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Special Lagrangian submanifolds and Lagrangian mean

curvature flows with generalized perpendicular symmetries

Akifumi Ochiai

Abstract. This is a survey on the author’s recent work [22]
and a pre-report on [23]. We show a method of constructing an in-

variant Lagrangian mean curvature flow in a Calabi-Yau manifold with
the use of generalized perpendicular symmetries. We also show a way
to construct special Lagrangian submanifolds as a special case of our
method. We use moment maps of the actions of Lie groups, which

are not necessarily abelian. By our method, we construct a non-trivial
examples of special Lagrangian submanifolds in the cotangent bundle
of the n-sphere T∗Sn and a self-similar solution of a Lagrangian mean
curvature flow in Cn.

1. Introduction

Calabi-Yau manifolds have received much attentions as a model of the string

theory in physics. The mirror symmetry is one of remarkable properties of Calabi-

Yau manifolds which is useful to understand themselves. The Strominger–Yau–

Zaslow conjecture [25] explains that a Calabi-Yau manifold and its mirror are both

interpreted as a special Lagrangian torus fibration with the same base manifold

respectively. This conjecture indicates that it is important to see Calabi-Yau man-

ifolds from the perspective of special Lagrangian submanifolds.

Another context which shows importance of special Lagrangian submanifolds is

in calibrated geometry. Calibrated submanifolds were introduced in [5] as classes of

submanifolds in Riemannian manifolds. For a certain holomorphic volume form Ω

called a Calabi-Yau structure in a Calabi-Yau manifold, a submanifold calibrated

by the real part of e
√
−1θΩ (θ ∈ R) is called a special Lagrangian submanifold. It is

known that a calibrated submanifold is volume minimizing in its homological class

and so is a special Lagrangian submanifold.

Joyce gave various examples of special Lagrangian submanifolds in Cn in a series
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of his papers [13]–[17]. One of typical methods of constructing special Lagrangian

submanifolds is called the moment map technique which was introduced by Joyce

in [16]. By this method, Joyce constructed special Lagrangian submanifolds in

Cn(∼= T∗Rn) which is invariant under a subgroup of SU(n). By the moment

technique, Anciaux [2], Ionel–Min-Oo [10], Hashimoto–Sakai [7], and Hashimoto–

Mashimo [6] constructed special Lagrangian submanifolds in the cotangent bundle

of the n-sphere T∗Sn, and Arai–Baba [3] in the cotangent bundle of the complex

projective space T∗CPn. Each ambient space is a non-flat Calabi-Yau manifold

introduced by Stenzel [24] and all of these examples are cohomogeneity one.

Another method of constructing special Lagrangian submanifolds is called the

bundle technique which was introduced by Harvey–Lawson [5]. By the bundle

technique Karigiannis–Min-Oo [18] constructed special Lagrangian submanifolds

in T∗Sn, and Ionel–Ivey [9] in T∗CPn.

Aside from these two methods, Joyce [16] showed a way to construct special La-

grangian submanifolds in Cn by using actions of abelian subgroups of SU(n) which

act perpendicularly to another given special Lagrangian submanifold. The method

of our paper of constructing special Lagrangian submanifolds is a generalization of

this method.

Lagrangian mean curvature flows give us another method of constructing spe-

cial Lagrangian submanifolds from a different point of view. A mean curvature

flow gives a standard deformation of an immersion into a Riemannian manifold.

It is known that the deformation by a mean curvature flow reduces the volume of

an immersion most efficiently. So it is considered as a fundamental tool for finding

minimal submanifolds. In particular, when an ambient space is a Kähler-Einstein

manifold, it is known that a mean curvature flow of a Lagrangian immersion pre-

serves its Lagrangian condition. This indicates that a Lagrangian mean curvature

flow gives a method of finding a minimal Lagrangian submanifold (especially a

special Lagrangian submanifold in a Calabi-Yau manifold).

One of main problems on mean curvature flows is when they converge to minimal

submanifolds, especially when they converge to special Lagrangian submanifolds

in a Calabi-Yau manifold. In [27] Thomas–Yau defined a notion of stability for

Lagrangian submanifolds in a Calabi-Yau manifold. They conjectured that if a

Lagrangian submanifold is stable, then its Lagrangian mean curvature flow exists

for all time and converges to a special Lagrangian submanifold. Recently this

conjecture has been reformulated by Joyce in [12].

Another main problem lies in singularities of the flow. Huisken [8] showed that

if a mean curvature flow has a type I singularity, then a self-similar solution of

a mean curvature flow appears as the blow-up limit of a rescaled flow. It is also
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known that if a mean curvature flow has another type of singularities, then a certain

blow-up limit is a translating soliton. Thus, they are important classes of mean

curvature flows as local models of singularities.

Since a mean curvature flow is written by a partial differential equation, it

is generally difficult to solve them and construct examples. Several examples of

self-similar solutions or translating solitons of Lagrangian mean curvature flows

are known as follows. Anciaux [1] and Lee–Wang [20, 21] constructed self-similar

solutions. Joyce–Lee–Tsui [11] also constructed self-similar solutions and trans-

lating solitons. Castro–Lerma [4] constructed translating solitons in C2. In [28],

Yamamoto indicated that some of them can be explained in terms of moment maps

and toric symmetries. He showed a way to construct a generalized mean curvature

flow in a toric almost Calabi-Yau manifold. In 2019, Konno [19] generalized this

result to a way using moment maps and perpendicular symmetries of abelian Lie

groups. By this method, he constructed Lagrangian mean curvature flows in ALE

spaces which are hyperKähler manifolds. This is considered as a first example

of a construction of a Lagrangian mean curvature flow in a non-flat Calabi-Yau

manifold.

The overview of Konno’s method is as follows. Let M be a Calabi-Yau mani-

fold, L a special Lagrangian submanifold of M , H an abelian Lie group which has

a moment map and acts on M perpendicularly to L. Then there exists another H-

invariant Lagrangian submanifold, and its H-invariant Lagrangian mean curvature

flow can be described under some assumptions. Konno constructed some examples

of self-similar solutions and translating solitons in Cn by this method. Moreover,

he showed that these self-similar solutions in Cn can be observed at singularities

of Lagrangian mean curvature flows which he constructed in ALE spaces. Consid-

ering special Lagrangian submanifolds as stationary solutions of Lagrangian mean

curvature flows, this method can be interpreted as a generalization of Joyce’s re-

sult [16] which showed a way to construct special Lagrangian manifolds in Cn by

perpendicular symmetries of abelian Lie subgroups of SU(n) as mentioned above.

In the author’s previous paper [22], by generalizing Joyce and Konno’s method,

he showed a way to construct special Lagrangian submanifold in Calabi-Yau mani-

folds by generalized perpendicular symmetries of Lie groups which is not necessarily

abelian and he constructed non-trivial examples in the cotangent bundles of spheres

T∗Sn equipped with the Stenzel metric. Recently in [23], the author also general-

ized the Konno’s result in two points for constructing Lagrangian mean curvature

flows. First, we do not assume commutativity of Lie groups. Second, we generalize

the condition that Lie groups act on M perpendicularly to L. We show an example

of self-similar solution in Cn by our method. This is a generalization of examples
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by Lee–Wang [20] and Konno [19].

Moreover, we generalize this method to one of constructing anH-invariant mean

curvature flow in a general Riemannian manifold. We also show a way to reduce

the partial differential equation of a mean curvature flow in a Riemannian manifold

to an ordinary differential equation with the use of Lie group actions.

The overview of this survey article is as follows. In Section 3, we show a way

to construct an H-invariant mean curvature flow in a Riemannian manifold. In

Section 4, we show that the mean curvature vector field of an H-invariant La-

grangian immersion into a Calabi-Yau manifold is completely expressed in terms

of Lie group actions under some assumptions. In Section 5, we show a method of

constructing Lagrangian mean curvature flows in Calabi-Yau manifolds by general-

ized perpendicular symmetries, based on the results in Section 4. Finally, we show

some examples of special Lagrangian submanifolds in T∗Sn and of a self-similar

solution in Cn by our method in Section 6 and Section 7 respectively.

2. Preliminaries

In this section, we review some fundamental facts on Calabi-Yau manifolds,

their special Lagrangian submanifolds, Lie group actions, and moment maps.

2.1. Lagrangian submanifolds in a Calabi-Yau manifold

We begin with the definition of Lagrangian submanifolds in symplectic mani-

folds.

Let (M,ω) be a symplectic manifold of (real) dimension 2n. A submanifold

L of (M,ω) is called isotropic if ω|L ≡ 0. If an isotropic submanifold L is of

half-dimension of dimM , it is called a Lagrangian submanifold.

Next we see the definition of special Lagrangian submanifolds. It is a particular

submanifold of a Calabi-Yau manifold which is defined as follows.

Definition 2.1. A Calabi-Yau manifold is a quadruple (M, I, ω,Ω) such that

(M, I) is a complex manifold equipped with a Kähler form ω and a holomorphic

volume form Ω which satisfy the following relation:

ωn

n!
= (−1)

n(n−1)
2

(√
−1

2

)n

Ω ∧ Ω.

Definition 2.2. If L is an oriented Lagrangian submanifold of a Calabi-Yau

manifold (M, I, ω,Ω), there exists a function θ : L → R/2πZ, which is called the
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Lagrangian angle satisfying

ι∗Ω = e
√
−1θvolι∗g.

Here g is the Kähler metric, ι : L → M is an embedding, and volι∗g is the volume

form on L with respect to the induced metric ι∗g.

Even if L is not orientable, we can locally define the Lagrangian angle with the

formula above. With the use of the Lagrangian angle θ of a Lagrangian submanifold

L, the mean curvature vector field H of L is expressed as the following proposition.

Proposition 2.3. It holds that

H(p) = Iι(p)(ι∗p(∇ι∗gθ)p) ∈ T⊥
ι(p)ι(L) (p ∈ L),

where ∇ι∗gθ is the gradient of the function θ with respect to the induced metric ι∗g.

The definition of a special Lagrangian submanifold is given by the following.

Definition 2.4. Let (M, I, ω,Ω) be a Calabi-Yau manifold. A special La-

grangian submanifold of (M, I, ω,Ω) is a Lagrangian submanifold such that its

Lagrangian angle is constant θ ≡ θ0. The constant θ0 is called the phase of the

special Lagrangian submanifold.

From the formula of the mean curvature vector in Proposition 2.3, we can see

that a special Lagrangian submanifold is a minimal submanifold. More strongly, it

is known that a special Lagrangian submanifold is homologically volume minimiz-

ing.

2.2. Lie group actions and moment maps

In this subsection we review the fundamental notions of Lie group actions and

moment maps.

LetM be a manifold,H a Lie group which acts onM . We denote the translation

of h ∈ H by Lh : M → M ; p �→ Lh(p) = hp. For each p ∈ M , the orbit and the

isotropy subgroup at p are denoted by H · p and Hp respectively.

Letting h denote the Lie algebra of H, any ξ ∈ h induces a fundamental vector

field ξ# on M , defined as follows.

ξ#p =
d

dt

∣∣∣∣
t=0

exp(tξ)p (p ∈ M),

where exp(tξ) denotes the 1-parameter subgroup of H associated to ξ.
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H acts on its Lie coalgebra h∗ by the coadjoint action Ad∗h : h∗ → h∗, where

h ∈ H, and for c ∈ h∗, Ad∗hc is defined by the following.

⟨Ad∗hc, ξ⟩ = ⟨c,Adh−1ξ⟩ (ξ ∈ h).

Here ⟨·, ·⟩ is the pairing of h and h∗. We call

Z(h∗) = {c ∈ h∗ | Ad∗hc = c, ∀h ∈ H}

the center of h∗. If H is abelian, then Z(h∗) = h∗ holds.

Next, let (M,ω) be a symplectic manifold and define a moment map µ : M → h∗

as follows.

Definition 2.5. LetH be a Lie group acting on a symplectic manifold (M,ω).

A moment map µ : M → h∗ is an H-equivariant map that satisfies

−i(ξ#)ω = d⟨µ(·), ξ⟩ (ξ ∈ h),

where i is the interior product.

If (M,ω,H) has a moment map, the H-action is called Hamiltonian. A Hamil-

tonian action preserves ω. For each c ∈ h∗ and p ∈ µ−1(c), the orbit H · p is

isotropic if and only if c ∈ Z(h∗).

3. Constructions of mean curvature flows by symmetries

In this section, we firstly study some fundamental facts about immersions in

relation to actions of Lie groups. We secondly define a notion which expresses a

sort of symmetries of mean curvature vector fields of an immersion, using actions

of Lie groups. We thirdly show a way to construct mean curvature flows by such

symmetries of Lie groups.

Before that, we define some notations which we use throughout the remainder

of this paper. Let M be a manifold, H a Lie group which acts on M , K a closed

subgroup of H. For any submanifold N of M , we define NK := {p ∈ N | Hp = K}.
In particular, the subset MK is defined by MK = {p ∈ M | Hp = K}. For each

submanifold V of M such that V ⊂ MK , we define a map ϕV : (H/K)× V → M

by (hK, p) �→ hp. For the sake of the condition V ⊂ MK , this map is well-defined.

The differential map (ϕV )∗ defines a linear map (ϕV )∗(hK,p) : ThK(H/K) ×
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TpV → ThpM for each (hK, p) ∈ (H/K)× V . It holds that

(1) ThK(H/K) =

{
d

dt

����
t=0

h exp(tξ)K

���� ξ ∈ h

}
.

In fact, for any g ∈ H, define a map τg by

τg : H/K → H/K;hK �→ ghK.

The map τg is a diffeomorphism. We have TK(H/K) =
{

d
dt

��
t=0

exp(tξ)K | ξ ∈ h
}
.

We also have

(τh)∗K
d

dt

����
t=0

exp(tξ)K =
d

dt

����
t=0

h exp(tξ)K.

Since the linear map (τh)∗K : TK(H/K) → ThK(H/K) is an isomorphism, the

claim (1) holds.

We define two maps, a projection π : H → H/K by h �→ hK and a diffeomor-

phism j : H/K → H · p by hK → hp. Then we obtain their differential maps, a

submersion (dπ)K : h → TK(H/K) defined by ξ �→ d
dt

��
t=0

exp(tξ)K and a linear

isomorphism (dj)K : TK(H/K) → Tp(H · p) defined by d
dt

��
t=0

exp(tξ)K → ξ#p .

The next proposition holds whether the map ϕV is an immersion or not.

Proposition 3.1 ([22]). Let M be a manifold, H a Lie group which acts on

M , K a closed subgroup of H, and V a submanifold of M such that V ⊂ MK . For

any (hK, p) ∈ (H/K)× V , ξ ∈ h, and v ∈ TpV , it holds that

(ϕV )∗(hK,p)

(
d

dt

����
t=0

h exp(tξ)K, v

)
= (Lh)∗p(ξ

#
p + v).

We show the condition that the map ϕV becomes an immersion.

Proposition 3.2 ([22]). Let M be a manifold, H a Lie group which acts on

M , K a closed subgroup of H, and V a submanifold of M such that V ⊂ MK . The

map ϕV is an immersion if and only if it holds that

ξ#p /∈ TpV \{0} (p ∈ V, ξ ∈ h).

Next, we define some notions which are related to some symmetries of mean

curvature vector fields.

Definition 3.3. Let ϕ : Σ → M be an immersion from a k-dimensional
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manifold Σ to a manifold M . A smooth map f : Σ × [0, T ) → M ; (p, t) �→ ft(p)

such that f0 = ϕ is called a deformation of ϕ if for each t ∈ [0, T ), the map

ft(·) : Σ → M is an immersion. In particular, when an immersion ϕ equals the

inclusion map ι : Σ → M , we also call f a deformation of Σ.

If there exists a deformation f of an immersion ϕ : Σ → M , the set ft(Σ) is a

k-dimensional immersed submanifold for each t ∈ [0, T ).

Definition 3.4. Let (M, g) be a Riemannian manifold, Σ a manifold, ϕ : Σ →
M an immersion. A mean curvature flow F = (Ft)t∈[0,T ) of ϕ is a deformation of

ϕ which is a smooth solution of the following partial differential equation:

∂

∂t
F (p, t) = Ht(p),

where Ht denotes the mean curvature vector field of the immersion Ft for each

t ∈ [0, T ).

It is known that in a Kähler-Einstein manifold, any mean curvature flow of a

Lagrangian immersion ϕ preserves its Lagrangian condition, i.e., if there exists a

mean curvature flow (Ft)t∈[0,t) of a Lagrangian immersion ϕ : L → M , then the

immersed submanifold Ft(L) is also Lagrangian for each time t ∈ [0, T ).

When M is the Euclidean space, there are some important classes of solutions

of mean curvature flows.

Definition 3.5. Let (Rn, g) be the Euclidean space equipped with the stan-

dard Riemannian metric g, Σ a manifold, ϕ : Σ → Rn an immersion, H a mean

curvature vector field of ϕ. If there exists a constant λ ∈ R and it holds that

(2) H(p) = λϕ⊥(p) (p ∈ Σ),

the solution of the mean curvature flow of the immersion ϕ is called a self-similar

solution, where ϕ⊥(p) denotes the normal part of the position vector ϕ(p) ∈ Rn.

In particular, such a solution is called a self-shrinker if λ < 0 and a self-expander

if λ > 0.

Definition 3.6. Let (Rn, g) be the Euclidean space equipped with the stan-

dard Riemannian metric g, Σ a manifold, ϕ : Σ → Rn an immersion, H a mean

curvature vector field of ϕ. If there exists a constant vector v ∈ Rn and it holds
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that

(3) H(p) = v⊥(p),

the solution of the mean curvature flow of the immersion ϕ is called a translating

soliton, where v⊥(p) denotes the normal part of the vector v at ϕ(p) ∈ Rn.

Under some assumptions, we can construct another deformation F from a de-

formation f with the use of Lie group actions.

Definition 3.7. Let M be a manifold, H a Lie group which acts on M ,

K a closed subgroup of H, V0 a submanifold of M such that V0 ⊂ MK , f :

V0 × [0, T ) → MK a deformation of V0. Suppose that for each t ∈ [0, T ) and an

immersed submanifold Vt := ft(V0), the map ϕVt : (H/K) × Vt → M is also an

immersion. Then we can define a deformation F of ϕV0 by

F : (H/K)× V0 × [0, T ) → M ; (hK, p, t) �→ hft(p) =: Ft(hK, p).

We call the deformation F the expansion of the deformation f by the H-action.

We express some symmetries on mean curvature vector fields of an immersion

ϕV as follows.

Definition 3.8. Let (M, g) be a Riemannian manifold, H a Lie group which

acts on M , K a closed subgroup of H, V a submanifold of M such that V ⊂ MK .

We say that V has the property (∗) with respect to the H-action if the map ϕV is

an immersion and it holds that

(∗) H(hK, p) = (Lh)∗pH(K, p) (h ∈ H, p ∈ V ),

where H is the mean curvature vector field of the immersion ϕV .

Definition 3.9. Let (M, g) be a Riemannian manifold, H a Lie group which

acts on M , K a closed subgroup of H, V0 a submanifold of M such that V0 ⊂ MK

and it has the property (∗) with respect to the H-action, f : V0 × [0, T ) → MK

a deformation of V0 in MK . If the deformation f has its expansion F and the

immersed submanifold Vt := ft(V0) also has the property (∗) with respect to the

H-action for each t ∈ [0, T ), we say that the deformation f preserves the property

(∗) with respect to the H-action.

The following theorem shows that we can restrict the condition of mean curva-
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ture flows to a condition on some part of ImϕV under some assumptions.

Theorem 3.10 ([23]). Let (M, g) be a Riemannian manifold, H a Lie group

which acts on M , K a closed subgroup of H, V0 a submanifold of M such that

V0 ⊂ MK and V0 has the property (∗) with respect to the H-action. Assume that

there exists a deformation f : V0 × [0, T ) → MK of V0 which has its expansion F

satisfying the following conditions:

(i) (restricted MCF condition) For any t ∈ [0, T ) and any p ∈ V0, it holds that

∂

∂t
Ft(K, p) = Ht(K, p),

(ii) the deformation f preserves the property (∗) with respect to the H-action,

where Ht is the mean curvature vector field of the immersion Ft : (H/K)×V0 → M

for each t ∈ [0, T ). Then the family of maps (Ft)t∈[0,T ) is the mean curvature flow

of the immersion ϕV0 .

In general, the restricted MCF condition in Theorem 3.10 is still a partial

differential equation. The next corollary tells us conditions that we can reduce the

equation to an ordinary differential equation.

Corollary 3.11 ([23]). Let (M, g) be a Riemannian manifold, H a Lie group

which acts on M , K a closed subgroup of H, V0 a submanifold of M such that

V0 ⊂ MK and V0 has the property (∗) with respect to the H-action. Assume that

there exists a vector field A along MK satisfying the following conditions:

(i.a) A generates a deformation f : V0 × [0, T ) → MK of V0 with its expansion

F , i.e., it holds that

∂

∂t
Ft(K, p) = Aft(p) (p ∈ V0, t ∈ [0, T )),

(i.b) it holds that

Ht(K, p) = Aft(p) (p ∈ V0, t ∈ [0, T )), and

(ii) the deformation f preserves the property (∗),

where Ht is the mean curvature vector field of the immersion Ft : (H/K)×V0 → M

for each t ∈ [0, T ). Then, the family of maps (Ft)t∈[0,T ) is the mean curvature flow

of the immersion ϕV0 .
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Remark 3.12. For a given submanifold V0 ⊂ MK , if we can find a vector

field A which satisfies the condition (i.b), then the condition (i.a) is an ordinary

differential equation.

At the end of this section, we show that the conditions of self-similar solutions

and translating solitons also can be reduced to conditions on some part of ImϕV

under some assumptions.

Proposition 3.13 ([23]). Let (Rn, g) be the Euclidean space equipped with

the standard Riemannian metric g, H a Lie group which acts on M preserving g,

K a closed subgroup of H, V a submanifold of Rn such that V ⊂ (Rn)K with the

property (∗). Suppose that for some constant λ ∈ R, it holds that

H(K,x) = λϕ⊥
V (K,x) (x ∈ V ),

where ϕ⊥
V (hK, x) denotes the normal part of the position vector ϕV (hK, x) ∈ Rn.

Then the immersion ϕV satisfies the self-similar condition (2), i.e., it holds that

H(hK, x) = λϕ⊥
V (hK, x) ((hK, x) ∈ (H/K)× V ).

Proposition 3.14 ([23]). Let (Rn, g) be the Euclidean space as above, H a Lie

group which acts on M preserving g, K a closed subgroup of H, V a submanifold

of Rn such that V ⊂ (Rn)K with the property (∗). Suppose that for some constant

vector v ∈ R, it holds that

H(K,x) = v⊥(K,x) (x ∈ V ),

where v⊥(hK, x) denotes the normal part of the vector v at ϕV (hK, x). Then the

immersion ϕV satisfies the translating soliton condition (3), i.e., it holds that

H(hK, x) = v⊥(hK, x) ((hK, x) ∈ (H/K)× V ).

4. Lagrangian immersions with symmetries

In this section, we show a way to construct a Lagrangian immersion in a sym-

plectic manifold by a moment map. Moreover, we show that an invariant, oriented

Lagrangian immersion in a Calabi-Yau manifold has the Lagrangian angle and the

mean curvature vector field with symmetries under some assumptions.

Proposition 4.1 ([23]). Let (M,ω) be a symplectic manifold, H a Lie group

which acts on M preserving ω and has a moment map µ : M → h∗, Vc a sub-
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manifold of M such that Vc ⊂ MK , ϕVc
: (H/K) × Vc → M ; (hK, p) �→ hp an

immersion. Assume that the following conditions hold:

(i) Vc is isotropic, and

(ii) (moment map condition) Vc ⊂ µ−1(c) for c ∈ Z(h∗).

Then the immersion ϕVc is isotropic. Conversely, if the immersion ϕVc is isotropic

and ImϕVc is connected, then the conditions (i) and (ii) hold.

Corollary 4.2 ([23]). In addition to the assumptions of Proposition 4.1, if

it holds that

dimH/K + dimVc = n,

then the map ϕVc is a Lagrangian immersion.

Next we discuss symmetries on Lagrangian angles and mean curvature vec-

tor fields which some Lagrangian immersions in Calabi-Yau manifolds have. The

overview is as follows. For a given pair of a Calabi-Yau manifold (M, I, ω,Ω) and

a Lie group H which acts on M , we define an element aH of the Lie coalgebra h∗

of H. Especially, it is shown that aH is in the center Z(h∗) of h∗. We consider

aH : h → R to be the the map which expresses rotations of the Calabi-Yau struc-

ture Ω for its transformations by the action of H. The covector aH yields some

vector field I[αH(·)]#· on some submanifold V ⊂ M . Under some assumptions, the

Lagrangian angle and the mean curvature vector of the Lagrangian immersion ϕV

are expressed by aH and I[αH(·)]#· respectively.

For this purpose, we begin with some fundamental facts as follows.

Let M be a manifold, H a Lie group which acts on M with the Lie algebra h,

K a closed subgroup of H with the Lie subalgebra k ⊂ h, p a point of MK . Then

the following two maps are well-defined and linearly isomorphic respectively:

h/k → TK(H/K); [ξ] �→ d

dt

∣∣∣∣
t=0

exp(tξ)K,(4)

h/k → Tp(H · p); [ξ] �→ ξ#p .(5)

So if we define a symbol [ξ]#p by a map h/k → Tp(H · p); [ξ] �→ [ξ]#p := ξ#p ,

this symbol is well-defined. We can define a symbol d
dt

∣∣
t=0

exp(t[ξ])K by a map

h/k → TK(H/K); [ξ] �→ d
dt

∣∣
t=0

exp(t[ξ])K := d
dt

∣∣
t=0

exp(tξ)K as well.

With the use of these facts, we can show the following proposition.
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Proposition 4.3 ([23]). Let (M, g) be a Riemannian manifold, H a Lie group

which acts on M , K a closed subgroup of H, b an element of h∗ such that k ⊂ Ker b.

Then we can define a map [β(·)] : MK → h/k; p �→ [β(p)] by

(6) ⟨b, [η]⟩ = gp
(
[β(p)]#p , η

#
p

)
.

The condition that k ⊂ Ker b in Proposition 4.3 is used for considering b ∈ h∗

to be in (h/k)∗.

Definition 4.4. Under the conditions of Proposition 4.3, we call the vector

field [β(·)]#· along MK defined by Proposition 4.3 the vector field generated by a

covector b ∈ h∗ with respect to g.

In addition, when there exists an almost complex structure I on M , we can

define a vector field I[β(·)]#· along MK and call it the vector field generated by a

covector b ∈ h∗ with respect to (g, I).

Next proposition shows a property which the vector field I[β(·)]#· has.

Proposition 4.5 ([23]). Let (M, I, ω, g) be a Kähler manifold, H a Lie group

which acts on M with the Lie algebra h and is Hamiltonian, i.e., it has a moment

map µ : M → h∗, K a closed subgroup of H with the Lie subalgebra k ⊂ h, b an

element of h∗ such that k ⊂ Ker b. Then, for any p ∈ MK , it holds that

(dµ)pIp[β(p)]
#
p = −b.

Corollary 4.6 ([23]). Suppose the setting of Proposition 4.5. Let p ∈ MK ,

c0 := µ(p) ∈ h∗. Assume that there exists the integral curve γp : [0, T ) → MK

generated by the vector field I[β(·)]#· with the initial condition γ(0) = p. Then it

holds that

µ(γp(t)) = ct, ct := c0 − tb.

Next we show a formula on transformations of the Calabi-Yau structure by

actions of Lie groups and define an element aH ∈ Z(h∗).

Proposition 4.7 ([22],[23]). Let (M, I, ω,Ω) be a connected Calabi-Yau man-

ifold and H a connected Lie group which acts on M preserving I and ω. Then there

exists aH ∈ Z(h∗) such that for any h ∈ H, it holds that

L∗
hΩ = e

√
−1⟨aH ,η1+···+ηl⟩Ω,
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where

η1, · · · , ηl ∈ h such that h = exp η1 · · · exp ηl.

The next proposition shows that we can consider the element aH to be the

differential map of a Lagrangian angle under some conditions.

Proposition 4.8 ([22],[23]). Let (M, I, ω,Ω) be a 2n-dimensional connected

Calabi-Yau manifold, H a connected Lie group which acts on M preserving I and

ω and has a moment map µ : M → h∗, K a closed subgroup of H such that H/K

is orientable, Vc an orientable submanifold of M such that Vc ⊂ MK satisfying the

following conditions.

(i) ϕVc is an immersion,

(ii) Vc is isotropic,

(iii) (moment map condition) Vc ⊂ µ−1(c) for c ∈ Z(h∗), and

(iv) dim(H/K) + dimVc = n.

Then the map ϕVc is a Lagrangian immersion by Corollary 4.2. Let θc be the

Lagrangian angle of ϕVc . Then it holds that

θc(hK, p) = θc(K, p) + ⟨aH , η1 + · · ·+ ηl⟩ (hK ∈ H/K, p ∈ Vc)

where aH is the element of Z(h∗) defined by Proposition 4.7, and h =

exp η1 · · · exp ηl.

For any k ∈ K, we have

θc(K, p) = θc(kK, p) = θc(K, p) + ⟨aH , κ1 + · · ·+ κl⟩

by Proposition 4.8, where k = expκ1 · · · expκl. So we have the following corollary.

Corollary 4.9 ([22],[23]). Under the conditions of Proposition 4.8, the K-

action preserves the Calabi-Yau structure Ω, i.e., it holds that

L∗
kΩ = Ω (k ∈ K).

Since we have k ⊂ ker aH by Corollary 4.9, we can consider the element aH ∈ h∗

to be one in (h/k)∗. Then we can define the vector field I[αH(·)]#· generated by

aH along Vc ⊂ MK with respect to (g, I). At the end of this section, we show that
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the mean curvature vector fields of some Lagrangian immersions are expressed by

I[αH(·)]#· .

Proposition 4.10 ([23]). Under the conditions of Proposition 4.8, for any

(hK, p) ∈ (H/K)× Vc, it holds that

Hc(hK, p) = (Lh)∗pIp

{
[αH(p)]#p +

(
gradϕVc

∗gθc(K, · )
)
p

}
,

where Hc is the mean curvature vector field of the immersion ϕVc
.

Corollary 4.11 ([23]). In addition to the conditions of Proposition 4.8,

assume that the Lagrangian angle θc is constant on {K} × Vc. Then it holds that

Hc(hK, p) = (Lh)∗pIp[αH(p)]#p ((hK, p) ∈ (H/K)× Vc).

5. Constructions of Lagrangian mean curvature flows

In this section, we apply Corollary 3.11 and Corollary 4.11 to construct La-

grangian mean curvature flows in Calabi-Yau manifolds by symmetries of Lie groups

which are not necessarily abelian. In particular, we construct Lagrangian mean

curvature flows with the use of generalized perpendicular symmetries. As special

cases, we also have methods of constructing special Lagrangian submanifolds.

Theorem 5.1 ([23]). Let (M, I, ω,Ω) be a 2n-dimensional connected Calabi-

Yau manifold, H a connected Lie group with the Lie algebra h which acts on M

preserving I and ω and has a moment map µ : M → h∗, K a closed subgroup of

H with the Lie algebra k such that H/K is orientable, m := dim(H/K), aH the

element of Z(h∗) defined by Proposition 4.7, I[αH(·)]#· the vector field along MK

generated by the covector aH with respect to (I, g), Vc0 an (n − m)-dimensional

orientable submanifold of M in MK ∩ µ−1(c0) for c0 ∈ Z(h∗) such that the map

ϕVc0
is an immersion.

Suppose that the vector field I[αH(·)]#· generates the deformation f : Vc0 ×
[0, T ) → MK of Vc0 with its expansion F , i.e., the formula

(7)
∂

∂t
Ft(K, p) = Ift(p)[αH(ft(p))]

#
ft(p)

(p ∈ Vc0 , t ∈ [0, T ))

holds and that for each t ∈ [0, T ) and ct := c0 − taH ∈ Z(h∗), the following

conditions hold:

(i) the submanifold Vct := ft(Vc0) is isotropic and
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(ii) the Lagrangian angle θct of the immersion ϕVct
is constant on {K} × Vct .

Then the family of maps (Ft)t∈[0,T ) is the Lagrangian mean curvature flow of the

immersion ϕVc0
, i.e., it holds that

∂

∂t
Ft(hK, p) = Ht(hK, p)

(
(hK, p) ∈ (H/K)× Vc0 , t ∈ [0, T )

)
.

Note that the notation Vct in Theorem 5.1 is appropriate by Corollary 4.6 and

that each ϕVct
is a Lagrangian immersion by Corollary 4.2.

Next we give more concrete conditions which realize the conditions of Theorem

5.1. For this purpose, we use another given Lagrangian submanifold L and Lie

group actions which are perpendicular to L. The following proposition shows the

conditions that the Lagrangian angle of the immersion ϕVc is expressed by the

covector aH ∈ Z(h∗) and the Lagrangian angle of L.

Proposition 5.2 ([22],[23]). Let (M, I, ω, g,Ω) be a connected 2n-

dimensional Calabi-Yau manifold and H a connected Lie group with the Lie algebra

h which acts on M preserving I and has a moment map µ : M → h∗, K a closed

subgroup of H with the Lie algebra k such that H/K is orientable, m := dim(H/K),

L an oriented Lagrangian submanifold of M with its Lagrangian angle θ, Vc an

(n−m)-dimensional submanifold of M in LK . Assume the following conditions:

(i) (generalized perpendicular condition) For any p ∈ Vc and any ξ ∈ h, the

followings hold:

(i.a) ξ#p ∈ T⊥
p L⊕ TpVc,

(i.b) ξ#p /∈ TpVc\{0}, and

(ii) (moment map condition) Vc ⊂ µ−1(c) for c ∈ Z(h∗).

Then Vc has a canonical orientation. Moreover, the Lagrangian angle θc of ϕVc

satisfies the following formula:

(8) θc(hK, p) = θ(p)− π

2
m+ ⟨aH , η1 + · · ·+ ηl⟩,

where h = exp η1 · · · exp ηl and aH is the element of Z(h∗) defined by Proposition

4.7.

We show the conditions that realize the conditions of Theorem 5.1 with the use

of Proposition 5.2.
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Theorem 5.3 ([23]). Let (M, I, ω,Ω) be a 2n-dimensional connected Calabi-

Yau manifold, H a connected Lie group with the Lie algebra h which acts on M

preserving I and ω and has a moment map µ : M → h∗, K a closed subgroup

of H with the Lie algebra k, m := dim(H/K), aH the element of Z(h∗) defined

by Proposition 4.7, I[αH(·)]#· the vector field along MK generated by the covector

aH with respect to (I, g), L an oriented Lagrangian submanifold of M with its

Lagrangian angle θ, Vc0 an (n−m)-dimensional submanifold of M in LK ∩µ−1(c0)

for c0 ∈ Z(h∗) such that the map ϕVc0
is an immersion.

Suppose that the vector field I[αH(·)]#· generates the deformation f : Vc0 ×
[0, T ) → LK of Vc0 with its expansion F , i.e., the formula (7) holds and that for

each t ∈ [0, T ), the following conditions hold:

(i) the generalized perpendicular condition in Proposition 5.2 holds and

(ii) the Lagrangian angle θ is constant on Vct (e.g. L is a special Lagrangian

submanifold).

Then the family of maps (Ft)t∈[0,T ) is the Lagrangian mean curvature flow of ϕVc0
.

Corollary 5.4 ([22],[23]). In addition to the settings in Theorem 5.3, if the

H-action preserves the Calabi-Yau structure Ω, i.e., it holds that aH = 0, then the

family of maps (Ft) is the stationary solution of the Lagrangian mean curvature

flow of the immersion ϕVc0
. That is, Ft ≡ F0 holds for any t and F0 is a special

Lagrangian immersion.

6. Examples of special Lagrangian submanifolds

In this section, with the use of generalized perpendicular symmetries as shown

in Corollary 5.4, we construct special Lagrangian submanifolds in the cotangent

bundle T∗Sn of the n-sphere Sn which equipped with the Stenzel metric. Before

that, we review some fundamental facts about the Stenzel metrics.

In [24], Stenzel constructed complete Ricci-flat Kähler metrics on the cotangent

bundles of compact rank one symmetric spaces, for example on the cotangent

bundle T∗Sn of the n-sphere Sn. We denote this Calabi-Yau structure on T∗Sn

by (T∗Sn, I, ωStz,ΩStz). We identify the tangent bundle and the cotangent bundle

of Sn as follows.

T∗Sn = {(x, ξ) ∈ Rn+1 × Rn+1 | ∥x∥ = 1, x · ξ = 0},

where “ · ” is the canonical real inner product on the Euclidean space Rn+1 and

∥x∥ :=
√
x · x for each x ∈ Rn+1. A cohomogeneity one SO(n+1)-action on T∗Sn
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is defined by h · (x, ξ) = (hx, (Lh)∗xξ) for h ∈ SO(n+ 1). The principal orbit at a

point (x, ξ) is a sphere bundle with a radius of ∥ξ∥.
Let Qn be a complex quadric hypersurface in Cn+1 defined by

Qn =

{
z = t(z1, · · · , zn+1) ∈ Cn+1

�����
n+1∑
i=1

z2i = 1

}
.

In [26], Szöke shows that the following map Φ is an SO(n + 1)-equivariant diffeo-

morphism from T∗Sn to Qn.

Φ : T∗Sn →Qn

∈ ∈

(x, ξ) �→ cosh(∥ξ∥)x+
√
−1

sinh(∥ξ∥)
∥ξ∥

ξ.

We can induce a complex structure I to Qn from Cn+1 by the map Φ. The Kähler

form ωStz is given by the following.

ωStz =
√
−1∂∂̄u(r2) =

√
−1

n+1∑
i,j=1

∂2

∂zi∂z̄j
u(r2)dzi ∧ dz̄j ,

where r2 = ∥z∥2 =
∑n+1

i=1 ziz̄i and u is a smooth real function which satisfies the

following ordinary differential equation:

(9)
d

dt
(U ′(t))n = cn(sinh t)n−1 (c = const. > 0),

where U(t) = u(cosh t). The functions U and u satisfy U ′(t) > 0, U ′′(t) > 0 and

u′(t) > 0 if t > 0 under appropriate choices of a constant of integration (See [24]).

We can verify that the SO(n + 1)-action preserves the Calabi-Yau structure

(T∗Sn, I, ωStz,ΩStz). So we see that the covector aH in Z(h∗) equals 0.

In [2], Anciaux gave a moment map µ : Qn → so(n + 1)∗ with respect to the

SO(n+ 1)-action which is defined by the following.

(µ(z))(X) = u′(r2)Iz ·Xz, (z ∈ Qn, X ∈ so(n+ 1)).

We use the following fact which was shown by Karigiannis–Min-Oo in [18] for

preparing an original special Lagrangian submanifold L. That is, a conormal bundle

T∗⊥N in T∗Sn for a submanifold N in Sn is a special Lagrangian if and only if N

is austere. In particular, a totally geodesic submanifold of Sn is austere.
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6.1. The case of H = U(1), L1 = T∗⊥S2, L2 = T∗⊥S1 ⊂ T∗S5

In this subsection, we construct special Lagrangian submanifolds, using abelian

U(1)-actions. We show two cases which include a case of strictly perpendicular

symmetries and a case of generalized perpendicular symmetries.

Let M be the cotangent bundle of 5-sphere T∗S5, L1 the conormal bundle of

a submanifold S2 ⊂ S5, and L2 the conormal bundle of a submanifold S1 ⊂ S5

defined by the following.

L1(∼= T∗⊥S2) =




(




x1

0

x3

0

x5

0



,




0

ξ2
0

ξ4
0

ξ6



)

�������������

∥x∥ = 1, ξj ∈ R (j = 2, 4, 6)




,

L2(∼= T∗⊥S1) =




(




x1

0

x3

0

0

0



,




0

ξ2
0

ξ4
ξ5
ξ6



)

�������������

∥x∥ = 1, ξj ∈ R (j = 2, 4, 5, 6)




.

L1 and L2 are special Lagrangian since S2 and S1 are totally geodesic in S5 re-

spectively.

Let H be a Lie group U(1) and define a diagonal U(1)-action by the following.

SO(2)× T∗S5 ∋ (h, (x, ξ)) �→



h

h

h


 · (x, ξ) ∈ T∗S5.

Here, we identify U(1) with SO(2). That is, this action is the Hopf-fibration

S5 → CP 2. The isotropy subgroup of this U(1)-action is trivial at any point

p ∈ Li for i = 1, 2. The moment map µ given by [2] is calculated as follows.

{
−K(∥ξ∥)(x1ξ2 + x3ξ4 + x5ξ6) on Φ(L1)\{∥ξ∥ = 0},
−K(∥ξ∥)(x1ξ2 + x3ξ4) on Φ(L2)\{∥ξ∥ = 0},
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where,

K(∥ξ∥) = u′(cosh(2∥ξ∥)) sinh(2∥ξ∥)
∥ξ∥

.

Let V
(i)
c := Li ∩ µ−1(c) (i = 1, 2) for c ∈ h∗. We can verify that the U(1)-action

satisfies the strictly perpendicular condition on V
(1)
c to L1 and the generalized

perpendicular condition on V
(2)
c to L2 by direct calculations. Thus we have the

following result.

Proposition 6.1 ([22]). For i = 1, 2, H · V (i)
c is a special Lagrangian sub-

manifold for any c ∈ h∗ if V
(i)
c is not the empty set.

The proof is based on Corollary 5.4 (See [22]).

6.2. The case of H = SO(2) × SO(2) × SO(3), L = T∗⊥S2 ⊂ T∗S6

In this subsection, we construct special Lagrangian submanifolds, using non-

abelian H-actions. In this case, we use the strictly perpendicular symmetries.

Let M be the cotangent bundle of 6-sphere T∗S6, L the conormal bundle of a

totally geodesic submanifold S2 ⊂ S6 defined by the following.

L(∼= T∗⊥S2) =




(




x1

0

x3

0

x5

0

0




,




0

ξ2
0

ξ4
0

ξ6
ξ7




)

���������������

∥x∥ = 1, ξj ∈ R (j = 2, 4, 6, 7)





.

Let H be a Lie group SO(2) × SO(2) × SO(3) and define an H-action by the

following.

H × T∗S6 ∋
(
h1, h2, h3, (x, ξ)

)
�→



h1 0 0

0 h2 0

0 0 h3


 · (x, ξ) ∈ T∗S6,

where, h1, h2 ∈ SO(2) and h3 ∈ SO(3). Note that H is non-abelian and the center

of the Lie coalgebra h∗ is given by Z(h∗) ∼= so(2)∗ ⊕ so(2)∗. This indicates that we

can expect to obtain two-parameter family of special Lagrangian submanifolds by

our method.

The moment map µ given by [2] is calculated as follows. Let ξij be the (n+1)×
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(n+1)-matrix defined by ξij = Eji −Eij , where Eij denotes the (n+1)× (n+1)-

matrix whose (i, j)-component is 1 and all the others are 0. Then we see that

h(∼= so(2)⊕ so(2)⊕ so(3)) = span{ξ12, ξ34, ξ56, ξ57, ξ67}.

For each (i, j) = (1, 2), (3, 4), (5, 6), (5, 7), (6, 7), define a map µij : Q6 → R by

µij(z) = ⟨µ(z), ξij⟩. Then by direct calculations, we have

µ12(z) = −K(∥ξ∥)x1ξ2,

µ34(z) = −K(∥ξ∥)x3ξ4,

µ56(z) = −K(∥ξ∥)x5ξ6,

µ57(z) = −K(∥ξ∥)x5ξ7,

µ67(z) ≡ 0

on Φ(L)\{∥ξ∥ = 0}, where

K(∥ξ∥) = u′(cosh(2∥ξ∥)) sinh(2∥ξ∥)
∥ξ∥

.

We set the following rank two subbundle L̂ ⊂ L so that the moment map condition

is satisfied on L̂.

L̂ =




(




x1

0

x3

0

x5

0

0




,




0

ξ2
0

ξ4
0

0

0




)

���������������

∥x∥ = 1, ξj ∈ R (j = 2, 4)




.

Let K be a closed subgroup of H defined by

K(∼= SO(2)) =

{[
E5

h

] ���� h ∈ SO(2)

}
,

where E5 is the unit 5× 5-matrix. We see that the isotropy subgroup at a generic

point p ∈ L̂ equals K.
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For (c1, c2) ∈ R2, define V(c1,c2) and W(c1,c2) by the following.

V(c1,c2) = L̂K ∩ {p ∈ M | µ12(p) = c1, µ34(p) = c2, µij(p) = 0},

W(c1,c2) = L̂ ∩ {p ∈ M | µ12(p) = c1, µ34(p) = c2, µij(p) = 0 },

where (i, j) = (5, 6), (5, 7), (6, 7). We can verify that the H-action satisfies the

strictly perpendicular condition on V(c1,c2) to L by direct calculations. Thus we

have the following result.

Proposition 6.2 ([22]). For any (c1, c2) ̸= (0, 0) ∈ R2 such that V(c1,c2) is

not the empty set, H · V(c1,c2) is a special Lagrangian submanifold, and H ·W(0,0)

is a union of five connected special Lagrangian submanifolds.

The former of this claim is shown by Corollary 5.4.

W(0,0) includes non-principal points and is not a smooth manifold. We can

verify that it is a union, which is not disjoint, of the following five connected

submanifolds.

W(0,0) = WS2

(0,0) ∪WS1×R
(0,0),(1) ∪WS1×R

(0,0),(3) ∪WR2

(0,0),(1) ∪WR2

(0,0),(−1),

where

WS2

(0,0) =




(




x1

0

x3

0

x5

0

0




,0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥x∥ = 1




, WS1×R
(0,0),(1) =




(




0

0

x3

0

x5

0

0




,




0

ξ2
0

0

0

0

0




)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥x∥ = 1,

ξ2 ∈ R




,

WS1×R
(0,0),(3) =




(




x1

0

0

0

x5

0

0




,




0

0

0

ξ4
0

0

0




)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥x∥ = 1,

ξ4 ∈ R




, WR2

(0,0),(ϵ) =




(




0

0

0

0

ϵ

0

0




,




0

ξ2
0

ξ4
0

0

0




)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξi ∈ R,
i = 2, 4




,

and ϵ = ±1. We see that each set WA
(0,0) above is a 2-dimensional connected
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submanifold of T∗S6 diffeomorphic to A. We can not apply our method to each

WA
(0,0), since they have non-principal points. However we can directly verify that

each H · WA
(0,0) for WS2

(0,0), W
S1×R
(0,0),(j)(j = 1, 3), and WR2

(0,0),(ϵ)(ϵ = ±1) is a special

Lagrangian submanifold of T∗Sn diffeomorphic to S6, T∗⊥S4, and T∗⊥S2 respec-

tively.

Thus we obtain two-parameter family of special Lagrangian submanifolds in

T∗S6. We can verify that H acts on H · V(c1,c2) with cohomogeneity two.

7. Examples of Lagrangian mean curvature flows

In this section, we construct a self-similar solution of a Lagrangian mean cur-

vature flow in Cn by Theorem 5.3. We use strictly (not generalized) perpendicular

symmetries of a non-abelian Lie group U(1)× SO(3).

Let (C4, I, ω,Ω, g) be a 4-dimensional complex Euclidean space equipped with

the standard Calabi-Yau structure, where I, ω,Ω and g are the complex structure,

the Kähler form, the Calabi-Yau structure, and the Kähler metric respectively. Let

L be a special Lagrangian submanifold defined by

L :=



(




x1

x2

x3

x4


 ,0) ∈ R4 × R4

∣∣∣∣∣∣∣∣
xi ∈ R (i = 1, 2, 3, 4)




∼= R4.

Let H be a Lie group U(1) × SO(3). For λ1, λ2 ∈ Z, we define an action of H to

C4 by

H × C4 ∋ (e
√
−1θ, h) · z :=




1

h







e
√
−1λ1θ

e
√
−1λ2θE3







z1
z2
z3
z4


 ∈ C4.

We can verify this action preserves I and ω by direct computations.

Let K be a closed subgroup of H defined by

K :=







1

1

k




∣∣∣∣∣∣∣∣∣∣∣

k ∈ SO(2)




∼= SO(2).



160 A. Ochiai

Then we have

LK =



(




x1

x2

0

0


 ,0) ∈ R4 × R4

��������
x2 ̸= 0




.

We can verify that the action of H is strictly perpendicular to L on LK by direct

computations.

Next we consider a moment map µ. Let h be the Lie algebra of H. The

coalgebra h∗ is u(1)∗ ⊕ so(3)∗. The center Z(h∗) of h∗ is u(1)∗. Define ξ1 ∈ h by

exp(tξ1) · z =




1

E3







e
√
−1λ1t

e
√
−1λ2tE3







z1
z2
z3
z4


 .

Then by direct calculations, we have

⟨µ(z), ξ1⟩ =
1

2
(λ1|z1|2 + λ2|z2|2 + λ2|z3|2 + λ2|z4|2).

So we define a submanifold Vc by

Vc := LK ∩ µ−1(cξ1) =



(




x1

x2

0

0


 ,0) ∈ LK

��������
1

2
(λ1x

2
1 + λ2x

2
2) = c




,

where ξ1 ∈ h∗ is the dual element of ξ1 and c ∈ R. We see that dimVc +

dim(H/K) = 4 = (dimR C4)/2. Assume c ̸= 0. Then we see that Vc is an el-

lipse if λ1 > 0 and λ2 > 0, that it is a hyperbola if λ1λ2 < 0 and that Vc is the

empty set if λ1 < 0 and λ2 < 0.

We can calculate that aH = (λ1 + 3λ2)ξ
1. From this formula, we also see that

the vector field I[αH(·)]#· is given by

Iz[αH(z)]#z = − λ1 + 3λ2

λ2
1x

2
1 + λ2

2x
2
2




λ1x1

λ2x2

0

0


 ∈ TzL

K
(
z ∈ LK

)
.
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Proposition 7.1 ([23]). Fix c0 ̸= 0. Then the map ϕVc0
:
((

U(1) ×

SO(3)
)
/SO(2)

)
× Vc0 → C4 generates a Lagrangian mean curvature flow (Ft).

Moreover, this flow (Ft) is a self-similar solution of the mean curvature flow. That

is, for kc0 := −(λ1 + 3λ2)/c0, the flow Ft is a self-shrinker if kc0 < 0 and is a

self-expander if kc0 > 0.

The former of this claim is based on Theorem 5.3. The latter is shown by

Proposition 3.13. This example is the generalization of ones by Lee–Wang [20] and

Konno [19].
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