ

is a differentiable retraction by Proposition 3.5. Since

∂f

∂x1
(x) =

√
2

3

(
x2
1

(
x1 +

3

2
x2

))− 2
3

(x2
1 + x1x2),

∂f

∂x2
(x) =

√
2

3

(
x2
1

(
x1 +

3

2
x2

))− 2
3 x2

1

2
,

we get

J1(x) = ∥(gradf)x∥ =

√
2

3

(
x2
1

(
x1 +

3

2
x2

))− 2
3
√

3

2
x4
1 + 3x3

1x2 + 2x2
1x

2
2.

On the other hand,

J2(x) =

(
⟨α1, A1⟩
⟨α1, x⟩

f(x)

)m (
⟨α1 + α2, A1⟩
⟨α1 + α2, x⟩

f(x)

)m

=



(
x1

(
x1 +

3
2x2

)2) 1
3

x1 + x2




m

.

Then

(x1 + x2)
3 − x1

(
x1 +

3

2
x2

)2

=
3

4
x1x

2
2 + x3

2 ≥ 0,

thus



(
x1

(
x1 +

3
2x2

)2) 1
3

x1 + x2


 ≤ 1.

We put

D = J1(x)×



(
x1

(
x1 +

3
2x2

)2) 1
3

x1 + x2




2

=

(
(3x2

1 + 6x1x2 + 4x2
2)

3x2
1(2x1 + 3x2)

4

3324(x1 + x2)12

) 1
6

.
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Since

J(dΦ)x = D ×



(
x1

(
x1 +

3
2x2

)2) 1
3

x1 + x2




m−2

,

if D ≤ 1, then J(dΦx) ≤ 1 for m ≥ 2. Since

3324(x1 + x2)
12 − (3x2

1 + 6x1x2 + 4x2
2)

3x2
1(2x1 + 3x2)

4

= 216x10
1 x2

2 + 2376x9
1x

3
2 + 11925x8

1x
4
2 + 35838x7

1x
5
2 + 71120x6

1x
6
2

+96888x5
1x

7
2 + 91152x4

1x
8
2 + 57888x3

1x
9
2 + 23328x2

1x
10
2 + 5184x1x

11
2 + 432x12

2

≥ 0,

we have D ≤ 1. Therefore, cones over Ad(K)A1 are area-minimizing for m ≥ 2.

4.2. Types B2, BC2 and C2.

Types C2 and B2 are isomorphic, thus it suffices to compute the type B2 case.

Moreover setting the multiplicity of long roots to zero, the set of restricted roots

of type BC2 reduces to that of type B2. We have

F = {α1 = e1 − e2, α2 = e2},

R+ = {α1, α2, α1 + α2, α1 + 2α2, 2α1 + 2α2, 2α2},

Hα1 = e1, Hα2 = e1 + e2,

and put

m(α1) = m1, m(α2) = m2, m(2α2) = m3.

4.2.1. Cones over Ad(K)A1.

We put ∆0 = {α1}, then we have

A1 =
Hα1

∥Hα1∥
= e1,

and

R∆0
+ = {λ ∈ R+ | ⟨λ,A1⟩ = 0} = {α2, 2α2}.
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For x = x1Hα1
+ x2Hα2

∈ C, we define

f(x) =
√

⟨α1, x⟩⟨α1 + 2α2, x⟩ =
√
x1(x1 + 2x2).

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differen-

tiable. Moreover J(dΦx) ≤ 1 holds for m2 +m3 ≥ 2.

Therefore, cones over Ad(K)A1 are area-minimizing for m2 +m3 ≥ 2.

4.2.2. Cones over Ad(K)A2.

We put ∆0 = {α2}, then we have

A2 =
Hα2

∥Hα2
∥
=

e1 + e2√
2

and

R∆0
+ = {λ ∈ R+ | ⟨λ,A2⟩ = 0} = {α1}.

For x = x1Hα1
+ x2Hα2

∈ C, we define

f(x) =
√
2

(
⟨α2, x⟩2

⟨
3

2
α1 + α2, x

⟩) 1
3

=
√
2

(
x2
2

(
3

2
x1 + x2

)) 1
3

.

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differen-

tiable. Moreover J(dΦx) ≤ 1 holds for m2 +m3 ≥ 2.

Therefore, cones over Ad(K)A2 are area-minimizing for m2 +m3 ≥ 2.

4.3. Type G2.

We have

F = {α1, α2},

R+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2},

⟨α1, α1⟩ = 1, ⟨α1, α2⟩ = −3

2
, ⟨α2, α2⟩ = 3,

Hα1 = 4α1 + 2α2, Hα2 =
2

3
(3α1 + 2α2),
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and put

m = m(α1) = m(α2).

4.3.1. Cones over Ad(K)A1.

We put ∆0 = {α1} then we have

A1 =
Hα1

∥Hα1∥

and

R∆0
+ = {λ ∈ R+ | ⟨λ,A1⟩ = 0} = {α2}.

For x = x1Hα1
+ x2Hα2

∈ C, we define

f(x) =
√

4⟨α1, x⟩⟨α1 + α2, x⟩ =
√
4x1(x1 + x2).

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differen-

tiable. Moreover J(dΦx) ≤ 1 holds for m ≥ 2.

Therefore cones over Ad(K)A1 are area-minimizing for m ≥ 2.

4.3.2. Cones over Ad(K)A2.

We put ∆0 = {α2} then we have

A2 =
Hα2

∥Hα2∥
,

and

R∆0
+ = {λ ∈ R+ | ⟨λ,A1⟩ = 0} = {α1}.

For x = x1Hα1 + x2Hα2 ∈ C, we define

f(x) =

√
4

3
⟨α2, x⟩⟨3α1 + α2, x⟩ =

√
4

3
x2(3x1 + x2).

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differen-

tiable. Moreover J(dΦx) ≤ 1 holds for m ≥ 2.

Therefore, cones over Ad(K)A2 are area-minimizing for m ≥ 2.

By the above computation, we get the following table of cones over isolated

orbits of the s-representations of irreducible symmetric spaces of rank two.
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4.4. Type A3.

Theorem 3.4 can be applied to cones over minimal orbits, not only isolated

orbits. We demonstrate the area-minimizing property for the cone over a minimal

orbit, which is not an isolated orbit, of the s-representation of symmetric spaces of

type A3.

a =

{
4∑

i=1

ξiei |
4∑

i=1

ξi = 0

}
,

F = {α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4}.

Then R+ = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3} and for λ ∈ R+, we put

m(λ) = m. We have

Hα1 =
1

4
(3e1−e2−e3−e4), Hα2 =

1

4
(2e1+2e2−2e3−2e4), Hα3 =

1

4
(e1+e2+e3−3e4).

We put ∆0 = {α1, α3}, and we have

A =
Hα1 +Hα3√

2
=

e1 − e4√
2

.

Then the orbit Ad(K)A is a minimal submanifold of the sphere S ⊂ m. We get

R∆0
+ = {λ ∈ R+ | ⟨λ,A⟩ = 0} = {α2}.

For x = x1Hα1
+ x2Hα2

+ x3Hα3
∈ C, we define

f(x) =
√
2 (⟨α1, x⟩⟨α3, x⟩⟨α1 + α2, x⟩⟨α2 + α3, x⟩)

1
4 =

√
2(x1x3(x1+x2)(x2+x3))

1
4 .

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differen-

tiable. Moreover J(dΦx) ≤ 1 holds for m ≥ 4.

Therefore, cones over Ad(K)A are area-minimizing for m ≥ 4. The only sym-

metric pair which satisfies m ≥ 3 is (SU(6), Sp(3)).

5. Reducible cases

In this section, we consider cones over products of two R-spaces. Let

(Gi,Ki) (i = 1, 2) be Riemannian symmetric pairs, and put (G,K) = (G1 ×
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G2,K1 ×K2). We define the notation for (Gi,Ki) as follows. Let

gi = ki +mi (i = 1, 2)

be the canonical decompositions of Lie algebras gi of Gi. Take and fix a maximal

abelian subspace ai inmi. We denote byRi the restricted root system of (gi, ki) with

respect to ai. We put the fundamental systems Fi of Ri by Fi = {αi1, . . . , αili}.
Ri+ is the set of positive roots in Ri. We set

Ci = {H ∈ ai | ⟨α,H⟩ > 0 (α ∈ Fi)},

C∆
i = {H ∈ ai | ⟨α,H⟩ > 0 (α ∈ ∆), ⟨β,H⟩ = 0 (β ∈ Fi \∆)},

where ∆ ⊂ Fi. The direct sum of the s-representations of (Gi,Ki) is the s-

representation of (G,K) = (G1 ×G2,K1 ×K2). Then, we have

C = C1 × C2.

For ∆ ⊂ F , ∆ is expressed as ∆ = ∆1 ∪∆2 where ∆i ⊂ Fi (i = 1, 2). By Theorem

3.1 for each ∆i, there exists Ai ∈ Ci such that Ad(Ki)Ai is a minimal orbit of the

s-representation of (Gi,Ki). We put ki = dimAd(Ki)Ai and k = k1 + k2, then

A =

√
k1
k
A1 +

√
k2
k
A2 ∈ C

is a base point of a minimal orbit of the s-representation of (G,K).

Theorem 5.1. Let ∆0 = ∆1 ∪ ∆2 (∆i ⊂ Fi). We suppose that for the

cone over Ad(Ki)Ai, there exists an area-nonincreasing retraction constructed by

a function fi on Ci in Theorem 3.4, and that the retraction satisfies

(5.1)
∏

λ∈Ri+\R∆i
i+

(
⟨λ,Ai⟩
⟨λ, x⟩

fi(x)

)m(λ)

≤ 1 (x ∈ Ci).

If dimAd(Ki)Ai ≥ 3, then there exists an area-nonincreasing retraction Φ : m →
CAd(K)A constructed by some function f on C in Theorem 3.4 such that the retrac-
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tion satisfies

∏

λ∈R+\R∆0
+

(
⟨λ,A⟩
⟨λ, x⟩

f(x)

)m(λ)

≤ 1 (x ∈ C).

Proof. Let ki = dimAd(Ki)Ai, k = k1 + k2 and put ai =
√
ki/k. A = a1A1 +

a2A2 holds. For x = (x1, x2) ∈ C1 × C2 = C we define

f(x) =




f1(x1)f2(x2)

a32f1(x1) + a31f2(x2)
(f1(x1) ̸= 0 or f2(x2) ̸= 0)

0 (f1(x1) = f2(x2) = 0)

We will show that f satisfies the conditions of Theorem 3.4. We can check easily

f(tA) = t for t ≥ 0. For ∆ ⊂ F with ∆0 ̸⊂ ∆, using ∆′
i ⊂ Fi we can write

∆ = ∆′
1 ∪∆′

2. Then ∆i ̸⊂ ∆′
i implies i = 1 or i = 2. Thus f1 = 0 or f2 = 0 holds

on C∆. Therefore f |C∆ = 0. Since Φ|a\({0}) is C1, Φ is a differentiable retraction

by Proposition 3.5. We calculate J(dΦx) for x ∈ C \ f−1({0}). We put

J1(x) = ∥(gradf)x∥, J2(x) =
∏

λ∈R+\R∆
+

(
⟨λ,A⟩
⟨λ, x⟩

f(x)

)m(λ)

for x = (x1, x2) = (x1
1, . . . , x

l1
1 , x

1
2, . . . , x

l2
2 ) ∈ C \ f−1({0}) = C1 × C2 \ f−1({0}).

Since

∂f

∂xj
1

=

∂f1
∂xj

1

a31f2(x2)
2

(a32f1(x1) + a31f2(x2))2
(j ∈ {1, . . . , l1}),

∂f

∂xj
2

=

∂f2
∂xj

2

a32f1(x1)
2

(a32f1(x1) + a31f2(x2))2
(j ∈ {1, . . . , l2}),

we get

(gradf)x =
a31f2(x2)

2(gradf1)x1
+ a32f1(x1)

2(gradf2)x2

(a32f1(x1) + a31f2(x2))2

and

J1(x) = ∥(gradf)x∥ =

√
a61f2(x2)4∥(gradf1)x1∥2 + a62f1(x1)4∥(gradf2)x2∥2

(a32f1(x1) + a31f2(x2))2
.
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Since R∆0
+ = {λ ∈ R+ | ⟨λ,A⟩ = 0} = R∆1

1+ ∪R∆2
2+ , we get

J2(x) =
∏

λ∈R+\R∆0
+

(
⟨λ,A⟩
⟨λ, x⟩

f(x)

)m(λ)

=
∏

λ∈R1+\R∆1
1+

(
⟨λ, a1A1⟩
⟨λ, x1⟩

f(x)

)m(λ) ∏

µ∈R2+\R∆2
2+

(
⟨µ, a2A2⟩
⟨µ, x2⟩

f(x)

)m(µ)

=
∏

λ∈R1+\R∆1
1+

(
⟨λ,A1⟩
⟨λ, x1⟩

f1(x1)
a1f(x)

f1(x1)

)m(λ) ∏

µ∈R2+\R∆2
2+

(
⟨µ,A2⟩
⟨µ, x2⟩

f2(x2)
a2f(x)

f2(x2)

)m(µ)

.

Put

J2i(xi) =
∏

λ∈Ri+\R∆i
i+

(
⟨λ,Ai⟩
⟨λ, xi⟩

fi(xi)

)m(λ)

, J1i(xi) = ∥(gradfi)xi∥ (i = 1, 2).

Note that J2i(xi) ≤ 1 holds by the assumption (5.1), and J1i(xi)J2i(xi) ≤ 1 holds

since the function fi constructs an area-nonincreasing retraction by Theorem 3.4.

Since

∑

λ∈Ri+\R∆i
i+

m(λ) = dimAd(Ki)Ai = ki,

we can write

J2(x) = J21(x1)J22(x2)

(
a1f(x)

f1(x1)

)k1
(
a2f(x)

f2(x2)

)k2

.

Since J2i(xi) ≤ 1,

J2(x) ≤
(
a1f(x)

f1(x1)

)k1
(
a2f(x)

f2(x2)

)k2

.

We put

X1 =
f2(x2)

a2
, X2 =

f1(x1)

a1
.
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Then we have

(
a1f(x)

f1(x1)

)k1
(
a2f(x)

f2(x2)

)k2

=
Xk1

1 Xk2
2

(a21X1 + a22X2)k
.

For X1, X2 > 0, we define

D̃(X1, X2) =
Xk1

1 Xk2
2

(a21X1 + a22X2)k
.

If D̃ ≤ 1, then J2(x) ≤ 1. Thus we prove D̃ ≤ 1. Since D̃(X1, X2) =

D̃(tX1, tX2) (t > 0), in order to prove D̃ ≤ 1, we show D̃|P ≤ 1 where

P = {(X1, X2) ∈ R2 | X1, X2 > 0, a21X1 + a22X2 = 1}.

We have D̃|P = Xk1
1 Xk2

2 and X2 =
1− a21X1

a22
. Since

dD̃|P
dX1

= k1X
k1−1
1 Xk2

2 +Xk1
1 (−k2

a21
a22

)Xk2−1
2 = k1X

k1−1
1 Xk2−1

2 (X2 −X1),

a critical point of D̃|P is only X1 = 1 in P . Further, we get

D̃|P → 0 as X1 → 0 or
1

a21
.

Hence max{D̃(X1, X2) | (X1, X2) ∈ P} = D̃(1, 1) = 1. Therefore

J2(x) ≤ 1.

Then we have

J(dΦ)x = J1(x)J2(x) = ∥(gradf)x∥J2(x)

=

√
a61f2(x2)4J11(x1)2 + a62f1(x1)4J12(x2)2

(a32f1(x1) + a31f2(x2))2
J21(x1)J22(x2)

(a1f2(x2))
k1(a2f1(x1))

k2

(a32f1(x1) + a31f2(x2))k

=

√
a61f2(x2)4J11(x1)2J21(x1)2J22(x2)2 + a62f1(x1)4J12(x2)2J21(x1)2J22(x2)2

(a32f1(x1) + a31f2(x2))k+2

×(a1f2(x2))
k1(a2f1(x1))

k2

≤
√

a61f2(x2)4 + a62f1(x1)4(a1f2(x2))
k1(a2f1(x1))

k2

(a32f1(x1) + a31f2(x2))k+2
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=

√
a21X

4
1 + a22X

4
2X

k1
1 Xk2

2

(a21X1 + a22X2)k+2
.

We define

D(X1, X2) = J(dΦx)
2 =

(a21X
4
1 + a22X

4
2 )X

2k1
1 X2k2

2

(a21X1 + a22X2)2k+4
.

We have D(tX1, tX2) = D(X1, X2) (t > 0). Similar to the above argument, we

consider the maximum value of D|P . Since

D|P = (a21X
4
1 + a22X

4
2 )X

2k1
1 X2k2

2 ,

we get

dD|P
dX1

= 4

(
a21X

3
1 − a21

a22
a22X

3
2

)
X2k1

1 X2k2
2

+(a21X
4
1 + a22X

4
2 )

(
2k1X

2k1−1
1 X2k2

2 − 2k2
a21
a22

X2k1
1 X2k2−1

2

)

= −2a21X
2k1−1
1 X2k2−1

2 (X1 −X2)

×
{(

(k1 − 3)X4
1 + (k2 − 3)X4

2

)
+ 3(X1 −X2)

4 + 10(X1 −X2)
2
}
.

Hence, if k1 ≥ 3, k2 ≥ 3, then a critical point of D|P is only X1 = 1 in P .

Furthermore, we get

D|P → 0 as X1 → 0 or
1

a21
.

Thus max{D(X1, X2) | (X1, X2) ∈ P} = D(1, 1) = 1. Hence D ≤ 1. This implies

J(dΦx) ≤ 1. Therefore if k1 ≥ 3, k2 ≥ 3, Φ is area nonincreasing. □

Remark 5.2. In 1969, Bombieri, DeGiorgi and Giusti [1] showed that the cone

over Sk × Sk ⊂ S2k+1(k ≥ 3) is area-minimizing. On the other hand, Lawlor [9]

proved that the cone over Sk1 × Sk2 ⊂ Sk1+k2+1 are not area-minimizing when

k1 + k2 ≤ 5 or k1 = 1, k2 = 5. Hence, we need the condition k1 ≥ 3, k2 ≥ 3 in

Theorem 5.1.

Remark 5.3. Area-nonincreasing retractions which we constructed in Section 4

satisfy the assumption of Theorem 5.1. Moreover, an area-nonincreasing retraction

that is constructed using Theorem 5.1 satisfies the assumption of Theorem 5.1

again. Therefore, we can apply Theorem 5.1 inductively. This implies that the
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cone over the k-product of R-spaces (k ≥ 2) with “⃝” in the table in Section 4 is

area-minimizing.
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