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Variations of complex and hyperbolic structures on

Riemann surfaces

–a comparative viewpoint–

Sumio Yamada

Abstract. A Riemann surface of higher genus has two impor-

tant geometric structures; the complex structure and the hyperbolic
metric. The Teichmüller space of Riemann surfaces hence can be re-
garded as a catalogue of both complex structures and hyperbolic met-
rics. In this article, we make a comparative study of these two charac-

terizations of the Teichmüller space, by utilizing a natural L2-product
and a natural symplectic form defined on the space of complex struc-
tures, both of which behave nicely under the diffeomorphism group
action.

1. Introduction

Otto Teichmüller was instrumental in making the theory of moduli on Riemann

surfaces geometric. As it is well known, Riemann initiated the deformation theory

of the Riemann surface, and it was then reinterpreted as the deformation theory

of Fuchsian groups, initiated by Klein, Lie, Poincaré, and the investigation had

matured as the representation theory. On the other hand, the global geometry of

the moduli space of Riemannn surface had been left undeveloped for more than

fifty years, until Teichmüller came with the idea of utilizing the theory of quasi-

conformal mappings and holomorphic quadratic differentials. Shortly after the

Second World War, A. Weil [15], along with L. Ahlfors, was aware of the importance

of Teichmüller’s work, and encouraged the development of the field. Ahlfors and

L. Bers laid the foundation using the one-dimensional complex analysis. Note that

the quasi-conformality is devoid of the metric structures on Riemann surfaces, only

dependent of the complex/conformal structure of the surface. This approach was

radically challenged in the 1970s, when W. Thurston appeared and demonstrated

the effectiveness of the hyperbolic geometry in understanding the moduli theory of

Riemann surface.
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It is ironic that the uniformization theorem of Poincaré and Koebe was left

alone over many decades in this context. The hyperbolic geometry then (early

1970s) was considered as a “gadget”, a term coined by V. Poénaru [13], something

curious, but not a subject of essential importance and depth. The rest is history,

as they say, and we are all aware of the subsequent fertile ground the hyperbolic

geometry has provided to geometry and topology, perhaps most notably in higher

dimensions in the context of the Geometrization Theorem conjectured by Thurston,

completed by R. Hamilton and G. Perelman.

The goal of this article is to give a concise and clear perspective to the Te-

ichmüller theory, with the convoluted history partially described above in mind.

What is new here is based on a recent exposition of N. A’Campo [1] who has

presented the Teichmüller space as a submanifold within the space of complex

structures. It utilizes a symplectic structure defined on the deformation space of

complex structures. The exposition is organized so that the hyperbolic geometry,

and the consequent Weil-Petersson geometry of the Teichmüller space [18] is first

presented, and then, in contrast, A’Campo’s symplectic construction is explained.

2. Teichmüller Spaces of closed Riemann surfaces

Let Σ be a compact surface without boundary of genus g ≥ 1 (when g = 0

the situation is very simple.) By the existence theorem of an isothermal coordinate

system by Korn and Lichtenstein, any Riemannian metric g can be identified with a

Riemann surface, namely a Riemannian surface is a Riemann surface. The universal

covering space of the surface is either the whole plane or the upper half space, and

thus the surface can be uniquely equipped with a Euclidean metric when g = 1

or a hyperbolic metric when g > 1. This is the statement of the Uniformization

Theorem. Hence we can think of the spaceMK , (K ≡ 0,−1) of constant curvature

metrics as a subset of the space of smooth metrics M on Σ, the latter space being

fibered by the elements of MK so that each fiber consist of the metrics conformal

to a constant curvature/uniformized metric G ∈ M.

The Teichmüller space is then defined as the quotient space

P : MK → MK/Diff0Σ =: Tg

where the equivalence relation is given as

G1 ∼ G2 ⇔ G2 = φ∗G1

for some φ in Diff0Σ. Here Diff0Σ is the identity component of the orientation-
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preserving diffeomorphism group DiffΣ. Recall that the map φ : (Σ, φ∗G) → (Σ, G)

is an isometry. Note that in defining the identity element of Diff0Σ one requires a

reference Riemann surface (Σ0, G0) such that it acts as the domain of Id : Σ0 → Σ.

Namely (Σ0, G0) gives homotopy markings on the target surface.

By an important theorem of Earle-Eells [5], it is known that the identity com-

ponent Diff0Σ ⊂ DiffΣ consists of diffeomorphisms homotopic to the identity map.

The moduli space Mg is defined as

P̃ : MK → MK/DiffΣ =: Mg

where the equivalence relation is given as

G1 ∼ G2 ⇔ G2 = φ∗G1

for some φ in DiffΣ. Thus the Teichmüller space projects down to the moduli space

with the fibers identified with the discrete infinite group DiffΣ/Diff0Σ, called map-

ping class group, or Teichmüller modular group. We denote this group by Map(Σ).

We define now for a later use the full diffeomorphism group �DiffΣ which, in addition

to the elements of DiffΣ, also contains the orientation-reversing diffeomorphisms

of Σ. Then the quotient group �DiffΣ/Diff0Σ is called the extended mapping class

group M̂ap(Σ).

3. Riemannian Structures of L2-pairing

3.1. L2-pairing and its Levi-Civita connection

3.1.1. L2-pairing of deformation tensors

The tangent space TGM of the space M at a metric G is the space of smooth

symmetric (0, 2)-tensors on Σ. This linear space has a natural L2-pairing defined

as follows.

⟨h1, h2⟩L2(G) =

∫

Σ

⟨h1(x), h2(x)⟩G(x)dµG(x)

where the hi’s are symmetric (0, 2)-tensors indicating the directions of deformation

of G along the path G+ εhi + o(ε). The integrand can be rewritten, using a local

coordinate chart, as

⟨h1(x), h2(x)⟩G(x) =
∑

1≤i,j,k,l≤2

GijGkl(h1)ik(h2)jl

= Tr
(
(G−1 · h1) · (G−1 · h2)

)



176 S. Yamada

where A · B denotes matrix multiplication and TrA is the trace of the matrix A.

This quantity is well defined, meaning it is invariant under change of coordinate

charts. In particular it can be simplified by choosing a geodesic normal coordinate

system where Gij(p) = δij at its center p as

⟨h1(p), h2(p)⟩G(p) =
∑
j,k

(h1)
j
k(p)(h2)

k
j(p) (= Tr(h1 · h2))

the trace of the product of 2× 2 matrices. From now on, we will use the Einstein

notation of indices, omitting the summation symbols.

3.2. Tangential conditions and the Weil-Petersson metric

When G is a uniformizing metric of its conformal class, then the tangent space

TGM decomposes into the deformation of G preserving the constant curvature

condition, and its complement. This can be formally stated as follows.

In dimension two, the Riemann curvature tensor is completely determined by

one scalar function, the sectional curvature K. Then the Ricci curvature tensor is

of the form

Rij = KGij

namely G is an Einstein metric. The well-known variational formula (see [3]) of

the Ricci tensor under a deformation G+ εh at ε = 0 gives, after taking its trace:

GijṘij = −△GTrGh+ δGδGh.

Hence we have the following variational formula for the sectional curvature under

the deformation of G in the direction of h:

K̇ = GijṘij + ĠijRij

= GijṘij − hijKGij

= −△TrG h+ δGδGh−K TrG h.

We denote the quantity −(△G +K) TrG h+ δGδGh by LGh, where the differential

operator LG is sometimes called Lichnerowicz operator. Hence if the deformation

tensor h is tangential to MK , then h satisfies the following linear equation, which

is the curvature-preserving condition

LGh = 0.

Having characterized the tangential condition to MK , we additionally require
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the deformation tensor h to be L2-perpendicular to the diffeomorphism group

Diff0Σ action. Consider a one-parameter family of diffeomorphisms φt : Σ → Σ

with φ0 = Id|Σ and let d
dtφt|t=0 = X be a vector field on Σ. Recall that the Lie

derivative LXG of the tensor G in the direction X is defined by

LXG =
d

dt
φ∗
tG

���
t=0

.

Take a chart which gives a geodesic normal coordinate centered at p. Then

LXG(p) = Xi;j +Xj;i

as Gij = δij and Gij;k = 0 at p. The condition that a symmetric (0, 2)-tensor h is

L2-perpendicular to the diffeomorphism group Diff0Σ action is described as

0 = ⟨h, LXG⟩L2(G)

for all X ∈ X(Σ). The right hand side can be rewritten, with respect to a geodesic

normal coordinate, as

⟨h, LXG⟩L2(G) =

∫

Σ

⟨h(x), LXG(x)⟩G(x)dµG(x)

=

∫

Σ

hij(Xi;j +Xj;i) dµG(x)

= 2

∫

Σ

hijXi;j dµG(x)

= −2

∫

Σ

hij;jXi dµG(x)

= −2⟨δGh,X⟩L2(G),

where integration by parts. or equivalently the divergence theorem, has been used.

There is no boundary contribution as the surface Σ is closed. Therefore, for the

tensor h to be L2-perpendicular to the diffeomorphism group action, h is required

to be divergence-free; δGh = 0. Note that δGh is here regarded as a tensor of (1, 0)-

type, that is, a vector field. In the normal coordinate system, the divergence-free

condition is the same as (δGh)i =
∑

i hij;j = 0.

Now let h be a deformation tensor tangential to M−1 at a hyperbolic metric

G. Then h satisfies the Lichnerowicz equation LGh = 0;

−(△G +K) TrG h+ δGδGh = 0



178 S. Yamada

In addition, we require h to be perpendicular to the diffeormorphism action, which

implies δGh = 0, which in turn says that h satisfies −(△G +K) TrG h = 0. When

K = 0,−1 which are the cases we are interested in, the linear partial differential

equation

−(△G +K) TrG h = 0

has only the trivial solution on the closed surface, forcing an additional condition

TrG h = 0.

Therefore, we have so far characterized the conditions that a tangential vector

to the Teichmüller space Tg = MK/Diff0Σ needs to satisfy; namely the trace-free

condition

TrG h = 0

which is hii = 0 in a normal coordinate system, and the divergence-free condition,

also called the transverse condition

δGh = 0.

We can now define the Weil-Petersson metric on Teichmüller space.

Definition 3.1 (Weil-Petersson metric [7]). The L2-pairing of TGM
restricted to the trace-free, divergence-free tensors is called Weil-Petersson metric

on the Teichmüller space T = MK/Diff0Σ.

As a 2× 2 matrix, the tangential tensor h ∈ TGT can be expressed as

(
h11 h12

h12 −h11

)

with respect to a geodesic normal coordinate system centered at a point p in Σ.

The integrand of the Weil-Petersson pairing evaluated at p becomes 2(h2
11 + h2

12).

Then the divergence-free condition is equivalent to the Cauchy-Riemann equation

for (h11 − ih12)(z) at the origin. We next look into this situation more closely.

3.3. Weil-Petersson metric and Weil-Petersson cometric

First from the discussion in modeling the Teichmüller space as a homogeneous

space of QS(Γ) for the Fuchsian group Γ, without loss of generality, by using a

Möbius transformation we may assume any given point p to be the origin O of

the Poincaré disc. Let z = x + iy be the standard Euclidean coordinate system
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at the origin. Note that this coordinate system matches with the geodesic normal

coordinate system at O(= p), namely G = λ(z)(dx2 + dy2) with λ(O) = 1 and

∂λ|O = 0, as the first derivatives of 4/(1− |z|2)2 at z = 0 all vanish, which in turn

makes all the Christoffel symbols vanish. Then the function (h11 − ih12)(z), where

these indices denote the isothermal coordinates x and y, is holomorphic in z at the

origin.

We recall that the cotangent space of Teichmüller space T ∗
[G]T at a conformal

structure [G] has been identified with the space QD(Σ) of holomorphic quadratic

differentials on the Riemann surface (Σ, [G]). Thus the correspondence between

the tangent vectors and the cotangent vectors is

h11 dx⊗ dx+ h12 dx⊗ dy + h12 dy ⊗ dx+ (−h11) dy ⊗ dy ←→ (h11 − ih12)(z)dz
2,

the former with respect to a geodesic normal coordinate chart, and the latter

with an isothermal coordinate chart. The Weil-Petersson cometric defined for the

elements of QD(Σ) has the form

⟨h∗
1, h

∗
2⟩L2(G) =

∫

Σ

ϕ(z)ψ(z)
|dz|2

ρ2(z)

where h∗
1(z) = ϕ(z)dz2 and h∗

2(z) = ψ(z)dz2 locally, and the hyperbolic metric G

with respect to the isothermal coordinate z is given as ρ2(z)|dz|2. It is clear from

the preceding argument that the two L2-parings coincide, when restricted to the

respective deformations of trace-free divergence-free tensors, and of holomorphic

quadratic differentials.

3.4. L2-decomposition theorem of Hodge-type

We consider the L2-decomposition of the tangent space TGM. After having

characterized the tangent vectors to the Teichmüller space M−1/Diff0Σ, it seems

unnecessary to further investigate the linear structure. However, the precise for-

mulation of the L2-decomposition becomes crucial in formulating the nonlinear

strucutre, namely the curvature of the spaces. The following statement is an

adaptation to dimension two of the theorem by Fischer-Marsden [6] concerning

the decomposition of the deformation space of a constant scalar curvature met-

ric in higher (> 2) dimensions. It should be remarked that in the 1980s, Fischer

and Tromba [7, 8, 14] undertook the task of rewriting Teichmüller theory from a

Riemannian geometric viewpoint. In particular, they laid out the decomposition

theory of the deformation tensors in TGM−1. Below, we develop a theory where

the decomposition of the bigger linear space TGM = TGM−1 ⊕ (TGM−1)
⊥ is
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addressed.

We have already identified the adjoint operator of the divergence operator δG
with the Lie derivative of G up to a constant;

⟨h, LXG⟩L2(G) = −2⟨δGh,X⟩L2(G)

which in turn can be stated as

δ∗G : X �→ −1

2
LXG

for X ∈ X(Σ), the space of smooth vector fields on Σ.

We can also write down the adjoint operator of the Lichnerowicz operator LG

by noting the following:

⟨L∗
Gf, h⟩L2(G) = ⟨f,LGh⟩L2(G)

=

∫

Σ

f(x)
[
(−△G −K) TrG h+ δGδGh

]
(x) dµG(x)

=

∫

Σ

⟨{(−△G −K)f}G+HessGf, h⟩G(x) dµG(x).

Hence

L∗
Gf = (−△Gf −Kf)G+HessGf.

For the following decomposition theorem [18], we restrict ourselves to the case

K ≡ −1, i.e. when the surfaces are uniformized by hyperbolic metrics.

Theorem 3.2. Suppose that G is a hyperbolic metric on Σ and that h is

a smooth symmetric (0, 2)-tensor defined over Σ. Then there is a unique L2-

orthogonal decomposition of h as a tangent vector in TGM,

h = PG(h) + LXG+ L∗f,

where PG(h) is the projection of h onto TGT , LXG is a Lie derivative and L∗
Gf is a

tensor perpendicular to M−1. Here the vector field X solves the following equation

uniquely

δGδ
∗
GX = −δGh
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and is smooth, the function f solves the following equation uniquely

LGL∗
Gf = LGh

and is smooth. Consequently PG(h) is uniquely determined to be a smooth tensor

given by

PG(h) = h− LXG− LG.

Each of the three terms belongs to each of the mutually L2-orthogonal components

TGM = TGT ⊕L2(G) TGDiff0Σ⊕L2(G) (TGM−1)
⊥.

We remark that this decomposition can be called of Hodge type for it identifies

the tangential directions to Teichmüller space with the intersection of the kernel

of the differential operator δG and the kernel of LG; for both of those there are

associated elliptic operators δGδ
∗
G and LGL∗

G.

Proof of Theorem 3.2. The differential operators δGδ
∗
G and LGL∗

G are both ellip-

tic, self-adjoint, and with trivial kernel (and hence trivial co-kernel). The trivi-

ality of the kernel of δGδ
∗
G follows from first noting that 0 = ⟨δGδ∗GX,X⟩L2(G) =

⟨δ∗GX, δ∗GX⟩L2(G) implies δ∗GX = 0 and then from the non-existence of Killing vec-

tor fields on Σ due to the negative curvature. The triviality of the kernel of LGL∗
G

follows as 0 = ⟨LGL∗
Gf, f⟩L2(G) = ⟨L∗

Gf,L∗
Gf⟩L2(G) implies L∗

Gf = 0. By taking

the trace of the equation L∗
Gf = 0, we obtain −△Gf +2f = 0 which implies f ≡ 0.

This shows, by the standard theory of linear equations of elliptic type [9], that one

can solve each of the two equations uniquely to specify the vector field X = X(h)

and the function f = f(h), given the data h.

In showing the L2-orthogonality, we need the following two lemmas, which

trigger a series of orthogonal relations.

Lemma 3.1. For any vector field Y on Σ, we have LGLY G = 0.

This follows from the simple observation that LY G is a deformation tensor

induced by a one-parameter family of isometries ϕ∗
tG with ϕ̇0 = Y , in particular

preserving the curvature constraint, hence an element of TGM−1, which is the

kernel of the differential operator LG.

Lemma 3.2. For any smooth function ϕ on Σ, we have δGL∗
Gf = 0.
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Proof of Lemma 3.2. First choose a geodesic normal coordinate chart centered at

p, {xi} so that G = δij and Gij;k = 0 for all i, j ad k where “; ” stands for the

covariant derivative. Then

δGL∗
Gf = δG{(−△Gf + f)G+HessGf}

= −{△Gf + f}jδij + fij;j

= −{△Gf + f}jδij + fjj;i +Rijfj

= 0

where the Ricci identity is used to interchange the order of the covariant derivatives

for the second equality, and Rij = −δij on the hyperbolic surface Σ. □

We remark that an immediate consequence of the second lemma is that tensors

of type LY G and type L∗
Gϕ are mutually L2-perpendicular for an arbitrary vector

field Y and an arbitrary function ϕ, due to the equality ⟨δGL∗
Gϕ,−Y ⟩L2(G) =

⟨L∗
Gϕ,LY G⟩L2(G).

Hence we get the first orthogonality:

⟨LXG,L∗
Gf⟩L2(G) = 0.

By projecting h to TGT and to (TGM−1)
⊥ respectively, we have

⟨PG(h),L∗
Gf⟩L2(G) = ⟨h− LXG− L∗

Gf,L∗
Gf⟩L2(G)

= ⟨LGh− LGLXG− LGL∗
Gf, f⟩L2(G)

= ⟨LGh− LGL∗
Gf, f⟩L2(G)

= 0.

Finally the orthogonality between PG(h) and LXG can be checked by

⟨PG(h), LXG⟩L2(G) = ⟨h− LXG− L∗
Gf, LXG⟩L2(G)

= ⟨δGh− δGLXG− δGL∗
Gf,−X⟩L2(G)

= ⟨δGh+ δGδ
∗
GX,−X⟩L2(G)

= 0.

We have used above the fact that f and X solve the elliptic system

LGL∗
Gf = LGh, δGδ

∗
GX = −δGh
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uniquely.

Hence the L2-decompositon has been achived. □

4. Space of complex structures

4.1. Complex Sturctures and J-fields

On the surface Σ, an almost complex structure J defines an orientation pre-

serving linear endomorphism on each tangent space

J : TpΣ → TpΣ with J ◦ J = −Id.

The chosen orientation here is left-oriented. In two dimensions, due to the existence

of isothermal coordinate system z in a neighborhood of each point, one can identify

J with the multiplication by i : z �→ iz, which we denote by mi via

J =

(
0−1

1 0

)
and J

(
x

y

)
=

(
−y

x

)

This is equivalent to saying that in two dimensions, an almost complex structure is a

complex structure, namely it is integrable. The space of all the compex structures

on Σ is denoted by J (TΣ). The goal of this section is to introduce a natural

topology, a natural symplectic structure, and a natural L2-symplectic structure, as

well as an L2-metric.

In doing so, we will see that with the natural diffeomorphism group action, the

Teichmüller space appears as an embedded submanifold in J (TΣ), give under a

symplectic splitting, which should be contrasted to the L2-decomposition of the

Weil-Petersson geometry.

J (TΣ) restricted to a point p, denoted by J (TpΣ), gives a linear endomorphism

Jp : TpΣ → TpΣ woth J2 = Id, which, with the isothemral coordinates, is identified

with an element of Hom(R2,R2). Indeed we have the following characterization (see

[1] for the proof.)

Proposition 4.1. The set J (TpΣ) is canonically isomorphic to the hyperbolic

plane:

H = {J ∈ Hom(R2,R2) | J ◦ J = −IdR2 , J left-oriented }
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where the identification is given by

J =

(
h −h2−1

k

k −h

)
with h, k ∈ R, k > 0

and z = h
k + i 1k is a point on the Poincaré upper half-plane H.

We note here that z = h
k + i 1k is the fixed point of

(
h −h2−1

k

k −h

)

regarded as a fractional linear transformation on the upper half-plane.

One can introduce a L∞-distance function on J (TΣ) by

dJ (TΣ)(J1, J2) = sup
p∈Σ

distH2((J1)p, (J2)p),

which in turn introduces a topology to the set J (TΣ). In particular, given a pair

of complex structures J1, J2, which we will call J-fields interchangeably, one can

connect them via the constant-speed geodesics Jp(t) in each J (TpΣ) ∼= H2, and

thus the space J (TΣ) of complex structures defined on Σ is path-connected as

an infinite dimensional manifold. In fact, J (TΣ) is contractible, as the fiber-wise

contractibility induces that of the whole space.

We can linearize this picture by considering the family of the tangent vectors

{Jp(t)}p∈Σ as an endomorphism of the tangent bundle H : Σ → TΣ. Indeed

by looking at a one-parameter family of endomorphism deviating from a complex

structure J

(J + εH)2 = −Id + ε(H ◦ J + J ◦H) + ε2H ◦H

H needs to satisfy the anti-commuting property Hp ◦Jp+Jp ◦Hp = 0 at each point

p on Σ. Hence we have identified

Proposition 4.2. The tangent space of J (TΣ) consists of (1, 1)-tensors

which anti-commute with J :

TJJ (TΣ) = {H : Σ → End(TΣ) | ∀p Hp ◦ Jp + Jp ◦Hp = 0}

Now define J◦ : TJJ (TΣ) → TJJ (TΣ) by J◦(H) = J ◦ H. First note that

J ◦ (J ◦H) + (J ◦H) ◦ J = 0 and that J◦ ◦ J◦ = −IdTJJ (TΣ). It can be shown in
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[1] that

Proposition 4.3. The map J◦ is a natural complex structure on the manifold

J (TΣ), namely the group of orientation preserving diffeomophisms of Σ acts by

the J◦-holomorphic automorphisms of J (TΣ).

Here a diffeomorphism ϕ : Σ → Σ is a J◦-holomorphic automorphism if

dϕ ◦ J◦ = J◦ ◦ dϕ.

The most important example of J-field is given as (R2, J) where J is constant over

the manifold R2 and

J =

(
0−1

1 0

)

where R2 is equipped with the standard Cartesian coordinates. This J-field can

be defined on the quotient space of the flat torus Σ = R2/Γ0 where Γ0 = Z + iZ.
As we have seen above, the set J (TpΣ) is identified with the hyperbolic plane H2.

This gives a representation of the space of J-fields on R, and hence on the quotient

space; the flat torus Σ = R2/Γ0. Instead of moving J around, equivalently one can

move the Deck transformation group Γ where Γ is a lattice given by Z + τZ with

Im τ > 0, which is perhaps more familiar and better known model of the moduli

space of the flat tori.

4.2. Symplectic Structures on J (TΣ)

Next we define a pre-symplectic structure ω◦ on J (TΣ). First note here that

we are using the term “Riemann surface” (Σ, c) where c stands for a conformal

structure and a “J-surface” (Σ, J) with a J-structure interchangeably. Given J in

J (TΣ), let Uα be a complex coordinate chart on Σ so that J is identified as the

multiplication

mi : z = x+ iy �→ iz = −y + ix, or equivalently

(
0−1

1 0

)
.

We denote this complex structure by J0 for this locally defined canonical coordi-

nates. Then a tangent vector H ∈ TJJ (TΣ) is, locally on Uα expressed as

Hα(z) =

(
a(z) b(z)

b(z) −a(z)

)
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so that

J ◦H +H ◦ J =

(
b(z) a(z)

−a(z)−b(z)

)
+

(
−b(z) a(z)

a(z) b(z)

)
= 0

One can define a path of J-field through J0 with its velocity vector H by

Eε
H =

1√
1− ε2(a2 + b2)

(
εa(z) −1 + εb(z)

1 + εb(z) −εa(z)

)

for sufficiently small ε. Furthermore one can extend the tangent vector H in

TJ0J (TΣ) to a tangent vector H̃ in a neighborhood UJ0 in J (TΣ) by

H̃ε := H +
1

4
Tr(H ◦ Eε

H + Eε
H ◦H)Eε

H ,

We can now define a nondegenerate closed differential 2-form ω◦
J on the Fréchet

manifold J (TΣ) with values in C∞(Σ) by

ω◦
J(H,K) = −TrHJK

for tangent vector H and K in TJJ (TΣ), where HJK are the matrix multiplica-

tions under the local complex/isothermal coordinates.

The skew-symmetry of ω◦
J follows from TrAB = TrBA as well as the fact that

the elements of TJJ (TΣ) anti-commute with J . The fact that it is a closed form

is due to the Cartan formula

dω◦(H̃, K̃, L̃) = H̃ω◦(K̃, L̃)− K̃ω◦(H̃, L̃) + L̃ω◦(H̃, K̃)−
ω◦([H̃, K̃], L̃) + ω◦([H̃, L̃], K̃)− ω◦([K̃, L̃], H̃).

and the fact that JKHL + KHLJ = 0. Here H̃ denotes an extension of H in a

neighborhood of J in J (TΣ). To see the vanishing of dω◦(H̃, K̃, L̃), expand each

terms into the form of traces among K,H,L at J , and check that they all cancel.

We also note that for

H =

(
a(z) b(z)

b(z) −a(z)

)
, ω◦

J(H, JH) = 2(a2 + b2) > 0

for H ̸= 0.

Here the 2-form ω◦ is C∞(Σ)-valued, and to make it R-valued, one can integrate
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over the surface Σ:

ω◦,µ(H,K) :=

∫

Σ

ω◦(H(z),K(z))dµ

where dµ is the hyperbolic volume form induced from the Unifomization Theorem.

Then the symplectic form is indeed the Weil-Petersson Kähler form.

4.3. Space of J-fields as a symplectic product

We have identified, in the dimension two, the space of conformal structures on

Σ with the space J(T Σ) of the J-structures on Σ. Let g be the genus of the surface

Σ. Hence we can alternatively define the Teichmüller space of Σ to be

Tg = J (TΣ)/Diff0Σg

where the quotient represent the equivalent relation under the pull-back/push-

forward action of the diffeomorphisms. Let the submersion J (TΣ) →
J (TΣ)/Diff0Σ be denoted by Π. Consider the action of Diff0Σg on J where ϕt is

a one-parameter family of diffeomorphisms on Σ with ϕ0 = Id, and X = ϕ̇0 is a

vector field. When the one-parameter family of (1, 1)-tensors

(ϕt)
∗
∗J = (ϕ−t) ◦ Jϕt ◦ ϕt

is linearized at t = 0, we obtain the following:

Proposition 4.4. A tangent vector H to the Diff0Σg-fiber at J has the ex-

pression

H =
d

dt
(ϕt)

∗
∗J

���
t=0

= LX ◦ J − J ◦ LX

where LX is the Lie derivative for a vector field X on Σ acting on the space X (Σ)

of vector fields on Σ.

Similarly let Y be JX, and ψt be the flow generated by Y on Σ. Define K is

by

K :=
d

dt
(ψt)

∗
∗J

���
t=0

= LJX ◦ J − J ◦ LJX .

Then the following commutative relation between endomorphisms of TΣ;

J◦ ◦ (LX ◦ J − J ◦ LX) = LJX ◦ J − J ◦ LJX .
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can be verified by writing down both sides of the equality in local isothermal

coordinates. This equality, combined with the fact that the restriction of ω◦ to the

Diff0Σg orbit is a closed symplectic form with the non-degeneracy ω◦
J(H, JH) =

2(a2 + b2) > 0, implies the following

Theorem 4.5. The fibers of Π are Diff0Σg orbits, and it is a symplectic

submanifold in (J (TΣ), ω◦,µ), namely ω◦,µ restricted to each Diff0Σg orbit is a

closed non-degenerate 2-form. In particular J◦ leaves invariant each of the tangent

spaces to the Diff0Σg orbits.

Let the family of the tangent spaces of each Diff0Σg orbits define a distribution

δ, which is integrable.

4.4. Teichmüller space as a submanifold

Now let τ be a distribution on J (TΣ) given as the symplectic complement of

the tangent space to Diff0Σg-orbit (Diff0Σ) · J of J with respect to the symplectic

form ω◦,µ;

τJ := {H ∈ TJJ (TΣ) |ω◦,µ(H,Z) = 0 ∀Z ∈ TJ [(Diff0Σ) · J]}

As ω◦,µ is non-degenrate when restricted on TJ [(Diff0Σ) · J], the subspace δJ :=

TJ [Diff0Σ · J] ⊂ TJJ (TΣ) is symplectic; namely the two subspaces δJ and τJ are

supplementary in TJJ (TΣ) and transverse only at the origin

δJ ∩ τJ = {0}.

It follows that at each J , the differential (dΠ)J : TJJ (TΣ) → TΠ(J)T restricted to

the subspace τJ is an isomorphism

(dΠ)J |τJ : τJ → TΠ(J)T .

Theorem 4.6. The distribution τ is integrable. Each leaf of the resulting

foliation of J (TΣ) is a symplectic submanifold, diffeomorphic to the Teichmüller

space, and the foliation is Diff0Σg-invariant. Furthermore the tangent space to

each leaf, which is τ is J◦-invariant.

Proof. We recall that any pair of vector fields X̃, Ỹ on the Teichmüller space T
are canonically identified with a pair of vector fields X,Y in the distribution τ

via the isomorphisms (dΠ)J |τJ : τJ → TΠ(J)T . The integrability is equivalent to
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showing

ω◦,µ(H, [X,Y ]) = 0 ∀H ∈ TJ [Diff0Σ · J].

Recall that H = d
dt (ϕ−t) ◦ Jϕt ◦ ϕt

∣∣∣
t=0

for some flow ϕ on Σ. This equality follows

from

0 = dω◦,µ(H,X, Y )

= Hω◦,µ(X,Y )−Xω◦,µ(H,Y ) + Y ω◦,µ(H,X)−
ω◦,µ([H,X], Y ) + ω◦,µ([H,Y ], X)− ω◦,µ([X,Y ], H).

We claim that the first five terms of the six on the right hand side of the second

equality are all zero, leaving 0 = −ω◦,µ[X,Y ], H). The first term vanishes, as the

term ω◦,µ(X,Y ) is Diff0Σg-invariant, and H is a linearized Diff0Σg-action. The

second and third terms vanish by the definition of the distribution of τ . The third

and forth terms are zero, as the vector fields H and X (and Y ) commute as X and

Y are Diff0Σg-invariant, and H is a linearized Diff0Σg-action. □

Hence we have identified the Teichmüller space T as a leaf of the foliation

defined by the integrable distribution τ in J (TΣ).

Corollary 4.7. The pair (J◦, ω◦,µ) defines a natural Kähler structure on

the space J (TΣ) of complex structures, and it also induces a natural Kähler struc-

ture on the Teichmüller space T , which is identified as a symplectic submanifold in

J (TΣ). Indeed the space J (TΣ) is recognized as a symplectic product decomposi-

tion that is symplectomorphic to Diff0Σg × Tg by the pair of integrable foliations δ

and τ .

A remark given in [1] (Theorem 15.6) is that this corollary provides an al-

ternative proof to the result by Earle-Eells [5] in 1969 which says that Diff0Σg

is contractible with respect to the smooth Fréchet topology. This follows readily

from the facts that J (TΣ) and Tg are both contractible. The space J (TΣ) is

contractible, as it is the space of sections of fiber bundle whose fibers are copies of

the hyperbolic plane H2. We note also that historically Tg had been known to be

contractible since O. Teichmüller showed that it is homeomorphic to the space of

holomorphic quadratic differentials on a Riemann surface (Σ, z).

4.5. J-fields and Weil-Petersson geometry

Note that in the definition of the symplectic structure ω◦,µ, the L2-product is

implicitly present. Indeed the (pre)-symplectic structure ω◦ at J defines, pointwise



190 S. Yamada

in Σ, a positive definite inner product

ω◦(H, JK) = −TrHJ(JK) = TrHK =: g(H,K)

for H,K in TJJ (TΣ), each of which is locally represented as a 2 × 2 matrix. We

first uniformize the Riemannian metric g so that g̃ := eug̃ is the hyperbolic metric

in the conformal structure determined by J . Denote euω◦(H, JK) by ω̃◦(H,K).

By integrating over Σ, we obtain

⟨H,K⟩L2(g̃) := ω̃◦,µ(H, JK) :=

∫

Σ

ω̃◦(H, JK)dµ

where µ coincides with the volume form of g̃. The restriction of this inner product

to the subspace τJ is the Weil-Petersson metric on T , provided that the tangent

vectors here are (1, 1)-tensors, while in the previous section, the deformation tensors

are (0, 2)-tensors. This identification is also demonstrated in [14].

It should be remarked at this point that A. Tromba [14] has written a book

on the L2-geometry of the Teichmüller spaces, and there the map M−1 → J(TΣ)

was also analyzed. The L2-geometric approach of Tromba’s should be contrasted

to the symplectic approach of A’Campo.

5. Summary: hyperbolic geometry vs. conformal geometry

We recall that the Teichmüller space was defined as a quotient space of P :

M−1 → T where P is a Riemannian submersion with respect to the L2-metric.

In our current setting of Π : J (TΣ) → T , the Teichmüller space is realized as an

embedded submanifold, or rather a family of submanifolds, in the ambient space

J (TΣ), and Π is a projection whose fibers are the Diff0Σg orbits of each point in

T .

The uniformization theorem states that on a compact surface Σg of higher

genus g > 1, for each conformal structure, or equivalently a complex structure,

there exists a unique hyperbolic metric. Let the correspondence be denoted by

U : J (TΣ)) → M−1. Thus we have the commutative diagram:

J (TΣ) M−1

Tg

U

Π
P

The projection Π has Diff0Σ fibers, and each fiber is a symplectic submanifold

of J (TΣ)), where the symplectic supplements of the tangential subspace to the
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Diff0Σ-fibers form the tangent spaces of the Teichmüller space as a symplectic

submanifold. Historically there are several constructions of Teichmüller spaces

within ambient spaces, such as the Bers embeddings and Maskit embeddings (cf.

[10]) in the context of Kleinian groups. Compared to those, the current approach

is distinguished in the sense that the ambient space J(TΣ) is reflective of the local

geometry of the Riemann surfaces.

On the other hand, the quotient map P also has Diff0Σ fibers, and each fiber

defines the vertical directions for the Riemannian submersion P , where the horizon-

tal directions constitute the trace-free transverse tensors, which can be identified

with the tangent space of the Teichmüller space, even though the resulting distri-

bution is not integrable. Even though the Teichmüller space is not realized as a

submanifold of M−1, recall that it was crucial that the one dimensional distribu-

tions are always integrable, and thus each Weil-Petersson geodesic can be lifted to

an L2-geodesic in M−1.

In conclusion, the two representations of the Teichmüller space are useful in

terms of contrasting the hyperbolic geometry and the conformal geometry of Rie-

mann surfaces. In juxtaposing them, we see how the local geometries on each

Riemann surface are interacting, and by integrating the various geometric quan-

tities over the suface, we can relate the L∞-theory of conformal geometry to the

L2-geometry based on the hyperbolic metrics on the surfaces. It is well-known that

the L2-geometry are closely related the the elliptic variational framework, in par-

ticular the harmonic map theory in the context of Weil-Petersson geometry, which

has provided many applications such as the works of Y. Minsky [11], M. Wolf [17],

and the author [18, 19]. On the other hand, less well-known yet no less interesting

is L2-variational theory of the conformal geometry, called the Gerstenhaber-Ruach

theory (cf. see [4] for references.) The current discussion in this article could be a

starting point for such a viewpoint.
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