Area-minimizing cones over minimal embeddings of R -spaces

Shinji Ohno and Takashi Sakai

Abstract

We prove area-minimizing properties of some cones over minimal embeddings of R -spaces by constructing areanonincreasing retractions.

1. Introduction

Let C_{B} be the cone over a submanifold B of the unit sphere S^{n-1} in \mathbb{R}^{n}. The cone C_{B} is minimal in \mathbb{R}^{n} if and only if B is minimal in S^{n-1}. We call a cone C_{B} area-minimizing if its truncated cone C_{B}^{1} has the least area among all integral currents with the same boundary B. Solutions of Plateau's problem can have singularities as integral currents. At an isolated conical singularity, the tangent cone is area-minimizing. Hence, in order to understand such singularities, we should study area-minimizing properties of minimal cones.

Lawlor [9] gave a sufficient condition, so-called the curvature criterion, for a cone to be area-minimizing, using an area-nonincreasing retraction. With this criterion, he obtained a complete classification of area-minimizing cones over products of spheres and the first examples of area-minimizing cones over nonorientable manifolds. Kerckhove [8] proved that some cones over isolated orbits of the adjoint representations of $\mathrm{SU}(n)$ and $\mathrm{SO}(n)$ are area-minimizing. A symmetric R-space can be minimally embedded in the sphere in a canonical way. Hirohashi, Kanno and Tasaki [3] constructed area-nonincreasing retractions onto the cones over symmetric R-spaces associated with symmetric pairs of type B_{l}. Furthermore, Kanno [6] proved that cones over some symmetric R-spaces are area-minimizing. Recently, independently of our study, Z.Z. Tang and Y.S. Zhang [11] showed area minimizing properties of the cones over the focal submanifolds of isoparametric hypersurfaces in the unit sphere except for some low dimensional cases.

In this paper, we study area-minimizing properties of cones over minimal embeddings of R-spaces, not only symmetric R-spaces. In Theorem 3.4, we give a construction of retractions generalizing the method given in [3]. Applying this theorem we give some examples of area-minimizing cones over minimal embeddings

2020 Mathematics Subject Classification. Primary 49Q05; Secondary 53C42.
Key Words and Phrases. area-minimizing surface, R-space, cone.
of R-spaces. In Section 5, we discuss area-minimizing properties of cones over products of R-spaces.

2. Preliminaries

2.1. Area-minimizing cones.

Let B be a submanifold of the unit sphere S^{n-1} in \mathbb{R}^{n}. We define the cone C_{B} and the truncated cone C_{B}^{1} over B by

$$
\begin{aligned}
& C_{B}=\left\{t x \in \mathbb{R}^{n} \mid 0 \leq t, x \in B\right\}, \\
& C_{B}^{1}=\left\{t x \in \mathbb{R}^{n} \mid 0 \leq t \leq 1, x \in B\right\} .
\end{aligned}
$$

Both C_{B} and C_{B}^{1} have an isolated singularity at the origin $0 \in \mathbb{R}^{n}$.
Definition 2.1. A cone C_{B} is called area-minimizing if C_{B}^{1} has the least area among all integral currents with boundary B .

Let V and W be two vector spaces with inner products, and let $F: V \rightarrow W$ be a linear map. Suppose $\operatorname{dim} V=n \geq \operatorname{dim} W=m$. We define the Jacobian $J F$ of F by

$$
J F=\sup \left\{\left\|F\left(v_{1}\right) \wedge \cdots \wedge F\left(v_{m}\right)\right\|\right\}
$$

where $\left\{v_{1}, \ldots, v_{m}\right\}$ runs over all orthonormal systems of V. If F is not surjective, then $J F=0$. If F is surjective, then

$$
J F=\left\|F\left(v_{1}\right) \wedge \cdots \wedge F\left(v_{m}\right)\right\|
$$

for any orthonormal basis of $(\operatorname{ker} F)^{\perp}$.
Definition 2.2. A retraction $\Phi: \mathbb{R}^{n} \rightarrow C_{B}$ is called differentiable if $\Phi: \mathbb{R}^{n} \backslash$ $\Phi^{-1}(0) \rightarrow C_{B} \backslash\{0\}$ is C^{1}. A differentiable retraction Φ is called area-nonincreasing if $J(d \Phi)_{x} \leq 1$ holds for all $x \in \mathbb{R}^{n} \backslash \Phi^{-1}(0)$.

Proposition 2.3. Let B be a compact submanifold of the unit sphere S^{n-1} in \mathbb{R}^{n}. Suppose that there exists an area-nonincreasing retraction Φ from \mathbb{R}^{n} to C_{B}. Then C_{B} is area-minimizing.

Proof. Let S be an integral current which has the same boundary B as C_{B}^{1}. Since
$\Phi(S) \supset C_{B}^{1}$, we have

$$
\begin{aligned}
\operatorname{Vol}\left(C_{B}^{1}\right) & \leq \operatorname{Vol}(\Phi(S))=\operatorname{Vol}(\Phi(S) \backslash\{0\}) \leq \int_{S \backslash \Phi^{-1}(0)}\left\|d \Phi\left(e_{1} \wedge \cdots \wedge e_{k}\right)\right\| d \mu_{S} \\
& \leq \int_{S \backslash \Phi^{-1}(0)} J(d \Phi)_{x} d \mu_{S} \leq \int_{S \backslash \Phi^{-1}(0)} 1 d \mu_{S} \leq \int_{S} 1 d \mu_{S}=\operatorname{Vol}(S),
\end{aligned}
$$

where $\left\{e_{1}, \ldots, e_{k}\right\}$ is an orthonormal frame of S.
If C_{B} is area-minimizing, then C_{B} is minimal in \mathbb{R}^{n}. Therefore, to find areaminimizing cones, it suffices to consider cones over minimal submanifolds of S^{n-1}. For this purpose, we use s-representations, which are the linear isotropy representations of Riemannian symmetric spaces.

2.2. Riemannian symmetric pairs and restricted root systems.

Let G be a connected Lie group and θ be an involutive automorphism of G. We denote by $F(\theta, G)$ the fixed point set of θ, and we denote by $F(\theta, G)_{0}$ the identity component of $F(\theta, G)$. For a closed subgroup K of G, the pair (G, K) is said to be a Riemannian symmetric pair if $F(\theta, G)_{0} \subset K \subset F(\theta, G)$ and $\operatorname{Ad}(K)$ is compact. Let (G, K) be a Riemannian symmetric pair, and \mathfrak{g} and \mathfrak{k} be Lie algebras of G and K, respectively. We immediately see that

$$
\mathfrak{k}=\{X \in \mathfrak{g} \mid d \theta(X)=X\} .
$$

We put

$$
\mathfrak{m}=\{X \in \mathfrak{g} \mid d \theta(X)=-X\} .
$$

We denote by $\langle\cdot, \cdot\rangle$ an inner product on \mathfrak{g} which is invariant under the actions of $\operatorname{Ad}(K)$ and $d \theta$. Then $\langle\cdot, \cdot\rangle$ induces a left-invariant metric on G and a G-invariant metric on $M=G / K$ to be a Riemannian symmetric space respectively, which we use the same symbol $\langle\cdot, \cdot\rangle$. Since $d \theta$ is involutive, we have an orthogonal direct sum decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\mathfrak{k}+\mathfrak{m} .
$$

This decomposition is called the canonical decomposition of ($\mathfrak{g}, \mathfrak{k}$). For the origin $o \in G / K$, we can identify the tangent space $T_{o}(G / K)$ with \mathfrak{m} by the differential of the natural projection $\pi: G \rightarrow G / K$.

In this paper, we consider only Riemannian symmetric spaces of compact type.

We suppose that G is compact and semisimple. Take and fix a maximal abelian subspace \mathfrak{a} in \mathfrak{m} and a maximal abelian subalgebra \mathfrak{t} in \mathfrak{g} including \mathfrak{a}. For $\lambda \in \mathfrak{t}$, we put

$$
\tilde{\mathfrak{g}}_{\lambda}=\left\{X \in \mathfrak{g}^{\mathbb{C}} \mid[H, X]=\sqrt{-1}\langle\lambda, H\rangle X(H \in \mathfrak{t})\right\}
$$

and define the root system \tilde{R} of \mathfrak{g} by

$$
\tilde{R}=\left\{\lambda \in \mathfrak{t} \backslash\{0\} \mid \tilde{\mathfrak{g}}_{\lambda} \neq\{0\}\right\} .
$$

For $\lambda \in \mathfrak{a}$, we put

$$
\mathfrak{g}_{\lambda}=\left\{X \in \mathfrak{g}^{\mathbb{C}} \mid[H, X]=\sqrt{-1}\langle\lambda, H\rangle X(H \in \mathfrak{a})\right\}
$$

and define the restricted root system R of $(\mathfrak{g}, \mathfrak{k})$ by

$$
R=\left\{\lambda \in \mathfrak{a} \backslash\{0\} \mid \mathfrak{g}_{\lambda} \neq\{0\}\right\} .
$$

Denote the orthogonal projection from \mathfrak{t} to \mathfrak{a} by $H \mapsto \bar{H}$. We extend a basis of \mathfrak{a} to that of \mathfrak{t} and define a lexicographic orderings $>$ on \mathfrak{a} and \mathfrak{t} with respect to these basis. Then for $H \in \mathfrak{t}, \bar{H}>0$ implies $H>0$. We denote by \tilde{F} the fundamental system of \tilde{R} with respect to $>$, by F the fundamental system of R with respect to $>$. We define

$$
\tilde{R}_{0}=\{\lambda \in \tilde{R} \mid \bar{\lambda}=0\}, \quad \tilde{F}_{0}=\{\alpha \in \tilde{F} \mid \bar{\alpha}=0\} .
$$

Then we have

$$
R=\left\{\bar{\lambda} \mid \lambda \in \tilde{R} \backslash \tilde{R}_{0}\right\}, \quad F=\left\{\bar{\alpha} \mid \alpha \in \tilde{F} \backslash \tilde{F}_{0}\right\}
$$

We denote the set of positive roots by

$$
\tilde{R}_{+}=\{\lambda \in \tilde{R} \mid \lambda>0\}, \quad R_{+}=\{\lambda \in R \mid \lambda>0\} .
$$

We put

$$
\mathfrak{k}_{0}=\{X \in \mathfrak{k} \mid[H, X]=0(H \in \mathfrak{a})\}
$$

and for each $\lambda \in R_{+}$

$$
\mathfrak{k}_{\lambda}=\mathfrak{k} \cap\left(\mathfrak{g}_{\lambda}+\mathfrak{g}_{-\lambda}\right), \quad \mathfrak{m}_{\lambda}=\mathfrak{m} \cap\left(\mathfrak{g}_{\lambda}+\mathfrak{g}_{-\lambda}\right) .
$$

We then have the following lemma.

Lemma 2.4 ([10]). (1) We have orthogonal direct sum decompositions:

$$
\mathfrak{k}=\mathfrak{k}_{0}+\sum_{\lambda \in R_{+}} \mathfrak{k}_{\lambda}, \quad \mathfrak{m}=\mathfrak{a}+\sum_{\lambda \in R_{+}} \mathfrak{m}_{\lambda} .
$$

(2) For each $\mu \in \tilde{R}_{+} \backslash \tilde{R}_{0}$ there exist $S_{\mu} \in \mathfrak{k}$ and $T_{\mu} \in \mathfrak{m}$ such that

$$
\left\{S_{\mu} \mid \mu \in \tilde{R}_{+}, \bar{\mu}=\lambda\right\}, \quad\left\{T_{\mu} \mid \mu \in \tilde{R}_{+}, \bar{\mu}=\lambda\right\}
$$

are, respectively, orthonormal bases of \mathfrak{k}_{λ} and \mathfrak{m}_{λ} and that for any $H \in \mathfrak{a}$

$$
\left[H, S_{\mu}\right]=\langle\mu, H\rangle T_{\mu}, \quad\left[H, T_{\mu}\right]=-\langle\mu, H\rangle S_{\mu}
$$

For each $\lambda \in R_{+}$we put $m(\lambda)=\operatorname{dim} \mathfrak{m}_{\lambda}=\operatorname{dim} \mathfrak{k}_{\lambda} \cdot m(\lambda)$ is called the multiplicity of λ. We define a subset D of \mathfrak{a} by

$$
D=\bigcup_{\lambda \in R_{+}}\{H \in \mathfrak{a} \mid\langle\lambda, H\rangle=0\}
$$

Each connected component of $\mathfrak{a} \backslash D$ is called a Weyl chamber. We define the fundamental Weyl chamber \mathcal{C} by

$$
\mathcal{C}=\{H \in \mathfrak{a} \mid\langle\alpha, H\rangle>0(\alpha \in F)\}
$$

The closure of \mathcal{C} is given by

$$
\overline{\mathcal{C}}=\{H \in \mathfrak{a} \mid\langle\alpha, H\rangle \geq 0(\alpha \in F)\}
$$

For each subset $\Delta \subset F$, we define a subset $\mathcal{C}^{\Delta} \subset \overline{\mathcal{C}}$ by

$$
\mathcal{C}^{\Delta}=\{H \in \overline{\mathcal{C}} \mid\langle\alpha, H\rangle>0(\alpha \in \Delta),\langle\beta, H\rangle=0(\beta \in F \backslash \Delta)\}
$$

Then we have the following lemma.

Lemma 2.5 ([3]). (1) For $\Delta_{1} \subset F$

$$
\overline{\mathcal{C}^{\Delta_{1}}}=\bigcup_{\Delta \subset \Delta_{1}} \mathcal{C}^{\Delta}
$$

is a disjoint union. In particular $\overline{\mathcal{C}}=\bigcup_{\Delta \subset F} \mathcal{C}^{\Delta}$ is a disjoint union.
(2) $\Delta_{1} \subset \Delta_{2}$ if and only if $\mathcal{C}^{\Delta_{1}} \subset \overline{\mathcal{C}^{\Delta_{2}}}$, for $\Delta_{1}, \Delta_{2} \subset F$.

For each $\alpha \in F$ we define $H_{\alpha} \in \mathfrak{a}$ by

$$
\left\langle H_{\alpha}, \beta\right\rangle=\delta_{\alpha \beta}(\beta \in F)
$$

where $\delta_{\alpha \beta}$ is Kronecker's delta. Then for $\Delta \subset F$ we have

$$
\mathcal{C}^{\Delta}=\left\{\sum_{\alpha \in \Delta} x_{\alpha} H_{\alpha} \mid x_{\alpha}>0\right\}
$$

3. Construction of retractions

The notation of the preceding section will be preserved. The linear isotropy representation of a Riemannian symmetric space G / K is called an s-representation. The s-representation of G / K on $T_{o}(G / K)$ and the adjoint representation $\operatorname{Ad}(K)$ on \mathfrak{m} are equivalent. Since an s-representation is an orthogonal representation, for a unit vector $H \in \mathfrak{m}$, the orbit $\operatorname{Ad}(K) H$ is a submanifold of the unit sphere $S \subset \mathfrak{m}$. Orbits of s-representations are called R-spaces. The orbit space of an s-representation is homeomorphic to $\overline{\mathcal{C}}$, more precisely for any $X \in \mathfrak{m}$, there exists $k \in K$ and unique $H \in \overline{\mathcal{C}}$ such that $X=\operatorname{Ad}(k) H$. The decomposition of $\overline{\mathcal{C}}$ in Lemma 2.5 is the decomposition of the orbit type. From the following theorem, we can see that for each orbit type, there exists a unique minimal orbit.

Theorem 3.1 ([5]). For any nonempty subset $\Delta \subset F$, there exists a unique $H \in S \cap \mathcal{C}^{\Delta}$ such that the linear isotropy orbit $\operatorname{Ad}(K) H$ is a minimal orbit of S.

Corollary 3.2. An isolated orbit (i.e. $\Delta=\{\alpha\}$) is a minimal submanifold of S.

Kitagawa and Ohnita ([7]) calculated the mean curvature vector m_{H} of $\operatorname{Ad}(K) H$ in \mathfrak{m} at H :

$$
m_{H}=-\sum_{\lambda \in \tilde{R}_{+} \backslash \tilde{R}_{+}^{\Delta}} \frac{\bar{\lambda}}{\langle\lambda, H\rangle} .
$$

This expression is used in the proof of Theorem 3.1. We consider cones over minimal embeddings of R-spaces that obtained in this way, and construct retractions.

Lemma 3.3 ([3]). Suppose ϕ is a mapping of $\overline{\mathcal{C}}$ into itself such that
$\phi\left(\mathcal{C}^{\Delta}\right) \subset \overline{\mathcal{C}^{\Delta}}$ for each $\Delta \subset F$. Then ϕ extends to a mapping Φ of \mathfrak{m} as

$$
\Phi(X)=\operatorname{Ad}(k) \phi(H)
$$

for each $X=\operatorname{Ad}(k) H(k \in K, H \in \overline{\mathcal{C}})$.
The following theorem is a generalization of Proposition 2.6 in [3].
Theorem 3.4. For $A \in \overline{\mathcal{C}}$, we put $\Delta_{0}=\{\alpha \in F \mid\langle\alpha, A\rangle>0\}$. Let $f: \overline{\mathcal{C}} \rightarrow$ $\mathbb{R}_{\geq 0}$ be a continuous function. Define a continuous mapping $\phi: \overline{\mathcal{C}} \rightarrow\{t A \mid t \geq 0\}$ by $\phi(x)=f(x) A$. If f satisfies
(1) $f(t A)=t(t \geq 0)$,
(2) $\left.f\right|_{\mathcal{C}_{\Delta}}=0\left(\Delta \subset F\right.$ with $\left.\Delta_{0} \not \subset \Delta\right)$,
then ϕ extends to a retraction $\Phi: \mathfrak{m} \rightarrow C_{\operatorname{Ad}(K) A}$.
Proof. First, we show that ϕ satisfies the assumption of Lemma 3.3. For $\Delta \subset F$ if $\Delta_{0} \subset \Delta$, then $\mathcal{C}^{\Delta_{0}} \subset \overline{\mathcal{C}^{\Delta}}$. Hence

$$
\phi\left(\mathcal{C}^{\Delta}\right)=\{t A \mid t \geq 0\} \subset \mathcal{C}^{\Delta_{0}} \subset \overline{\mathcal{C}^{\Delta}}
$$

holds. If $\Delta_{0} \not \subset \Delta$, then $\phi\left(\mathcal{C}^{\Delta}\right)=\{0\}$ since $\left.f\right|_{\mathcal{C}^{\Delta}}=0$. Therefore, ϕ satisfies the assumption of Lemma 3.3. We also get

$$
\begin{aligned}
\Phi(\mathfrak{m}) & =\{\operatorname{Ad}(k) f(H) A \mid k \in K, H \in \overline{\mathcal{C}}\} \\
& =\{t \operatorname{Ad}(k) A \mid k \in K, t \geq 0\}=C_{\operatorname{Ad}(K) A} .
\end{aligned}
$$

Thus Φ is a surjection from \mathfrak{m} onto $C_{\operatorname{Ad}(K) A}$. Next we show that Φ is continuous. Let $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ be a sequence in \mathfrak{m} with limit $P_{\infty} \in \mathfrak{m}$. Points P_{n} and P_{∞} can be expressed as $P_{n}=\operatorname{Ad}\left(k_{n}\right) H_{n}, P_{\infty}=\operatorname{Ad}\left(k_{\infty}\right) H_{\infty}$ where $k_{n}, k_{\infty} \in K$ and $H_{n}, H_{\infty} \in \overline{\mathcal{C}}$. Since the projection $\mathfrak{m} \rightarrow \overline{\mathcal{C}} ; X=\operatorname{Ad}(k) H \mapsto H$ is continuous, we have $\lim _{n \rightarrow \infty} H_{n}=H_{\infty}$. We put $\Delta_{\infty}=\left\{\alpha \in F \mid\left\langle\alpha, H_{\infty}\right\rangle>0\right\}, Z_{K}^{H_{\infty}}=\{k \in K \mid$ $\left.\operatorname{Ad}(k) H_{\infty}=H_{\infty}\right\}$ and $Z_{K}^{\Delta_{\infty}}=\left\{k \in K|\operatorname{Ad}(k)|_{\mathcal{C}^{\Delta_{\infty}}}=\mathrm{id}\right\}$. Since $Z_{K}^{H_{\infty}}=Z_{K}^{\Delta_{\infty}}$ ([3]), for any accumulation point $\tilde{k} \in K$ of $\left\{k_{n}\right\}_{n \in \mathbb{N}},\left.\operatorname{Ad}(\tilde{k})\right|_{\mathcal{C}^{\Delta_{\infty}}}=\left.\operatorname{Ad}\left(k_{\infty}\right)\right|_{\mathcal{C}^{\Delta_{\infty}}}$. Thus, we have $\left.\lim _{n \rightarrow \infty} \operatorname{Ad}\left(k_{n}\right)\right|_{\mathcal{C}^{\Delta} \infty}=\left.\operatorname{Ad}\left(k_{\infty}\right)\right|_{\mathcal{C}^{\Delta} \infty}$. Therefore

$$
\lim _{n \rightarrow \infty} \Phi\left(P_{n}\right)=\lim _{n \rightarrow \infty} \operatorname{Ad}\left(k_{n}\right) f\left(H_{n}\right) A=\operatorname{Ad}\left(k_{\infty}\right) f\left(H_{\infty}\right) A=\Phi\left(P_{\infty}\right)
$$

Hence Φ is a retraction from \mathfrak{m} onto $C_{\mathrm{Ad}(K) A}$.

Proposition 3.5. Let $\Phi: \mathfrak{m} \rightarrow C_{\operatorname{Ad}(K) A}$ be a retraction which constructed by Theorem 3.4. If $\left.\Phi\right|_{\mathfrak{a} \backslash \Phi^{-1}(\{0\})}$ is C^{1}, then so is $\left.\Phi\right|_{\mathfrak{m} \backslash \Phi^{-1}(\{0\})}$. In this case Φ is area-nonincreasing if and only if $J(d \Phi)_{x} \leq 1$ holds for each $x \in \mathcal{C} \backslash \Phi^{-1}(\{0\})$.

Proof. If Φ is C^{1} at $H \in \overline{\mathcal{C}}$, then Φ is C^{1} at $\operatorname{Ad}(k) H$ for all $k \in K$. Thus we assume $H \in \overline{\mathcal{C}} \backslash \Phi^{-1}(\{0\})$. For $H \in \overline{\mathcal{C}} \backslash \Phi^{-1}(\{0\})$, we put $\Delta=\{\alpha \in F \mid\langle\alpha, H\rangle>0\}$. Since $f(H)>0$, we get $\Delta_{0} \subset \Delta$ and $\mathcal{C}^{\Delta_{0}} \subset \overline{\mathcal{C}^{\Delta}}$. By Lemma 2.4, we have

$$
\mathfrak{m}=\mathfrak{a}+\sum_{\lambda \in \tilde{R}_{+} \backslash \tilde{R}_{0}} \mathbb{R} \cdot T_{\lambda}
$$

Since $\left.\Phi\right|_{\mathfrak{a} \backslash \Phi^{-1}(\{0\})}$ is C^{1}, we consider only T_{λ} direction for each $\lambda \in \tilde{R}_{+} \backslash \tilde{R}_{0}$. If $\langle\lambda, H\rangle=0$, then $\left[T_{\lambda}, H\right]=\langle\lambda, H\rangle S_{\lambda}=0$ from Lemma 2.4. Thus there exists $k \in Z_{K}^{H}=\{k \in K \mid \operatorname{Ad}(k) H=H\}$ such that $\operatorname{Ad}(k) T_{\lambda} \in \mathfrak{a}$. Therefore

$$
\Phi\left(H+t T_{\lambda}\right)=\operatorname{Ad}(k)^{-1} \Phi\left(\operatorname{Ad}(k)\left(H+t T_{\lambda}\right)\right)
$$

Since $\operatorname{Ad}(k)\left(H+t T_{\lambda}\right) \in \mathfrak{a}$ and $\left.\Phi\right|_{\mathfrak{a} \backslash \Phi^{-1}(\{0\})}$ is C^{1}, we have the directional derivative of Φ along T_{λ}. If $\langle\lambda, H\rangle \neq 0$, then from Lemma 2.4 we have that $c(t)=\operatorname{Ad}\left(\exp \left(-t S_{\lambda} /\langle\lambda, H\rangle\right)\right) H$ is curve in \mathfrak{m} with $c(0)=H$ and $c^{\prime}(0)=T_{\lambda}$. Thus

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \Phi(c(t)) & =\left.\frac{d}{d t}\right|_{t=0} \Phi\left(\operatorname{Ad}\left(\exp \frac{-t S_{\lambda}}{\langle\lambda, H\rangle}\right) H\right) \\
& =\frac{\left[-S_{\lambda}, \phi(H)\right]}{\langle\lambda, H\rangle}=\frac{\langle\lambda, A\rangle}{\langle\lambda, H\rangle} f(H) T_{\lambda} .
\end{aligned}
$$

Therefore Φ is a differentiable retraction from \mathfrak{m} into $C_{\operatorname{Ad}(K) A}$. Since $\left.\Phi\right|_{\mathfrak{m} \backslash \Phi^{-1}(\{0\})}$ is C^{1}, the mapping $\overline{\mathcal{C}} \backslash \Phi^{-1}(\{0\}) \rightarrow \mathbb{R} ; x \mapsto J\left(d \Phi_{x}\right)$ is continuous. Hence, if $J\left(d \Phi_{x}\right) \leq 1\left(x \in \mathcal{C} \backslash \Phi^{-1}(\{0\})\right)$, then $J\left(d \Phi_{x}\right) \leq 1\left(x \in \overline{\mathcal{C}} \backslash \Phi^{-1}(\{0\})\right)$.

We will compute $J\left(d \Phi_{x}\right)$ of Φ in Theorem 3.4 for $x \in \mathcal{C} \backslash \Phi^{-1}(\{0\})$.
Proposition 3.6. We denote $R_{+}^{\Delta_{0}}=\left\{\lambda \in R_{+} \mid\langle\lambda, A\rangle=0\right\}$.

$$
J\left(d \Phi_{x}\right)=\left\|(\operatorname{grad} f)_{x}\right\| \prod_{\lambda \in R_{+} \backslash R_{+}^{\Delta_{0}}}\left(\frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m(\lambda)}\left(x \in \mathcal{C} \backslash \Phi^{-1}(\{0\})\right)
$$

Proof. From the proof of Proposition 3.5, we have

$$
d \Phi_{x}(H)=d f_{x}(H) A(H \in \mathfrak{a}), \quad d \Phi_{x}\left(T_{\lambda}\right)=\frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x) T_{\lambda}\left(\lambda \in \tilde{R}_{+} \backslash \tilde{R}_{0}\right)
$$

for $x \in \mathcal{C} \backslash \Phi^{-1}(\{0\})$. Thus we get

$$
d \Phi_{x}(\mathfrak{a}) \subset \mathbb{R} A \subset \mathfrak{a}, \quad d \Phi_{x}\left(\sum_{\mu \in R_{+}} \mathfrak{m}_{\mu}\right) \subset \sum_{\mu \in R_{+}} \mathfrak{m}_{\mu}
$$

Since \mathfrak{a} and $\sum_{\mu \in R_{+}} \mathfrak{m}_{\mu}$ are orthogonal, we have

$$
J\left(d \Phi_{x}\right)=J\left(\left.d \Phi_{x}\right|_{\mathfrak{a}}\right) \times J\left(\left.d \Phi_{x}\right|_{\sum_{\mu \in R_{+}}} \mathfrak{m}_{\mu}\right) .
$$

We put $J_{1}(x)=J\left(\left.d \Phi_{x}\right|_{\mathfrak{a}}\right), J_{2}(x)=J\left(\left.d \Phi_{x}\right|_{\sum_{\mu \in R_{+}} \mathfrak{m}_{\mu}}\right)$ and compute each of these.

$$
\begin{aligned}
J_{1}(x) & =\sup \left\{\left\|d \Phi_{x}(v)\right\| \mid v \in \mathfrak{a},\|v\|=1\right\} \\
& =\sup \left\{\left\langle(\operatorname{grad} f)_{x}, v\right\rangle \mid v \in \mathfrak{a},\|v\|=1\right\}=\left\|(\operatorname{grad} f)_{x}\right\| .
\end{aligned}
$$

Since $\operatorname{ker}\left(\left.d \Phi_{x}\right|_{\sum_{\mu \in R_{+}} \mathfrak{m}_{\mu}}\right)=\sum_{\mu \in R_{+}^{\Delta_{0}}} \mathfrak{m}_{\mu},\left\{T_{\lambda} \mid \lambda \in \tilde{R}_{+},\langle\lambda, A\rangle>0\right\}$ is an orthonormal basis of $\operatorname{ker}\left(\left.d \Phi_{x}\right|_{\mu \in R_{+}} \mathfrak{m}_{\mu}\right)^{\perp}=\sum_{\mu \in R_{+} \backslash R_{+}^{\Delta_{0}}} \mathfrak{m}_{\mu}$. Hence

$$
\begin{aligned}
J_{2}(x) & =\left\|\bigwedge_{\lambda \in \tilde{R}_{+},\langle\lambda, A\rangle>0} d \Phi_{x}\left(T_{\lambda}\right)\right\|=\left\|\bigwedge_{\lambda \in \tilde{R}_{+},\langle\lambda, A\rangle>0} \frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x) T_{\lambda}\right\| \\
& =\prod_{\lambda \in \tilde{R}_{+},\langle\lambda, A\rangle>0} \frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x)=\prod_{\lambda \in R_{+} \backslash R_{+}^{\Delta_{0}}}\left(\frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m(\lambda)} .
\end{aligned}
$$

Therefore we get

$$
J(d \Phi)_{x}=J_{1}(x) J_{2}(x)=\left\|(\operatorname{grad} f)_{x}\right\| \prod_{\lambda \in R_{+} \backslash R_{+}^{\Delta_{0}}}\left(\frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m(\lambda)} .
$$

4. Example of area-minimizing cones over R-spaces

Using Theorem 3.4, Proposition 3.5 and Proposition 3.6, we investigate areaminimizing properties of cones over R-spaces. First we consider cones over isolated orbits of s-representations of irreducible symmetric pairs of compact type of rank two. Principal orbits of these representations are homogeneous hypersurfaces in the sphere. The area-minimizing properties of the cones over homogeneous minimal hypersurfaces were investigated in [4] and [9].

We shall follow the notations of root systems in [2]. Partly we used Maxima* for algebraic computations.

4.1. Type \mathbf{A}_{2}.

$$
\begin{gathered}
\mathfrak{a}=\left\{\xi_{1} e_{1}+\xi_{2} e_{2}+\xi_{3} e_{3} \mid \xi_{1}+\xi_{3}+\xi_{3}=0\right\}, \\
F=\left\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}\right\} .
\end{gathered}
$$

Then we have $R_{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}\right\}$. For $\lambda \in R_{+}$, we put $m=m(\lambda)$. We have

$$
H_{\alpha_{1}}=\frac{1}{3}\left(2 e_{1}-e_{2}-e_{3}\right), \quad H_{\alpha_{2}}=\frac{1}{3}\left(e_{1}+e_{2}-2 e_{3}\right) .
$$

We put

$$
A_{1}=\frac{H_{\alpha_{1}}}{\left\|H_{\alpha_{1}}\right\|}=\frac{1}{\sqrt{6}}\left(2 e_{1}-e_{2}-e_{3}\right), \quad A_{2}=\frac{H_{\alpha_{2}}}{\left\|H_{\alpha_{2}}\right\|}=\frac{1}{\sqrt{6}}\left(e_{1}+e_{2}-2 e_{3}\right) .
$$

Since $\operatorname{Ad}(K) A_{1}$ and $\operatorname{Ad}(K) A_{2}$ are isometric, we consider only the cone over $\operatorname{Ad}(K) A_{1}$.

4.1.1. Cones over $\operatorname{Ad}(K) A_{1}$.

We put $\Delta_{0}=\left\{\alpha_{1}\right\}$ then $R_{+}^{\Delta_{0}}=\left\{\alpha_{2}\right\}$. For $x=x_{1} H_{\alpha_{1}}+x_{2} H_{\alpha_{2}} \in \overline{\mathcal{C}}$, we define

$$
f(x)=\sqrt{\frac{2}{3}}\left(\left\langle\alpha_{1}, x\right\rangle^{2}\left\langle\alpha_{1}+\frac{3}{2} \alpha_{2}, x\right\rangle\right)^{\frac{1}{3}}=\sqrt{\frac{2}{3}}\left(x_{1}^{2}\left(x_{1}+\frac{3}{2} x_{2}\right)\right)^{\frac{1}{3}} .
$$

Since
(1) $f\left(t A_{1}\right)=\sqrt{\frac{2}{3}}\left(\left(\sqrt{\frac{3}{2}} t\right)^{3}\right)^{\frac{1}{3}}=t$,

[^0](2) for each $\Delta \subset F$, if $\Delta_{0} \not \subset \Delta$, then $\left.f\right|_{\mathcal{C} \Delta}=0$,
we can apply Theorem 3.4 to this case. It is clear that $\left.\Phi\right|_{\mathfrak{a} \backslash \Phi^{-1}(\{0\})}$ is C^{1}. Thus Φ is a differentiable retraction by Proposition 3.5. Since
\[

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}}(x) & =\sqrt{\frac{2}{3}}\left(x_{1}^{2}\left(x_{1}+\frac{3}{2} x_{2}\right)\right)^{-\frac{2}{3}}\left(x_{1}^{2}+x_{1} x_{2}\right), \\
\frac{\partial f}{\partial x_{2}}(x) & =\sqrt{\frac{2}{3}}\left(x_{1}^{2}\left(x_{1}+\frac{3}{2} x_{2}\right)\right)^{-\frac{2}{3}} \frac{x_{1}^{2}}{2}
\end{aligned}
$$
\]

we get

$$
J_{1}(x)=\left\|(\operatorname{grad} f)_{x}\right\|=\sqrt{\frac{2}{3}}\left(x_{1}^{2}\left(x_{1}+\frac{3}{2} x_{2}\right)\right)^{-\frac{2}{3}} \sqrt{\frac{3}{2} x_{1}^{4}+3 x_{1}^{3} x_{2}+2 x_{1}^{2} x_{2}^{2}} .
$$

On the other hand,

$$
J_{2}(x)=\left(\frac{\left\langle\alpha_{1}, A_{1}\right\rangle}{\left\langle\alpha_{1}, x\right\rangle} f(x)\right)^{m}\left(\frac{\left\langle\alpha_{1}+\alpha_{2}, A_{1}\right\rangle}{\left\langle\alpha_{1}+\alpha_{2}, x\right\rangle} f(x)\right)^{m}=\left(\frac{\left(x_{1}\left(x_{1}+\frac{3}{2} x_{2}\right)^{2}\right)^{\frac{1}{3}}}{x_{1}+x_{2}}\right)^{m}
$$

Then

$$
\left(x_{1}+x_{2}\right)^{3}-x_{1}\left(x_{1}+\frac{3}{2} x_{2}\right)^{2}=\frac{3}{4} x_{1} x_{2}^{2}+x_{2}^{3} \geq 0
$$

thus

$$
\left(\frac{\left(x_{1}\left(x_{1}+\frac{3}{2} x_{2}\right)^{2}\right)^{\frac{1}{3}}}{x_{1}+x_{2}}\right) \leq 1
$$

We put

$$
D=J_{1}(x) \times\left(\frac{\left(x_{1}\left(x_{1}+\frac{3}{2} x_{2}\right)^{2}\right)^{\frac{1}{3}}}{x_{1}+x_{2}}\right)^{2}=\left(\frac{\left(3 x_{1}^{2}+6 x_{1} x_{2}+4 x_{2}^{2}\right)^{3} x_{1}^{2}\left(2 x_{1}+3 x_{2}\right)^{4}}{3^{3} 2^{4}\left(x_{1}+x_{2}\right)^{12}}\right)^{\frac{1}{6}}
$$

Since

$$
J(d \Phi)_{x}=D \times\left(\frac{\left(x_{1}\left(x_{1}+\frac{3}{2} x_{2}\right)^{2}\right)^{\frac{1}{3}}}{x_{1}+x_{2}}\right)^{m-2}
$$

if $D \leq 1$, then $J\left(d \Phi_{x}\right) \leq 1$ for $m \geq 2$. Since

$$
\begin{aligned}
& 3^{3} 2^{4}\left(x_{1}+x_{2}\right)^{12}-\left(3 x_{1}^{2}+6 x_{1} x_{2}+4 x_{2}^{2}\right)^{3} x_{1}^{2}\left(2 x_{1}+3 x_{2}\right)^{4} \\
= & 216 x_{1}^{10} x_{2}^{2}+2376 x_{1}^{9} x_{2}^{3}+11925 x_{1}^{8} x_{2}^{4}+35838 x_{1}^{7} x_{2}^{5}+71120 x_{1}^{6} x_{2}^{6} \\
& +96888 x_{1}^{5} x_{2}^{7}+91152 x_{1}^{4} x_{2}^{8}+57888 x_{1}^{3} x_{2}^{9}+23328 x_{1}^{2} x_{2}^{10}+5184 x_{1} x_{2}^{11}+432 x_{2}^{12} \\
\geq & 0,
\end{aligned}
$$

we have $D \leq 1$. Therefore, cones over $\operatorname{Ad}(K) A_{1}$ are area-minimizing for $m \geq 2$.

4.2. Types $\mathrm{B}_{2}, \mathrm{BC}_{2}$ and C_{2}.

Types C_{2} and B_{2} are isomorphic, thus it suffices to compute the type B_{2} case. Moreover setting the multiplicity of long roots to zero, the set of restricted roots of type BC_{2} reduces to that of type B_{2}. We have

$$
\begin{gathered}
F=\left\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}\right\}, \\
R_{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{1}+2 \alpha_{2}, 2 \alpha_{1}+2 \alpha_{2}, 2 \alpha_{2}\right\}, \\
H_{\alpha_{1}}=e_{1}, \quad H_{\alpha_{2}}=e_{1}+e_{2},
\end{gathered}
$$

and put

$$
m\left(\alpha_{1}\right)=m_{1}, m\left(\alpha_{2}\right)=m_{2}, m\left(2 \alpha_{2}\right)=m_{3} .
$$

4.2.1. Cones over $\operatorname{Ad}(K) A_{1}$.

We put $\Delta_{0}=\left\{\alpha_{1}\right\}$, then we have

$$
A_{1}=\frac{H_{\alpha_{1}}}{\left\|H_{\alpha_{1}}\right\|}=e_{1}
$$

and

$$
R_{+}^{\Delta_{0}}=\left\{\lambda \in R_{+} \mid\left\langle\lambda, A_{1}\right\rangle=0\right\}=\left\{\alpha_{2}, 2 \alpha_{2}\right\} .
$$

For $x=x_{1} H_{\alpha_{1}}+x_{2} H_{\alpha_{2}} \in \overline{\mathcal{C}}$, we define

$$
f(x)=\sqrt{\left\langle\alpha_{1}, x\right\rangle\left\langle\alpha_{1}+2 \alpha_{2}, x\right\rangle}=\sqrt{x_{1}\left(x_{1}+2 x_{2}\right)} .
$$

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differentiable. Moreover $J\left(d \Phi_{x}\right) \leq 1$ holds for $m_{2}+m_{3} \geq 2$.

Therefore, cones over $\operatorname{Ad}(K) A_{1}$ are area-minimizing for $m_{2}+m_{3} \geq 2$.

4.2.2. Cones over $\operatorname{Ad}(K) A_{2}$.

We put $\Delta_{0}=\left\{\alpha_{2}\right\}$, then we have

$$
A_{2}=\frac{H_{\alpha_{2}}}{\left\|H_{\alpha_{2}}\right\|}=\frac{e_{1}+e_{2}}{\sqrt{2}}
$$

and

$$
R_{+}^{\Delta_{0}}=\left\{\lambda \in R_{+} \mid\left\langle\lambda, A_{2}\right\rangle=0\right\}=\left\{\alpha_{1}\right\} .
$$

For $x=x_{1} H_{\alpha_{1}}+x_{2} H_{\alpha_{2}} \in \overline{\mathcal{C}}$, we define

$$
f(x)=\sqrt{2}\left(\left\langle\alpha_{2}, x\right\rangle^{2}\left\langle\frac{3}{2} \alpha_{1}+\alpha_{2}, x\right\rangle\right)^{\frac{1}{3}}=\sqrt{2}\left(x_{2}^{2}\left(\frac{3}{2} x_{1}+x_{2}\right)\right)^{\frac{1}{3}} .
$$

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differentiable. Moreover $J\left(d \Phi_{x}\right) \leq 1$ holds for $m_{2}+m_{3} \geq 2$.

Therefore, cones over $\operatorname{Ad}(K) A_{2}$ are area-minimizing for $m_{2}+m_{3} \geq 2$.

4.3. Type G_{2}.

We have

$$
\begin{gathered}
F=\left\{\alpha_{1}, \alpha_{2}\right\}, \\
R_{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}\right\}, \\
\left\langle\alpha_{1}, \alpha_{1}\right\rangle=1,\left\langle\alpha_{1}, \alpha_{2}\right\rangle=-\frac{3}{2},\left\langle\alpha_{2}, \alpha_{2}\right\rangle=3, \\
H_{\alpha_{1}}=4 \alpha_{1}+2 \alpha_{2}, \quad H_{\alpha_{2}}=\frac{2}{3}\left(3 \alpha_{1}+2 \alpha_{2}\right),
\end{gathered}
$$

and put

$$
m=m\left(\alpha_{1}\right)=m\left(\alpha_{2}\right) .
$$

4.3.1. Cones over $\operatorname{Ad}(K) A_{1}$.

We put $\Delta_{0}=\left\{\alpha_{1}\right\}$ then we have

$$
A_{1}=\frac{H_{\alpha_{1}}}{\left\|H_{\alpha_{1}}\right\|}
$$

and

$$
R_{+}^{\Delta_{0}}=\left\{\lambda \in R_{+} \mid\left\langle\lambda, A_{1}\right\rangle=0\right\}=\left\{\alpha_{2}\right\} .
$$

For $x=x_{1} H_{\alpha_{1}}+x_{2} H_{\alpha_{2}} \in \overline{\mathcal{C}}$, we define

$$
f(x)=\sqrt{4\left\langle\alpha_{1}, x\right\rangle\left\langle\alpha_{1}+\alpha_{2}, x\right\rangle}=\sqrt{4 x_{1}\left(x_{1}+x_{2}\right)} .
$$

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differentiable. Moreover $J\left(d \Phi_{x}\right) \leq 1$ holds for $m \geq 2$.

Therefore cones over $\operatorname{Ad}(K) A_{1}$ are area-minimizing for $m \geq 2$.

4.3.2. Cones over $\operatorname{Ad}(K) A_{2}$.

We put $\Delta_{0}=\left\{\alpha_{2}\right\}$ then we have

$$
A_{2}=\frac{H_{\alpha_{2}}}{\left\|H_{\alpha_{2}}\right\|}
$$

and

$$
R_{+}^{\Delta_{0}}=\left\{\lambda \in R_{+} \mid\left\langle\lambda, A_{1}\right\rangle=0\right\}=\left\{\alpha_{1}\right\} .
$$

For $x=x_{1} H_{\alpha_{1}}+x_{2} H_{\alpha_{2}} \in \overline{\mathcal{C}}$, we define

$$
f(x)=\sqrt{\frac{4}{3}\left\langle\alpha_{2}, x\right\rangle\left\langle 3 \alpha_{1}+\alpha_{2}, x\right\rangle}=\sqrt{\frac{4}{3} x_{2}\left(3 x_{1}+x_{2}\right)} .
$$

Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differentiable. Moreover $J\left(d \Phi_{x}\right) \leq 1$ holds for $m \geq 2$.

Therefore, cones over $\operatorname{Ad}(K) A_{2}$ are area-minimizing for $m \geq 2$.
By the above computation, we get the following table of cones over isolated orbits of the s-representations of irreducible symmetric spaces of rank two.

type	symmetric pair	multiplicities	A_{i}	orbit	dim. of orbit and sphere	area-min.
A_{2}	$(\mathrm{SU}(3), \mathrm{SO}(3))$ $(\mathrm{SU}(3) \times \mathrm{SU}(3), \mathrm{SU}(3))$ $(\mathrm{SU}(6), \mathrm{Sp}(3))$ $\left(E_{6}, F_{4}\right)$	$\begin{aligned} & \hline(1,1) \\ & (2,2) \\ & (4,4) \\ & (8,8) \end{aligned}$	$\begin{aligned} & \hline A_{1} \\ & A_{1} \\ & A_{1} \\ & A_{1} \end{aligned}$	$\begin{aligned} & \hline \mathbb{R} P^{2}(\text { symm. R-space }) \\ & \mathbb{C} P^{2}(\text { symm. R-space }) \\ & \mathbb{H} P^{2}(\text { symm. R-space }) \\ & \mathbb{O} P^{2}(\text { symm. R-space }) \end{aligned}$	$\begin{gathered} \hline(2,4) \\ (4,7) \\ (8,13) \\ (16,25) \\ \hline \end{gathered}$	$\begin{gathered} \bigcirc[8] \\ \bigcirc[6] \\ \bigcirc \end{gathered}$
B_{2}	$\begin{gathered} (\mathrm{SO}(5) \times \mathrm{SO}(5), \mathrm{SO}(5)) \\ (\mathrm{SO}(5), \mathrm{SO}(2) \times \mathrm{SO}(3)) \\ (\mathrm{SO}(4+n), \mathrm{SO}(2) \times \mathrm{SO}(2+n)) \end{gathered}$	$\begin{aligned} & (2,2) \\ & (1,1) \\ & (1, n) \end{aligned}$	$\begin{aligned} & A_{1} \\ & A_{2} \\ & A_{1} \\ & A_{2} \\ & A_{1} \\ & A_{2} \end{aligned}$	$\begin{gathered} \widehat{G_{2}\left(\mathbb{R}^{5}\right)(\text { symm. R-space })} \\ \mathrm{SO}(5) / \mathrm{U}(2) \\ (\text { symm. R-space }) \\ \\ (\text { symm. R-space }) \end{gathered}$	$\begin{gathered} (6,9) \\ (6,9) \\ (3,5) \\ (3,5) \\ (n+2,2 n+3) \\ (2 n+1,2 n+3) \end{gathered}$	 $\bigcirc[3]$ [3] [8] $\begin{aligned} & (n \geq 2)[3] \\ & O(n \geq 2) \end{aligned}$
C_{2}	$\begin{gathered} (\mathrm{Sp}(2), \mathrm{U}(2)) \\ (\mathrm{Sp}(2) \times \mathrm{Sp}(2), \mathrm{Sp}(2)) \\ (\mathrm{Sp}(4), \mathrm{Sp}(2) \times \mathrm{Sp}(2)) \\ (\mathrm{SU}(4), \mathrm{S}(\mathrm{U}(2) \times \mathrm{U}(2))) \\ (\mathrm{SO}(8), \mathrm{U}(4)) \end{gathered}$	$(1,1)$ $(2,2)$ $(4,3)$ $(2,1)$ $(4,1)$	$\begin{aligned} & A_{1} \\ & A_{2} \\ & A_{1} \\ & \\ & A_{2} \end{aligned}$	$\frac{\mathrm{U}(2)}{\mathrm{O}(2)}$ (symm. R-space) $\frac{\mathrm{Sp}(2)}{\mathrm{U}(2)}$ (symm. R-space) $\mathrm{Sp}(2)$ (symm. R-space) $\mathrm{U}(2)$ (symm. R-space) $\frac{\mathrm{U}(4)}{(\mathrm{Sp}(1) \times \mathrm{U}(2))}$ $\frac{\mathrm{U}(4)}{\mathrm{Sp}(2)}$ (symm. R-space)	$(3,5)$ $(3,5)$ $(6,9)$ $(6,9)$ $(11,15)$ $(10,15)$ $(5,7)$ $(4,7)$ $(9,11)$ $(6,11)$	$\begin{gathered} \bigcirc \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ \bigcirc \\ \bigcirc[9] \\ \bigcirc \\ \bigcirc \end{gathered}$

type	symmetric pair	multiplicities	A_{i}	orbit	dim. of orbit and sphere	area-min.
BC_{2}	$(\mathrm{SU}(4+n), \mathrm{S}(\mathrm{U}(2) \times \mathrm{U}(2+n)))$	$(2,(2 n, 1))$	A_{1}		$(2 n+3,4 n+7)$	$\bigcirc(n \geq 1)$
			A_{2}		$(4 n+4,4 n+7)$	$\bigcirc(n \geq 1)$
	$(\mathrm{SO}(10), \mathrm{U}(5))$	$(4,(4,1))$	A_{1}	$\mathrm{U}(5) /(\mathrm{Sp}(1) \times \mathrm{U}(3))$	$(13,19)$	\bigcirc
			A_{2}	$\mathrm{U}(5) /(\mathrm{Sp}(2) \times \mathrm{U}(1))$	$(14,19)$	\bigcirc
	$(\mathrm{Sp}(4+n), \mathrm{Sp}(2) \times \mathrm{Sp}(2+n))$	$(4,(4 n, 3))$	A_{1}		$(4 n+11,8 n+15)$	$\bigcirc(n \geq 1)$
			A_{2}		$(8 n+10,8 n+15)$	$\bigcirc(n \geq 1)$
	$\left(E_{6}, \mathrm{~T}^{1} \cdot \operatorname{Spin}(10)\right)$	$(6,(8,1))$	A_{1}		$(21,31)$	\bigcirc
			A_{2}		$(24,31)$	\bigcirc
G_{2}	$\left(G_{2}, \mathrm{SO}(4)\right)$	$(1,1)$	A_{1}		$(5,7)$	
			A_{2}		$(10,13)$	\bigcirc
	$\left(G_{2} \times G_{2}, G_{2}\right)$	$(2,2)$	A_{1}		$(10,13)$	\bigcirc

4.4. Type A_{3}.

Theorem 3.4 can be applied to cones over minimal orbits, not only isolated orbits. We demonstrate the area-minimizing property for the cone over a minimal orbit, which is not an isolated orbit, of the s-representation of symmetric spaces of type A_{3}.

$$
\begin{gathered}
\mathfrak{a}=\left\{\sum_{i=1}^{4} \xi_{i} e_{i} \mid \sum_{i=1}^{4} \xi_{i}=0\right\}, \\
F=\left\{\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}, \alpha_{3}=e_{3}-e_{4}\right\} .
\end{gathered}
$$

Then $R_{+}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\}$ and for $\lambda \in R_{+}$, we put $m(\lambda)=m$. We have
$H_{\alpha_{1}}=\frac{1}{4}\left(3 e_{1}-e_{2}-e_{3}-e_{4}\right), H_{\alpha_{2}}=\frac{1}{4}\left(2 e_{1}+2 e_{2}-2 e_{3}-2 e_{4}\right), H_{\alpha_{3}}=\frac{1}{4}\left(e_{1}+e_{2}+e_{3}-3 e_{4}\right)$.
We put $\Delta_{0}=\left\{\alpha_{1}, \alpha_{3}\right\}$, and we have

$$
A=\frac{H_{\alpha_{1}}+H_{\alpha_{3}}}{\sqrt{2}}=\frac{e_{1}-e_{4}}{\sqrt{2}} .
$$

Then the orbit $\operatorname{Ad}(K) A$ is a minimal submanifold of the sphere $S \subset \mathfrak{m}$. We get

$$
R_{+}^{\Delta_{0}}=\left\{\lambda \in R_{+} \mid\langle\lambda, A\rangle=0\right\}=\left\{\alpha_{2}\right\} .
$$

For $x=x_{1} H_{\alpha_{1}}+x_{2} H_{\alpha_{2}}+x_{3} H_{\alpha_{3}} \in \overline{\mathcal{C}}$, we define
$f(x)=\sqrt{2}\left(\left\langle\alpha_{1}, x\right\rangle\left\langle\alpha_{3}, x\right\rangle\left\langle\alpha_{1}+\alpha_{2}, x\right\rangle\left\langle\alpha_{2}+\alpha_{3}, x\right\rangle\right)^{\frac{1}{4}}=\sqrt{2}\left(x_{1} x_{3}\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right)\right)^{\frac{1}{4}}$.
Then we can show that f satisfies the condition of Theorem 3.4 and Φ is differentiable. Moreover $J\left(d \Phi_{x}\right) \leq 1$ holds for $m \geq 4$.

Therefore, cones over $\operatorname{Ad}(K) A$ are area-minimizing for $m \geq 4$. The only symmetric pair which satisfies $m \geq 3$ is ($\mathrm{SU}(6), \mathrm{Sp}(3)$).

5. Reducible cases

In this section, we consider cones over products of two R-spaces. Let $\left(G_{i}, K_{i}\right)(i=1,2)$ be Riemannian symmetric pairs, and put $(G, K)=\left(G_{1} \times\right.$
$\left.G_{2}, K_{1} \times K_{2}\right)$. We define the notation for $\left(G_{i}, K_{i}\right)$ as follows. Let

$$
\mathfrak{g}_{i}=\mathfrak{k}_{i}+\mathfrak{m}_{i}(i=1,2)
$$

be the canonical decompositions of Lie algebras \mathfrak{g}_{i} of G_{i}. Take and fix a maximal abelian subspace \mathfrak{a}_{i} in \mathfrak{m}_{i}. We denote by R_{i} the restricted root system of ($\mathfrak{g}_{i}, \mathfrak{k}_{i}$) with respect to \mathfrak{a}_{i}. We put the fundamental systems F_{i} of R_{i} by $F_{i}=\left\{\alpha_{i 1}, \ldots, \alpha_{i l_{i}}\right\}$. R_{i+} is the set of positive roots in R_{i}. We set

$$
\begin{gathered}
\mathcal{C}_{i}=\left\{H \in \mathfrak{a}_{i} \mid\langle\alpha, H\rangle>0\left(\alpha \in F_{i}\right)\right\}, \\
\mathcal{C}_{i}^{\Delta}=\left\{H \in \mathfrak{a}_{i} \mid\langle\alpha, H\rangle>0(\alpha \in \Delta),\langle\beta, H\rangle=0\left(\beta \in F_{i} \backslash \Delta\right)\right\},
\end{gathered}
$$

where $\Delta \subset F_{i}$. The direct sum of the s-representations of $\left(G_{i}, K_{i}\right)$ is the s representation of $(G, K)=\left(G_{1} \times G_{2}, K_{1} \times K_{2}\right)$. Then, we have

$$
\overline{\mathcal{C}}=\overline{\mathcal{C}_{1}} \times \overline{\mathcal{C}_{2}} .
$$

For $\Delta \subset F, \Delta$ is expressed as $\Delta=\Delta_{1} \cup \Delta_{2}$ where $\Delta_{i} \subset F_{i}(i=1,2)$. By Theorem 3.1 for each Δ_{i}, there exists $A_{i} \in \overline{\mathcal{C}}_{i}$ such that $\operatorname{Ad}\left(K_{i}\right) A_{i}$ is a minimal orbit of the s-representation of $\left(G_{i}, K_{i}\right)$. We put $k_{i}=\operatorname{dim} \operatorname{Ad}\left(K_{i}\right) A_{i}$ and $k=k_{1}+k_{2}$, then

$$
A=\sqrt{\frac{k_{1}}{k}} A_{1}+\sqrt{\frac{k_{2}}{k}} A_{2} \in \overline{\mathcal{C}}
$$

is a base point of a minimal orbit of the s-representation of (G, K).

Theorem 5.1. Let $\Delta_{0}=\Delta_{1} \cup \Delta_{2}\left(\Delta_{i} \subset F_{i}\right)$. We suppose that for the cone over $\operatorname{Ad}\left(K_{i}\right) A_{i}$, there exists an area-nonincreasing retraction constructed by a function f_{i} on $\overline{\mathcal{C}_{i}}$ in Theorem 3.4, and that the retraction satisfies

$$
\begin{equation*}
\prod_{\lambda \in R_{i+} \backslash R_{i+}^{\Delta_{i}}}\left(\frac{\left\langle\lambda, A_{i}\right\rangle}{\langle\lambda, x\rangle} f_{i}(x)\right)^{m(\lambda)} \leq 1\left(x \in \mathcal{C}_{i}\right) . \tag{5.1}
\end{equation*}
$$

If $\operatorname{dim} \operatorname{Ad}\left(K_{i}\right) A_{i} \geq 3$, then there exists an area-nonincreasing retraction $\Phi: \mathfrak{m} \rightarrow$ $C_{\operatorname{Ad}(K) A}$ constructed by some function f on $\overline{\mathcal{C}}$ in Theorem 3.4 such that the retrac-
tion satisfies

$$
\prod_{\lambda \in R_{+} \backslash R_{+}^{\Delta_{0}}}\left(\frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m(\lambda)} \leq 1(x \in \mathcal{C}) .
$$

Proof. Let $k_{i}=\operatorname{dim} \operatorname{Ad}\left(K_{i}\right) A_{i}, k=k_{1}+k_{2}$ and put $a_{i}=\sqrt{k_{i} / k} . A=a_{1} A_{1}+$ $a_{2} A_{2}$ holds. For $x=\left(x_{1}, x_{2}\right) \in \overline{\mathcal{C}}_{1} \times \overline{\mathcal{C}}_{2}=\overline{\mathcal{C}}$ we define

$$
f(x)=\left\{\begin{array}{cl}
\frac{f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)}{a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)} & \left(f_{1}\left(x_{1}\right) \neq 0 \text { or } f_{2}\left(x_{2}\right) \neq 0\right) \\
0 & \left(f_{1}\left(x_{1}\right)=f_{2}\left(x_{2}\right)=0\right)
\end{array}\right.
$$

We will show that f satisfies the conditions of Theorem 3.4. We can check easily $f(t A)=t$ for $t \geq 0$. For $\Delta \subset F$ with $\Delta_{0} \not \subset \Delta$, using $\Delta_{i}^{\prime} \subset F_{i}$ we can write $\Delta=\Delta_{1}^{\prime} \cup \Delta_{2}^{\prime}$. Then $\Delta_{i} \not \subset \Delta_{i}^{\prime}$ implies $i=1$ or $i=2$. Thus $f_{1}=0$ or $f_{2}=0$ holds on \mathcal{C}^{Δ}. Therefore $\left.f\right|_{\mathcal{C}^{\Delta}}=0$. Since $\left.\Phi\right|_{\mathfrak{a} \backslash(\{0\})}$ is C^{1}, Φ is a differentiable retraction by Proposition 3.5. We calculate $J\left(d \Phi_{x}\right)$ for $x \in \mathcal{C} \backslash f^{-1}(\{0\})$. We put

$$
J_{1}(x)=\left\|(\operatorname{grad} f)_{x}\right\|, \quad J_{2}(x)=\prod_{\lambda \in R_{+} \backslash R_{+}^{\Delta}}\left(\frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m(\lambda)}
$$

for $x=\left(x_{1}, x_{2}\right)=\left(x_{1}^{1}, \ldots, x_{1}^{l_{1}}, x_{2}^{1}, \ldots, x_{2}^{l_{2}}\right) \in \mathcal{C} \backslash f^{-1}(\{0\})=\mathcal{C}_{1} \times \mathcal{C}_{2} \backslash f^{-1}(\{0\})$. Since

$$
\begin{aligned}
\frac{\partial f}{\partial x_{1}^{j}} & =\frac{\frac{\partial f_{1}}{\partial x_{1}^{3}} a_{1}^{3} f_{2}\left(x_{2}\right)^{2}}{\left(a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)\right)^{2}} \quad\left(j \in\left\{1, \ldots, l_{1}\right\}\right), \\
\frac{\partial f}{\partial x_{2}^{j}} & =\frac{\frac{\partial f_{2}}{\partial x_{2}^{j}} a_{2}^{3} f_{1}\left(x_{1}\right)^{2}}{\left(a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)\right)^{2}} \quad\left(j \in\left\{1, \ldots, l_{2}\right\}\right),
\end{aligned}
$$

we get

$$
(\operatorname{grad} f)_{x}=\frac{a_{1}^{3} f_{2}\left(x_{2}\right)^{2}\left(\operatorname{grad} f_{1}\right)_{x_{1}}+a_{2}^{3} f_{1}\left(x_{1}\right)^{2}\left(\operatorname{grad} f_{2}\right)_{x_{2}}}{\left(a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)\right)^{2}}
$$

and

$$
J_{1}(x)=\left\|(\operatorname{grad} f)_{x}\right\|=\frac{\sqrt{a_{1}^{6} f_{2}\left(x_{2}\right)^{4}\left\|\left(\operatorname{grad} f_{1}\right)_{x_{1}}\right\|^{2}+a_{2}^{6} f_{1}\left(x_{1}\right)^{4}\left\|\left(\operatorname{grad} f_{2}\right)_{x_{2}}\right\|^{2}}}{\left(a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)\right)^{2}} .
$$

Since $R_{+}^{\Delta_{0}}=\left\{\lambda \in R_{+} \mid\langle\lambda, A\rangle=0\right\}=R_{1+}^{\Delta_{1}} \cup R_{2+}^{\Delta_{2}}$, we get

$$
\begin{aligned}
J_{2}(x) & =\prod_{\lambda \in R_{+} \backslash R_{+}^{\Delta_{0}}}\left(\frac{\langle\lambda, A\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m(\lambda)} \\
& =\prod_{\lambda \in R_{1+} \backslash R_{1+}^{\Delta_{1}}}\left(\frac{\left\langle\lambda, a_{1} A_{1}\right\rangle}{\left\langle\lambda, x_{1}\right\rangle} f(x)\right)^{m(\lambda)} \prod_{\mu \in R_{2+} \backslash R_{2+}^{\Delta_{2}}}\left(\frac{\left\langle\mu, a_{2} A_{2}\right\rangle}{\left\langle\mu, x_{2}\right\rangle} f(x)\right)^{m(\mu)} \\
& =\prod_{\lambda \in R_{1+} \backslash R_{1+}^{\Delta_{1}}}\left(\frac{\left\langle\lambda, A_{1}\right\rangle}{\left\langle\lambda, x_{1}\right\rangle} f_{1}\left(x_{1}\right) \frac{a_{1} f(x)}{f_{1}\left(x_{1}\right)}\right)^{m(\lambda)} \prod_{\mu \in R_{2+} \backslash R_{2+}^{\Delta_{2}}}\left(\frac{\left\langle\mu, A_{2}\right\rangle}{\left\langle\mu, x_{2}\right\rangle} f_{2}\left(x_{2}\right) \frac{a_{2} f(x)}{f_{2}\left(x_{2}\right)}\right)^{m(\mu)} .
\end{aligned}
$$

Put

$$
J_{2 i}\left(x_{i}\right)=\prod_{\lambda \in R_{i+} \backslash R_{i+}^{\Delta_{i}}}\left(\frac{\left\langle\lambda, A_{i}\right\rangle}{\left\langle\lambda, x_{i}\right\rangle} f_{i}\left(x_{i}\right)\right)^{m(\lambda)}, J_{1 i}\left(x_{i}\right)=\left\|\left(\operatorname{grad} f_{i}\right)_{x_{i}}\right\|(i=1,2) .
$$

Note that $J_{2 i}\left(x_{i}\right) \leq 1$ holds by the assumption (5.1), and $J_{1 i}\left(x_{i}\right) J_{2 i}\left(x_{i}\right) \leq 1$ holds since the function f_{i} constructs an area-nonincreasing retraction by Theorem 3.4. Since

$$
\sum_{\lambda \in R_{i+} \backslash R_{i+}^{\Delta_{i}}} m(\lambda)=\operatorname{dim} \operatorname{Ad}\left(K_{i}\right) A_{i}=k_{i},
$$

we can write

$$
J_{2}(x)=J_{21}\left(x_{1}\right) J_{22}\left(x_{2}\right)\left(\frac{a_{1} f(x)}{f_{1}\left(x_{1}\right)}\right)^{k_{1}}\left(\frac{a_{2} f(x)}{f_{2}\left(x_{2}\right)}\right)^{k_{2}} .
$$

Since $J_{2 i}\left(x_{i}\right) \leq 1$,

$$
J_{2}(x) \leq\left(\frac{a_{1} f(x)}{f_{1}\left(x_{1}\right)}\right)^{k_{1}}\left(\frac{a_{2} f(x)}{f_{2}\left(x_{2}\right)}\right)^{k_{2}} .
$$

We put

$$
X_{1}=\frac{f_{2}\left(x_{2}\right)}{a_{2}}, X_{2}=\frac{f_{1}\left(x_{1}\right)}{a_{1}} .
$$

Then we have

$$
\left(\frac{a_{1} f(x)}{f_{1}\left(x_{1}\right)}\right)^{k_{1}}\left(\frac{a_{2} f(x)}{f_{2}\left(x_{2}\right)}\right)^{k_{2}}=\frac{X_{1}^{k_{1}} X_{2}^{k_{2}}}{\left(a_{1}^{2} X_{1}+a_{2}^{2} X_{2}\right)^{k}}
$$

For $X_{1}, X_{2}>0$, we define

$$
\tilde{D}\left(X_{1}, X_{2}\right)=\frac{X_{1}^{k_{1}} X_{2}^{k_{2}}}{\left(a_{1}^{2} X_{1}+a_{2}^{2} X_{2}\right)^{k}}
$$

If $\tilde{D} \leq 1$, then $J_{2}(x) \leq 1$. Thus we prove $\tilde{D} \leq 1$. Since $\tilde{D}\left(X_{1}, X_{2}\right)=$ $\tilde{D}\left(t X_{1}, t X_{2}\right)(t>0)$, in order to prove $\tilde{D} \leq 1$, we show $\left.\tilde{D}\right|_{P} \leq 1$ where

$$
P=\left\{\left(X_{1}, X_{2}\right) \in \mathbb{R}^{2} \mid X_{1}, X_{2}>0, a_{1}^{2} X_{1}+a_{2}^{2} X_{2}=1\right\}
$$

We have $\left.\tilde{D}\right|_{P}=X_{1}^{k_{1}} X_{2}^{k_{2}}$ and $X_{2}=\frac{1-a_{1}^{2} X_{1}}{a_{2}^{2}}$. Since

$$
\frac{\left.d \tilde{D}\right|_{P}}{d X_{1}}=k_{1} X_{1}^{k_{1}-1} X_{2}^{k_{2}}+X_{1}^{k_{1}}\left(-k_{2} \frac{a_{1}^{2}}{a_{2}^{2}}\right) X_{2}^{k_{2}-1}=k_{1} X_{1}^{k_{1}-1} X_{2}^{k_{2}-1}\left(X_{2}-X_{1}\right)
$$

a critical point of $\left.\tilde{D}\right|_{P}$ is only $X_{1}=1$ in P. Further, we get

$$
\left.\tilde{D}\right|_{P} \rightarrow 0 \text { as } X_{1} \rightarrow 0 \text { or } \frac{1}{a_{1}^{2}}
$$

Hence $\max \left\{\tilde{D}\left(X_{1}, X_{2}\right) \mid\left(X_{1}, X_{2}\right) \in P\right\}=\tilde{D}(1,1)=1$. Therefore

$$
J_{2}(x) \leq 1
$$

Then we have

$$
\begin{aligned}
J(d \Phi)_{x}= & J_{1}(x) J_{2}(x)=\left\|(\operatorname{grad} f)_{x}\right\| J_{2}(x) \\
= & \frac{\sqrt{a_{1}^{6} f_{2}\left(x_{2}\right)^{4} J_{11}\left(x_{1}\right)^{2}+a_{2}^{6} f_{1}\left(x_{1}\right)^{4} J_{12}\left(x_{2}\right)^{2}}}{\left(a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)\right)^{2}} J_{21}\left(x_{1}\right) J_{22}\left(x_{2}\right) \frac{\left(a_{1} f_{2}\left(x_{2}\right)\right)^{k_{1}}\left(a_{2} f_{1}\left(x_{1}\right)\right)^{k_{2}}}{\left(a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)\right)^{k}} \\
= & \frac{\sqrt{a_{1}^{6} f_{2}\left(x_{2}\right)^{4} J_{11}\left(x_{1}\right)^{2} J_{21}\left(x_{1}\right)^{2} J_{22}\left(x_{2}\right)^{2}+a_{2}^{6} f_{1}\left(x_{1}\right)^{4} J_{12}\left(x_{2}\right)^{2} J_{21}\left(x_{1}\right)^{2} J_{22}\left(x_{2}\right)^{2}}}{\left(a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)\right)^{k+2}} \\
& \times\left(a_{1} f_{2}\left(x_{2}\right)\right)^{k_{1}}\left(a_{2} f_{1}\left(x_{1}\right)\right)^{k_{2}} \\
\leq & \frac{\sqrt{a_{1}^{6} f_{2}\left(x_{2}\right)^{4}+a_{2}^{6} f_{1}\left(x_{1}\right)^{4}}\left(a_{1} f_{2}\left(x_{2}\right)\right)^{k_{1}}\left(a_{2} f_{1}\left(x_{1}\right)\right)^{k_{2}}}{\left(a_{2}^{3} f_{1}\left(x_{1}\right)+a_{1}^{3} f_{2}\left(x_{2}\right)\right)^{k+2}}
\end{aligned}
$$

$$
=\frac{\sqrt{a_{1}^{2} X_{1}^{4}+a_{2}^{2} X_{2}^{4}} X_{1}^{k_{1}} X_{2}^{k_{2}}}{\left(a_{1}^{2} X_{1}+a_{2}^{2} X_{2}\right)^{k+2}}
$$

We define

$$
D\left(X_{1}, X_{2}\right)=J\left(d \Phi_{x}\right)^{2}=\frac{\left(a_{1}^{2} X_{1}^{4}+a_{2}^{2} X_{2}^{4}\right) X_{1}^{2 k_{1}} X_{2}^{2 k_{2}}}{\left(a_{1}^{2} X_{1}+a_{2}^{2} X_{2}\right)^{2 k+4}}
$$

We have $D\left(t X_{1}, t X_{2}\right)=D\left(X_{1}, X_{2}\right)(t>0)$. Similar to the above argument, we consider the maximum value of $\left.D\right|_{P}$. Since

$$
\left.D\right|_{P}=\left(a_{1}^{2} X_{1}^{4}+a_{2}^{2} X_{2}^{4}\right) X_{1}^{2 k_{1}} X_{2}^{2 k_{2}}
$$

we get

$$
\begin{aligned}
\frac{\left.d D\right|_{P}}{d X_{1}}= & 4\left(a_{1}^{2} X_{1}^{3}-\frac{a_{1}^{2}}{a_{2}^{2}} a_{2}^{2} X_{2}^{3}\right) X_{1}^{2 k_{1}} X_{2}^{2 k_{2}} \\
& +\left(a_{1}^{2} X_{1}^{4}+a_{2}^{2} X_{2}^{4}\right)\left(2 k_{1} X_{1}^{2 k_{1}-1} X_{2}^{2 k_{2}}-2 k_{2} \frac{a_{1}^{2}}{a_{2}^{2}} X_{1}^{2 k_{1}} X_{2}^{2 k_{2}-1}\right) \\
= & -2 a_{1}^{2} X_{1}^{2 k_{1}-1} X_{2}^{2 k_{2}-1}\left(X_{1}-X_{2}\right) \\
& \times\left\{\left(\left(k_{1}-3\right) X_{1}^{4}+\left(k_{2}-3\right) X_{2}^{4}\right)+3\left(X_{1}-X_{2}\right)^{4}+10\left(X_{1}-X_{2}\right)^{2}\right\}
\end{aligned}
$$

Hence, if $k_{1} \geq 3, k_{2} \geq 3$, then a critical point of $\left.D\right|_{P}$ is only $X_{1}=1$ in P. Furthermore, we get

$$
\left.D\right|_{P} \rightarrow 0 \text { as } X_{1} \rightarrow 0 \text { or } \frac{1}{a_{1}^{2}}
$$

Thus $\max \left\{D\left(X_{1}, X_{2}\right) \mid\left(X_{1}, X_{2}\right) \in P\right\}=D(1,1)=1$. Hence $D \leq 1$. This implies $J\left(d \Phi_{x}\right) \leq 1$. Therefore if $k_{1} \geq 3, k_{2} \geq 3, \Phi$ is area nonincreasing.

Remark 5.2. In 1969, Bombieri, DeGiorgi and Giusti [1] showed that the cone over $S^{k} \times S^{k} \subset S^{2 k+1}(k \geq 3)$ is area-minimizing. On the other hand, Lawlor [9] proved that the cone over $S^{k_{1}} \times S^{k_{2}} \subset S^{k_{1}+k_{2}+1}$ are not area-minimizing when $k_{1}+k_{2} \leq 5$ or $k_{1}=1, k_{2}=5$. Hence, we need the condition $k_{1} \geq 3, k_{2} \geq 3$ in Theorem 5.1.

Remark 5.3. Area-nonincreasing retractions which we constructed in Section 4 satisfy the assumption of Theorem 5.1. Moreover, an area-nonincreasing retraction that is constructed using Theorem 5.1 satisfies the assumption of Theorem 5.1 again. Therefore, we can apply Theorem 5.1 inductively. This implies that the
cone over the k-product of R-spaces ($k \geq 2$) with " \bigcirc " in the table in Section 4 is area-minimizing.

Acknowledgements. The second author was partly supported by the Grant-in-Aid for Science Research (C) No. 17K05223, JSPS.

References

[1] E. Bombieri, E. DeGiorgi and E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7, (1969), 243-268.
[2] N. Bourbaki, Groupes et algebres de Lie, Hermann, Paris, 1975.
[3] D. Hirohashi, T. Kanno and H. Tasaki, Area-minimizing of the cone over symmetric R-space, Tsukuba J. Math., 24, (2000), no.1, 171-188.
[4] W. Y. Hsiang, Minimal cones and the spherical Bernstein problem, II., Ivent. Math., 74, (1983), no.3, 351-369.
[5] D. Hirohashi, H. Tasaki, H.J. Song and R. Takagi, Minimal orbits of the isotropy groups of symmetric space of compact type, Differential Geom. Appl., 13, (2000), no.2, 167-177.
[6] T. Kanno, Area-minimizing cones over the canonical embedding of symmetric R-spaces, Indiana Univ. Math. J. 51 (2002), no.1, 89-125.
[7] Y. Kitagawa and Y. Ohnita, On the mean curvature of R-spaces, Tôhoku Math. J., 35, (1983), 499-502.
[8] M. Kerckhove, Isolated orbits of the adjoint action and area-minimizing cones, Proc. Amer. Math. Soc., 121, (1994), no.2, 497-503.
[9] G. R. Lawlor, A sufficient criterion for a cone to be area-minimizing, Mem. Amer. Math. Soc., 91, (1991), no. 446.
[10] M. Takeuchi, On conjugate loci and cut loci of compact symmetric space I, Tsukuba J. Math., 2 (1977), 35-68.
[11] Z.Z. Tang and Y.S. Zhang, Minimizing cones associated with isoparametric foliations, J. Differential Geom., 115, (2020), 367-393.

Shinji Ohno

Department of Mathematics College of Humanities and Sciences Nihon University
3-25-40 Sakurajosui, Setagaya-ku Tokyo 156-8550, Japan
E-mail: ohno@math.chs.nihon-u.ac.jp

Takashi Sakai

Department of Mathematical Sciences
Tokyo Metropolitan University
Minami-Osawa, Hachioji-shi, Tokyo, 192-0397 Japan
E-mail: sakai-t@tmu.ac.jp

[^0]: *http://maxima.sourceforge.net/

