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Complex hyperbolic triangle groups

of type (n, n,∞; k)

Shigeyasu Kamiya

Abstract. A complex hyperbolic triangle group is a group gen-
erated by three complex reflections fixing complex geodesics in com-

plex hyperbolic space. We give a list of non-discrete groups of type
(n, n,∞; k). In particular we show that if n ≥ 14, then complex hy-
perbolic triangle groups of type (n, n,∞; k) are not discrete. This is a
survey of our results.

1. Introduction

A complex hyperbolic triangle is a triple (C1, C2, C3) of complex geodesics in

complex hyperbolic 2-space H2
C. We assume that Ck and Ck−1 either meet at

the angle π/pk for some integer pk ≥ 3 or else Ck and Ck−1 are asymptotic,

in which case they make an angle 0 and in this case we write pk = ∞, where

the indices are taken mod 3. Let Γ be the group of holomorphic isometries of

H2
C generated by complex reflections i1, i2, i3 fixing complex geodesics C1, C2, C3,

respectively. We call Γ a complex hyperbolic triangle group. We can index a complex

hyperbolic triangle group by a triple (p1, p2, p3). A group Γ with (p1, p2, p3) is said

to be a complex hyperbolic triangle group of type (p1, p2, p3), which is denoted by

Γ(p1, p2, p3). In the real hyperbolic space H2
R, (p1, p2, p3) determines a unique

triangle group (see [1]). On the other hand, the situation in H2
C is much different.

Actually, for each such triple there is a one real parameter family of complex

hyperbolic triangle groups. It is interesting to ask which values of this parameter

correspond to discrete groups.

Complex hyperbolic triangle groups were investigated by Picard in the 1880s.

Strongly influenced by Picard, Giraud developed the theory of complex hyperbolic

space in his work from 1915 to 1921. In 1980, Mostow studied these groups in [17],

where he constructed the first non-arithmetic lattices in PU(2,1). The deformation

theory of complex hyperbolic triangle groups was begun in [5], where complex

hyperbolic triangle groups of type (∞,∞,∞) were discussed by using the Cartan’s
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angular invariant as the parameter. Since then there have been many developments.

Complex hyperbolic triangle groups are the simplest groups, but even in this case

we know only a small number of discrete groups. Generally speaking, it is not easy

to show a group to be discrete. It seems that this will be done in a case by case

fashion. Therefore, we try to restrict the range to search for discrete groups by

finding non-discrete groups.

In this paper we restrict our attention to complex hyperbolic triangle groups of

type (n, n,∞) and give a list of non-discrete complex hyperbolic triangle groups of

type (n, n,∞; k). In particular, we show that complex hyperbolic triangle groups

of type (n, n,∞; k) are not discrete for n ≥ 14.

We now describe the main results of this paper.

Theorem 1.1. Let Γ =< i1, i2, i3 > be a complex hyperbolic triangle group of

type (n, n,∞; k) with k ≥ [n/2] + 1. The following groups are non-discrete.

(1) Γ(5, 5,∞; 3).

(2) Γ(6, 6,∞; 5).

(3) Γ(7, 7,∞; 4),Γ(7, 7,∞; 5),Γ(7, 7,∞; 6).

(4) Γ(8, 8,∞; 5),Γ(8, 8,∞; 7).

(5) Γ(9, 9,∞; k) for 5 ≤ k ≤ 8,

(6) Γ(10, 10,∞; k) for 6 ≤ k ≤ 9.

(7) Γ(11, 11,∞; k) for 6 ≤ k ≤ 11.

(8) Γ(12, 12,∞; k) for 7 ≤ k ≤ 16.

(9) Γ(13, 13,∞; k) for 7 ≤ k ≤ 38.

(10) Γ(14, 14,∞; k) for k ≥ 8.

(11) Γ(n, n,∞; k) for any n (≥ 15).

Corollary 1.2. If Γ(n, n,∞) has type B, then Γ(n, n,∞; k) is not discrete.
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2. Preliminaries

We recall some basic notions of complex hyperbolic geometry. Let C2,1 be the

complex vector space of dimension 3, equipped with the Hermitian form

< Z,W >= Z1W 1 + Z2W 2 − Z3W 3,

where Z = (Z1, Z2, Z3),W = (W1,W2,W3) ∈ C2,1. We call a vector Z ∈ C2,1

negative (respectively null, positive) if < Z,Z >< 0 (respectively < Z,Z >= 0,

< Z,Z >> 0). Let π : C2,1 − {0} → P2
C (complex projective space) be the pro-

jection map defined by π((Z1, Z2, Z3)) = (Z1/Z3, Z2/Z3). The complex hyperbolic

2-space H2
C is defined as complex projectivization of the set of negative vectors in

C2,1. Let PU(2, 1) be the projectivization of SU(2, 1), that is the group of ma-

trices with determinant 1 which are unitary with respect to the Hermitian form.

Non-trivial elements in PU(2, 1) fall into three conjugacy classes, depending on

the location and the number of fixed points. An element g is elliptic if it has a

fixed point in H2
C, parabolic if it has a unique fixed point on the boundary ∂H2

C,

loxodromic if it fixes a unique pair of points on ∂H2
C. Furthermore, we say that

an elliptic element g is regular elliptic if and only if its eigenvalues are distinct. A

parabolic element g is unipotent if all eigenvalues of g are 1. Using the discriminant

function

f(τ) = |τ |4 − 8Re(τ3) + 18|τ |2 − 27,

we can classify elements of PU(2, 1) by traces of the corresponding matrices in

SU(2, 1). In [4, Theorem 6.2.4] Goldman states that an element g in SU(2, 1) is

regular elliptic if and only if f(τ(g)) < 0, where τ(g) is the trace of g.

The intrinsic metric on H2
C is the Bergman metric. For any pair of points z, w

in H2
C, the complex hyperbolic distance d(z, w) is given by:

cosh2
(
d(z, w)

2

)
=

< Z,W >< W,Z >

< Z,Z >< W,W >
,

where Z andW are arbitrary lifts of z and w. We see that the group of holomorphic

isometries of H2
C is exactly PU(2, 1).

The boundary ∂H2
C is homeomorphic to S3 by the standard stereographic pro-

jection and one of representation we choose for this is (C×R)∪ {∞}, with points

either ∞ or (ζ, v)H with ζ ∈ C and v ∈ R, where (0,−1, 1) ∈ C2,1 corresponds to

∞. We call (ζ, v)H the H − coordinates. Let H denote this representation, that is,
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(C×R) ∪ {∞}. We define the Cygan metric δ by

δ((ζ, v)H , (τ, u)H) = ||ζ − τ |2 + iv − iu+ 2iIm(ζτ)| 12

for (ζ, v)H , (τ, u)H in H − {∞}. This metric is thought as the counterpart of the

Euclidean metric.

In H2
C there are two kinds of totally geodesic subspaces, totally real totally

geodesic subspaces and totally geodesic complex subspaces. The former is isometric

to H2
C ∩R2. The latter is isometric to H2

C ∩C, which is called a complex geodesic.

A complex geodesic C is uniquely determined by a positive vector V ∈ C2,1, that

is, C = π({U ∈ C2,1| < U, V >= 0}). We call V a polar vector to C. Two distinct

complex geodesics in H2
C intersect in either the empty set or a point. Let C1 and

C2 be distinct complex geodesics corresponding to polar vectors V1, V2 ∈ C2,1,

respectively. At a point of intersection, C1 and C2 intersect at the complex angle

ϕ, which is defined as

cosϕ =
| < V1, V2 > |√

< V1, V1 >< V2, V2 >
.

For a triple x = (x1, x2, x3) of distinct points in ∂H2
C the Cartan angular in-

variant is defined by

A(x) = arg (− < X1, X2 >< X2, X3 >< X3, X1 >) ,

where Xi ∈ C2,1 of a lift of xi with π(Xi) = xi. The Cartan angular invariant

is independent of chosen lifts. We define the angular invariant T (c) of a triple

c = (C1, C2, C3) of distinct complex geodesics by

T (c) = arg (< V3, V2 >< V1, V3 >< V2, V1 >) ,

where Vi is the normalized polar vector to Ci. Both angular invariants are invariant

under PU(2,1) and there is a close relation between them (see [23]). A complex

hyperbolic triangle in H2
C is determined uniquely up to isometry by the three angles

and the angular invariant T (c).

Given a complex geodesic C with polar vector V , there is a unique involution

i, that fixes every point in C. We call i the complex reflection in C. Explicitly i is

given by

i(Z) = −Z +
2 < Z, V >

< V, V >
V.
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Details for background material on complex hyperbolic space will be found in

[1], [2] and [4]. For material on complex hyperbolic triangle groups see [17] and

[27].

3. Complex hyperbolic triangle groups of type (n, n,∞)

In [25] Schwartz considered ideal triangle groups, that is complex hyperbolic tri-

angle groups of type (∞,∞,∞) and proved that if the product i1i2i3 of generators

is regular elliptic, then it is not of finite order, hence the corresponding complex

hyperbolic triangle group is not discrete. In [20] Parker explored groups of type

(n, n, n) such that i1i2i3 is regular elliptic. In this case there are some discrete

groups. And he classified them. In the same manner as in the proof of Schwartz in

[25], Wyss-Gallifent formulated Schwartz’s statement for groups of type (n, n,∞)

in [29]. In [24] Pratoussevitch made a refinement on the proof of Wyss-Gallifent.

Here we show the result due to Wyss-Gallifent and Pratoussevitch.

Lemma 3.1. Let Γ =< i1, i2, i3 > be a complex hyperbolic triangle group of

type (n, n,∞). If the product i1i2i3 of the three generators is regular elliptic, then

Γ is non-discrete.

By conjugation, we may assume that the forms of ij as follows:

i1 =



−1 0 0

0 1 0

0 0−1


 ,

i2 =




1 −2s −2s

−2s 2s2 − 1 2s2

2s −2s2 −2s2 − 1


 and

i3 =




1 −2seiθ −2seiθ

−2se−iθ 2s2 − 1 2s2

2se−iθ −2s2 −2s2 − 1


 ,

where s = cos(π/n). In this case the angular invariant T (c) = θ. We take cos θ as

the parameter of complex hyperbolic triangle groups of type (n, n,∞). A simple

computation yields trace(i1i2i3) = 8s2(eiθ−1)−1. Using the discriminant function

f(τ) and Lemma 3.1, we work out some conditions on cos θ for Γ of type (n, n,∞)
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to be non-discrete. We see that if n < 9, then the product i1i2i3 is not regular

elliptic and that if n ≥ 9, then there are two positive numbers αn and βn such that

i1i2i3 is regular elliptic for cos θ ∈ (αn, βn). Note that αn and βn are increasing

functions of n. By Lemma 3.1, we obtain

Theorem 3.2. If n ≥ 9, then Γ(n, n,∞) is not discrete for cos θ ∈ (αn, βn).

Next we use a complex hyperbolic version of Jørgensen’s inequality to find out

some sufficient conditions on cos θ for Γ to be non-discrete. Let g be an element of

PU(2, 1). We define the translation length tg(p) of g at p ∈ H by tg(p) = δ(g(p), p).

To state Lemma 3.3, we need the notion of isometric spheres. Let h be an element

of PU(2, 1) not fixing ∞. The isometric sphere of h is the sphere in the Cygan

metric with center h−1(∞) and radius Rh, where R2
h = δ(h(z), h(∞))δ(z, h−1(∞))

for any z ∈ H − {∞, h−1(∞)} (see [4], [7] and [8]).

Here we recall a complex hyperbolic version of Shimizu’s lemma due to Parker.

Lemma 3.3. Let G be a discrete subgroup of PU(2, 1) that contains the unipo-

tent parabolic element g with the form

g =




1 τ τ

−τ 1− (|τ |2 − it)/2 −(|τ |2 − it)/2

τ (|τ |2 − it)/2 1 + (|τ |2 − it)/2


 .

The element g fixes ∞ and maps the point with H-coordinates (ζ, v)H to the point

with H-coordinates (ζ + τ, v+ t+2Im(τ ζ̄))H . Let h be any element of G not fixing

∞ and with isometric sphere of radius Rh. Then

R2
h ≤ tg(h

−1(∞))tg(h(∞)) + 4|τ |2.

Taking g = i23 and h = i1231, we apply the contraposition of Lemma 3.3

to Γ(n, n,∞). It follows that there is a positive number γn such that R2
h >

tg(h
−1(∞))tg(h(∞)) + 4|τ |2 for cos θ with γn < cos θ < 1. We have

Theorem 3.4. Γ(n, n,∞) is not discrete for cos θ ∈ (γn, 1).

Numerical values of αn, βn and γn can be found in [14]. We note that αn <

βn < γn for 9 ≤ n ≤ 28 and αn < γn < βn for n ≥ 29.
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4. Complex hyperbolic triangle groups of type (n, n,∞; k)

Let Γ =< i1, i2, i3 > be a complex hyperbolic triangle group of type (n, n,∞).

If the trace of the element i1i2i1i3 is equal to 1 + 2 cos 2π
k , where k is a positive

integer ≥ 3, then Γ is said to be of type (n, n,∞; k). This group is denoted by

Γ(n, n,∞; k). We note that k ≥ [n/2] + 1. There is a positive number δn such

that the element i1i2i1i3 in Γ(n, n,∞) is regular elliptic for cos θ > δn. In [27]

Schwartz classified complex hyperbolic triangle groups into two types. It is said

that Γ(n, n,∞) has type B if there is a positive number k0 such that i1i2i3 becomes

regular elliptic for k > k0. It is seen that δn < αn < βn for 9 ≤ n ≤ 13 and

αn < δn < βn for n ≥ 14 . Therefore, if n ≥ 14, then Γ(n, n,∞) has type B.

In this section we discuss complex hyperbolic triangle groups of type

(n, n,∞; k). We have

trace(i1i2i1i3) = 3− 16s2 cos θ + 16s4

= 1 + 2 cos
2π

k
.

Considering the intervals (αn, βn) and (γn, 1) in Theorems 3.2 and 3.4, we can de-

duce which values k correspond to non-discrete complex hyperbolic triangle groups

of type (n, n,∞; k). It is seen that the following groups are not discrete:

Γ(10, 10,∞; 9); Γ(11, 11,∞; 10),Γ(11, 11,∞; 11);

Γ(12, 12,∞; k) for 11 ≤ k ≤ 16;

Γ(13, 13,∞; 7) and Γ(13, 13,∞; k) for 12 ≤ k ≤ 38;

Γ(14, 14,∞; k) for k ≥ 12;

Γ(15, 15,∞; 8) and Γ(15, 15,∞; k) for k ≥ 13;

Γ(16, 16,∞; 9) and Γ(16, 16,∞; k) for k ≥ 14;

Γ(17, 17,∞; 9) and Γ(17, 17,∞; k) for k ≥ 15;

Γ(18, 18,∞; 10) and Γ(18, 18,∞; k) for k ≥ 16;
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Γ(19, 19,∞; 10),Γ(19, 19,∞; 11) and Γ(19, 19,∞; k) for k ≥ 17;

Γ(20, 20,∞; 11),Γ(20, 20,∞; 12) and Γ(20, 20,∞; k) for k ≥ 18;

Γ(21, 21,∞; 11),Γ(21, 21,∞; 12),Γ(21, 21,∞; 13) and Γ(21, 21,∞; k) for k ≥ 19;

Γ(22, 22,∞; 12),Γ(22, 22,∞; 13),Γ(22, 22,∞; 14) and Γ(22, 22,∞; k) for k ≥ 19;

Γ(23, 23,∞; 12), ...,Γ(23, 23,∞; 15) and Γ(23, 23,∞; k) for k ≥ 20;

Γ(24, 24,∞; 13), ...,Γ(24, 24,∞; 16) and Γ(24, 24,∞; k) for k ≥ 21;

Γ(25, 25,∞; 13), ...,Γ(25, 25,∞; 17) and Γ(25, 25,∞; k) for k ≥ 22;

Γ(26, 26,∞; 14), ...,Γ(26, 26,∞19) and Γ(26, 26,∞; k) for k ≥ 23;

Γ(27, 27,∞; 14), ...,Γ(27, 27,∞; 21) and Γ(27, 27,∞; k) for k ≥ 24;

Γ(28, 28,∞; 15), ...,Γ(28, 28,∞; 23) and Γ(28, 28,∞; k) for k ≥ 25;

Γ(29, 29,∞; k) for any k(≥ 15);

Γ(n, n,∞; k) for any n(> 29) and k(≥ [n/2] + 1).

To find more non-discrete complex hyperbolic triangle groups of type

(n, n,∞; k), we use another complex hyperbolic version of Jørgensen’s inequality

(see [6] and [28]).

Lemma 4.1. Let g ∈ PU(2, 1) be a regular elliptic element of order m ≥ 7 that

preserves a Lagrangian plane (i.e. trace(g) is real). Suppose that g fixes a point

z ∈ H2
C. Let h be any element of PU(2, 1) with h(z) ̸= z. If

cosh

(
d(h(z), z

2

)
sin

( π

m

)
<

1

2
,

then < g, h > is not discrete.

Taking g = i1i2 and h = i3 in Lemma 4.1, we obtain
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Theorem 4.2. Let Γ be a complex hyperbolic triangle group of type (n, n,∞; k)

with n ≥ 7. Let

an = −1 + 8 cos4(π/n)− 6 cos2(π/n)− sin(π/n)

and

bn = −1 + 8 cos4(π/n)− 6 cos2(π/n) + sin(π/n).

If an < cos(2π/k) < bn, then Γ is not discrete.

By Theorem 4.2, we see that the following groups are not discrete:

Γ(11, 11,∞; 6); Γ(12, 12,∞; 7);

Γ(13, 13,∞; 7); Γ(14, 14,∞; 8);

Γ(15, 15,∞; 8) and Γ(15, 15,∞; 9);

Γ(16, 16,∞; 9) and Γ(16, 16,∞; 10);

Γ(17, 17,∞; 9),Γ(17, 17,∞; 10), and Γ(17, 17,∞; 11);

Γ(18, 18,∞; 10),Γ(18, 18,∞; 11), and Γ(18, 18,∞; 12);

Γ(19, 19,∞; k) for 10 ≤ k ≤ 13;

Γ(20, 20,∞; k) for 11 ≤ k ≤ 15;

Γ(21, 21,∞; k) for 11 ≤ k ≤ 16;

Γ(22, 22,∞; k) for 12 ≤ k ≤ 18;

Γ(23, 23,∞; k) for 12 ≤ k ≤ 20;

Γ(24, 24,∞; k) for 13 ≤ k ≤ 22;

Γ(25, 25,∞; k) for 13 ≤ k ≤ 25;
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Γ(26, 26,∞; k) for 14 ≤ k ≤ 29;

Γ(27, 27,∞; k) for 14 ≤ k ≤ 33;

Γ(28, 28,∞; k) for 15 ≤ k ≤ 40.

Now we show a different way to find non-discrete groups. It is well-known that

if a group has an elliptic element of infinite order, then this group is not discrete.

Lemma 4.3. Let g be an element of Γ(n, n,∞; k). If trace(g) is real and con-

tained in (−1, 3), then g is regular elliptic and trace(g) = 1 + 2 cosϕπ. Moreover,

g has finite order if and only if ϕ is a rational number.

Conway and Jones list all possible trigonometric Diophantine equations with up

to four terms in [3]. We omit the detail, which can be found in [16]. To find elliptic

element of infinite order in a group, we use the following result due to Parker,

which extends the result of Conway and Jones.

Lemma 4.4. Suppose that we have at most six distinct rational multiples of

π lying strictly between 0 and π/2, for which some rational linear combination of

their cosines is zero but no proper subset has this property, then the appropriate

linear combination is proportional to one of the following:

0 =

2∑
k=0

cos(ϕ+
2kπ

3
), ϕ ∈ (0, π), ϕ ̸= mπ

6
;

0 =
4∑

k=0

cos(ϕ+
2kπ

5
), ϕ ∈ (0, π), ϕ ̸= nπ

10
;

0 =
2∑

k=1

cos(ϕ+
2kπ

3
)−

4∑
k=1

cos(ϕ+
2kπ

5
), ϕ ∈ (0, π), ϕ ̸= mπ

6
, ϕ ̸= nπ

10
;

0 = cos
π

3
− cos

π

5
+ cos

2π

5
;

0 = cos
π

3
− cos

π

7
+ cos

2π

7
− cos

3π

7
;

0 = cos
π

3
− cos

π

11
+ cos

2π

11
− cos

3π

11
+ cos

4π

11
− cos

5π

11
;

0 = cos
π

3
− cos

π

5
+ cos

π

15
− cos

4π

15
;
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0 = cos
π

3
+ cos

2π

5
− cos

2π

15
+ cos

7π

15
;

0 = cos
π

3
− cos

π

7
+ cos

2π

7
− cos

2π

21
+ cos

5π

21
;

0 = cos
π

3
− cos

π

7
− cos

3π

7
+ cos

π

21
− cos

8π

21
;

0 = cos
π

3
+ cos

2π

7
− cos

3π

7
− cos

4π

21
− cos

10π

21
;

0 = cos
π

3
− cos

π

7
+ cos

π

21
− cos

2π

21
+ cos

5π

21
− cos

8π

21
;

0 = cos
π

3
+ cos

2π

7
− cos

2π

21
− cos

4π

21
+ cos

5π

21
− cos

10π

21
;

0 = cos
π

3
− cos

3π

7
+ cos

π

21
− cos

4π

21
− cos

8π

21
− cos

10π

21
;

0 = cos
π

5
− cos

2π

5
− cos

π

7
+ cos

2π

7
− cos

3π

7
;

0 = cos
π

5
− cos

2π

5
− cos

π

7
+ cos

2π

7
− cos

2π

21
+ cos

5π

21
;

0 = cos
π

5
− cos

2π

5
− cos

π

7
− cos

3π

7
+ cos

2π

21
− cos

8π

21
;

0 = cos
π

5
− cos

2π

5
+ cos

2π

7
− cos

3π

7
− cos

4π

21
− cos

10π

21
.

Assume that i2i1i2i3 is a regular elliptic element in Γ(n, n, ;∞; k). Then

trace(i2i1i2i3) is written as

trace(i2i1i2i3) = 20s2 − 16s2 cos θ − 1 = 1 + 2 cosϕπ,

which yields that

cosϕπ = 10s2 − 8s2 cos θ − 1,

where ϕ is a real number. We obtain

cosϕπ = −8s4 + 10s2 − 2 + cos
2π

k
= − cos

4π

n
+ cos

2π

n
+ cos

2π

k
.
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It is seen that in each group of type (5, 5,∞; 3), (7, 7,∞; 4), (9, 9,∞; 5),

(11, 11,∞; 6), (12, 12,∞; 7), (13, 13,∞; 7) or (14, 14,∞; 8), i2i1i2i3 is regular el-

liptic. Lemma 4.4 tells us that for (n, k) = (5, 3), (7, 4), (9, 5), (11, 6), (12, 7),

(13, 7) and (14, 8), there are no rational numbers ϕ′s satisfying

cosϕπ = − cos
4π

n
+ cos

2π

n
+ cos

2π

k
.

It follows that in the groups above, i2i1i2i3 is a regular elliptic element of infinite or-

der. Therefore, the groups Γ(5, 5,∞; 3), Γ(7, 7,∞; 4), Γ(9, 9,∞; 5), Γ(11, 11,∞; 6),

Γ(12, 12,∞; 7), Γ(13, 13,∞; 7) and Γ(14, 14,∞; 8) are not discrete.

Next consider elements i1i2i1i2i3i2 and i3i1i3i1i2i1. In the same manner as

above, we see that in Γ(8, 8,∞; 5), i1i2i1i2i3i2 is a regular elliptic element of infinite

order. Hence Γ(8, 8,∞; 5) is not discrete. Moreover, i3i1i3i1i2i1 is a regular elliptic

element of infinite order in the following groups.

Γ(6, 6,∞; 5); Γ(7, 7,∞; 5),Γ(7, 7,∞; 6); Γ(8, 8,∞; 7);

Γ(9, 9,∞; 6),Γ(9, 9,∞; 7),Γ(9, 9,∞; 8); Γ(10, 10,∞; 6);

Γ(11, 11,∞; 7),Γ(11, 11,∞; 8),Γ(11, 11,∞; 9);

Γ(12, 12,∞; 8),Γ(12, 12,∞; 9),Γ(12, 12,∞; 10);

Γ(13, 13,∞; 8),Γ(13, 13,∞; 9),Γ(13, 13,∞; 10),Γ(13, 13,∞; 11);

Γ(14, 14,∞; 9),Γ(14, 14,∞; 10),Γ(14, 14,∞; 11);

Γ(15, 15,∞; 10),Γ(15, 15,∞; 11),Γ(15, 15,∞; 12);

Γ(16, 16,∞; 11),Γ(16, 16,∞; 12),Γ(16, 16,∞; 13);

Γ(17, 17,∞; 12),Γ(17, 17,∞; 13),Γ(17, 17,∞; 14);

Γ(18, 18,∞; 13),Γ(18, 18,∞; 14),Γ(18, 18,∞; 15);

Γ(19, 19,∞; 14),Γ(19, 19,∞; 15),Γ(19, 19,∞; 16);

Γ(20, 20,∞; 16),Γ(20, 20,∞; 17);
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Γ(21, 21,∞; 17),Γ(21, 21,∞; 18).

Thus it is seen that the groups above are not discrete.

5. Proof of Theorem 1.1

We have only to summarize what we have showed so far. Here we give the

outline of our proof only in the following four cases, but we can treat the other

cases in the same way as in one of them.

First we consider the case where n = 13. Note that δ13 < α13 < β13, which is

different from the three cases below. Theorem 3.4 shows that Γ(13, 13,∞; 7) is not

discrete. By Theorem 3.2 we see that Γ(13, 13,∞; k) is not discrete for 12 ≤ k ≤ 38.

It follows from Lemma 4.4 that i313121 is a regular elliptic element of infinite order

for 8 ≤ k ≤ 11. Hence Γ(13, 13,∞; k) is not discrete for 7 ≤ k ≤ 38..

If n = 14, then α14 < δ14 < β14. Theorem 3.2 shows that Γ(14, 14, ,∞; k) is

not discrete for k ≥ 12. Theorem 3.4 implies that Γ(14, 14, ,∞; 8) is not discrete.

Consider the traces of i313121 in Γ(14, 14,∞; 9),Γ(14, 14,∞; 10) or Γ(14, 14,∞; 11).

By Lemma 4.4, we see that in these three groups i313121 is an elliptic element of

infinite order. Therefore Γ(14, 14,∞; 9),Γ(14, 14,∞; 10) and Γ(14, 14,∞; 11) are

not discrete. Hence Γ(14, 14,∞; k) is not discrete for any k ≥ 8.

For n = 22, α22 < δ22 < β22. Theorems 3.2 and 3.4 show that Γ(22, 22,∞; k)

is not discrete for k ≥ 19. It follows from Theorem 4.2 that Γ(22, 22,∞; k) is not

discrete for 12 ≤ k ≤ 18. Hence Γ(22, 22,∞; k) is not discrete for any k ≥ 12.

Finally we consider the case where n ≥ 29. In this case, αn < δn < γn < βn. It

follows from Theorems 3.2 and 3.4 that Γ(n, n,∞; k) is not discrete for n ≥ 29.

Thus we have Theorem 1.1.

Remark 5.1. It is known that the following groups are discrete.

Γ(3, 3,∞; k) for any k;

Γ(4, 4,∞; 3),Γ(4, 4,∞; 4),Γ(4, 4,∞; 6),Γ(4, 4,∞;∞);

Γ(6, 6,∞; 4),Γ(6, 6,∞; 6),Γ(6, 6,∞;∞)

(see [14], [22]).

6. Problems

Schwartz has given a conjectural overview on complex hyperbolic triangle

groups in [27]. We can find many conjectures and open problems on complex
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hyperbolic triangle groups in [21], [23] and [26]. As we are particularly concerned

with complex hyperbolic triangle groups of type (n, n,∞), we give some problems

only on them.

(1) Complete the list of Theorem 1.1.

(2) Suppose neither i1i2i3 nor i1i2i1i3 is elliptic in Γ(n, n,∞).

Is this group discrete?

(3) Find a new discrete complex hyperbolic triangle group of type (n, n,∞).

References

[1] A. F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91,
Springer-Verlag, New York, 1983.

[2] S. Chen and L. Greenberg, Hyperbolic spaces, In: Contributions to Analysis, Academic
Press, New York, 1974, pp. 49-87.

[3] J. H. Conway and A. J. Jones, Trigonometric diophantine equations (On vanishing sums of
roots of unity), Acta Arithmeica, 30, (1976), 229-240.

[4] W. M. Goldman, Complex Hyperbolic Geometry, Oxford University Press, 1999.

[5] W. M. Goldman and J. R. Parker, Complex hyperbolic ideal triangle groups, J. Reine
Angew. Math. 425, (1992), 71-86.

[6] Y. Jiang, S. Kamiya and J. R. Parker, Jørgensen’s inequality for complex hyperbolic space,
Geom. Dedicata, 97, (2003), 55-80.

[7] S. Kamiya, On discrete subgroups of PU(1, 2;C) with Heisenberg translations, J. London
Math. Soc., 62, (2000), no.3, 627-642.

[8] S. Kamiya, Remarks on complex hyperbolic triangle groups, In: Complex analysis and its
applications, OCAMI Stud., 2, Osaka Munic. Univ. Press, Osaka, 2007, pp. 219-223.

[9] S. Kamiya, Note on non-discrete complex hyperbolic triangle groups of type (n, n,∞; k),
Proc. Japan Acad. Ser. A 89, no.8, (2013), 100-102.

[10] S. Kamiya, Complex hyperbolic triangle groups of type (n, n,∞), Math. Newsl., 24, no.4
(2014), 97-103.

[11] S. Kamiya, Note on non-discrete complex hyperbolic triangle groups of type (n, n,∞; k) II,
Proc. Japan Acad. Ser. A, 93, no.7, (2017), 67-71.

[12] S. Kamiya and J. R. Parker, Discrete subgroups of PU(2,1) with screw parabolic elements,
Math. Proc. Cambridge Phil. Soc., 144, (2008), 443-455.

[13] S. Kamiya, J. R. Parker and J. M. Thompson, Notes on complex hyperbolic triangle groups,
Conform. Geom. and Dyn., 14, (2010), 202-218.

[14] S. Kamiya, J. R. Parker and J. M. Thompson, Non-discrete complex hyperbolic triangle

groups of type (n, n,∞; k), Canad. Math. Bull., 55, (2012), 329-338.
[15] A. W. Knapp, Doubly generated Fuchsian groups, Michigan Math. J., 15, (1968), 289-304.
[16] A. Monagham, Complex hyperbolic triangle groups, Ph.D. thesis, University of Liverpool,

2013.

[17] G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic space, Pacific J.
Math., 86, no.1, (1980), 171-276.
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