遺伝子導入ニオソーム複合体の調製と ヒアルロン酸による腫瘍標的化に関する研究

栗原 潤

略語と記号	•	•	•	1
緒言	•	•	•	3

第1章	pDNA/PLO/ニオソーム三元複合体の調製とその物性、	DNA 保持能

及び安定性

第1節 小	緒言	••• 8
第2節 実	験方法	•••11
1-2-1	試薬	•••11
1-2-2	pDNA の調製	· · · 12
1-2-3	ニオソームの調製	•••13
1-2-4	pDNA/PLO 複合体の調製	•••14
1-2-5	pDNA/PLO/ニオソーム三元複合体の調製	•••14
1-2-6	粒子特性の測定	· · · 15
1-2-7	保存安定性試験	· · · 15
1-2-8	ネガティブ染色法による形態学的観察	· · · 15
1-2-9	アガロースゲル電気泳動	•••16
1-2-10	ポリアニオン耐性試験	•••16
1-2-11	DNase I 耐性試験	•••16
1-2-12	SYBR Gold [®] assay	•••17
1-2-13	統計解析	•••18
第3節 結	果	•••19
1-3-1	各種ニオソームの粒子特性	•••19
1-3-2	各種ニオソームの粒子安定性	••• 22
1-3-3	粒子特性、DNA 保持能及び安定性に対する pDNA/PLO/ニオソ	
	ーム三元複合体の非イオン性界面活性剤の種類の影響	••• 24
1-3-4	粒子特性、DNA 保持能及び安定性に対する pDNA/PLO/ニオソ	
	ーム三元複合体のニオソームの質量比の影響	· · · 32
第4節 考	察	••• 37

第2章 pDNA/PLO/ニオソーム三元複合体による遺伝子導入と安全性

第1節 小緒言						1
第二	2節 実	験方法	•	•	• 4	3
	2-2-1	試薬	•	•	• 4	3
	2-2-2	溶血活性試験	•	•	• 4	3
	2-2-3	細胞培養	•	•	• 4	4
	2-2-4	トランスフェクション試験	•	•	• 4	-5
	2-2-5	Luciferase assay	•	•	• 4	-5
	2-2-6	MTT assay	•	•	• 4	6
	2-2-7	統計解析	•	•	• 4	6
第.	3節 結	果	•	•	• 4	7
	2-3-1	各ニオソームの溶血活性	•	•	• 4	7
	2-3-2	遺伝子発現効率及び細胞生存性に対する pDNA/PLO/ニオソーム				
		三元複合体の非イオン性界面活性剤の種類の影響	•	•	• 4	8
	2-3-3	遺伝子発現効率及び細胞生存性に対する pDNA/PLO/ニオソーム				
		三元複合体のニオソームの質量比の影響	•	•	• 5	;2
第4	4節 小	括	•	•	• 5	;3

第3章 pDNA/PLO/ニオソーム/HA 四元複合体の物性と遺伝子導入

第1節	小緒言	••• 57
第2節	実験方法	•••60
3-2-1	試薬	•••60
3-2-2	pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の調製	•••60
3-2-3	粒子特性の測定	•••60
3-2-4	ネガティブ染色法による形態学的観察	•••61
3-2-5	アガロースゲル電気泳動	•••61
3-2-6	ポリアニオン耐性試験	•••61
3-2-7	DNase I 耐性試験	•••61
3-2-8	SYBR Gold [®] assay	•••61
3-2-9	細胞培養	•••62
3-2-1	0 免役蛍光染色	•••62
3-2-1	1 トランスフェクション試験	•••62
3-2-1	2 Luciferase assay	•••63

3-2-13	MTT assay	•••63
3-2-14	抗 CD44 抗体存在下での luciferase assay	•••63
3-2-15	統計解析	•••64
第3節 結果		•••65
3-3-1	粒子特性、DNA保持能及び安定性に対する pDNA/PLO/	
	Steareth-2 ニオソーム/HA 四元複合体中の HA の質量比の影響	•••65
3-3-2	免疫蛍光染色法による CD44 の局在性	•••71
3-3-3	遺伝子発現効率及び細胞生存性の pDNA/PLO/Steareth-2 ニオソ	
	ーム/HA 四元複合体中の HA の質量比の影響	•••72
3-3-4	抗 CD44 抗体処理による pDNA/PLO/Steareth-2 ニオソーム/HA	
	四元複合体の遺伝子導入の変化	•••76
第4節 小括	Ì	•••78
総括		•••82
謝辞		•••87
引用文献		• • • 88

略語一覧

本論文中では、以下に示す記号を略語として用いた。

- Amp ampicillin sodium salt
- Bp base pair
- BSA bovine serum albumin
- Chol cholesterol
- CD44 cluster of differentiation 44
- DNase I deoxyribonuclease I
- DS dextran sulfate sodium
- DMEM dulbecco's modified eagle's medium
- EDTA ethylenediamine-N,N,N',N'-tetraacetic acid
- E. coli escherichia coli
- EO ethylene oxide
- FBS fetal bovine serum
- GAG glycosaminoglycan
- HA hyaluronic acid
- HLB hydrophilic-lipophilic balance
- HEPES 2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid
- IC₅₀ half maximal inhibitory concentration
- INCI International nomenclature of cosmetic ingredient
- LB medium luria-bertani medium
- mAb monoclonal antibody
- NIS non-ionic surfactant

- ODA octadecylamine
- O. D. optical density
- RES reticuloendothelial system
- pDNA plasmid DNA
- PDI polydispersity index
- PEG polyethylene glycol
- PEI polyethyleneimine
- Polyplex polyion complex
- PLO poly-L-ornithine
- PLL poly-L-lysine
- TEM transmission electron microscope

緒言

遺伝子治療は、疾患の原因となる異常を遺伝子レベルで修復・正常化することで、根本的 な治療を目指す治療法である。近年では、遺伝子治療は先天性遺伝疾患だけでなく、がんや 自己免疫疾患、感染症等の難治性疾患に対する画期的な治療法としても期待されている¹⁾。 一般的に、遺伝子の分子量は数千万と非常に大きく、単独での遺伝子導入は困難である。ま た、遺伝子の構造に含まれるリン酸基は、負に荷電する細胞膜との相互作用を妨げ、分子の 大きさと同様に遺伝子導入の大きな障壁となる。さらに、生体内には遺伝子を認識して分解 する酵素や貪食細胞が存在し、速やかに消失されるため、十分な治療効果が得られない可能 性がある。このように、遺伝子単独では多くの物理的及び生物的障壁により、治療すること が困難であるため、遺伝子導入システム、つまり遺伝子導入ベクターが用いられる²⁾。遺伝 子導入ベクターは、ウイルス性ベクターと非ウイルス性ベクターの2種類に大きく分類する ことができる ^{1,2)}。前者は、ウイルス本来の感染力を利用するため、高い遺伝子導入効率を 達成することができ、現在の遺伝子治療における臨床研究の約 60~70%はウイルス性ベク ターを用いて実施されている³⁾。しかし、ウイルス性ベクターはこれまでに、アデノウイル スによる異常免疫応答での死亡例やレトロウイルスによる白血病様症状の発症等、安全性に 関する重篤な問題が数多く報告されており⁴⁶、遺伝子治療を発展させるためには、ウイル スを用いない安全な遺伝子導入法の開発が不可欠となる。

ウイルス性ベクターの安全性の問題を考慮し、安全かつ効率的に遺伝子を導入するために、 ウイルスを用いない化学物質を基本として遺伝子を導入する非ウイルス性ベクターが注目 されている⁷⁾。非ウイルス性ベクターには主にカチオン性ポリマーやカチオン性脂質等の数 多くの種類のカチオン性物質が用いられている^{8,9)}。これらのカチオン性物質は、負に荷電 する遺伝子を容易に凝縮して、静電的電解質複合体を形成する。さらに正に荷電する複合体 は細胞表面のグリコサミノグリカン(GAGs, ヘパラン硫酸やコンドロイチン硫酸等)と静 電的相互作用を介して結合し、細胞内取込みを促進する^{9,10)}。非ウイルス性ベクターの中で

も、リン脂質を主成分とするリポソームにカチオン性脂質を組み込んだカチオニック・リポ ソームは、遺伝子を効率的に保持することで、*in vitro* 及び*in vivo* において高い遺伝子送達 能を示すことが報告されている¹¹⁻¹³。例えば、カチオニック・リポソームと plasmid DNA (pDNA) との複合体 (lipoplex) を静脈内投与すると、肺組織に対して高い遺伝子導入能を 示したことが明らかとなっている^{12,13}。また、抗体やリガンドをリポソーム表面に修飾する ことも可能であり、標的指向性も付与することができる¹⁴⁻¹⁶。このように、リポソームは有 用性の高い遺伝子導入ベクターとして数多く報告されている。しかしながら、リポソームを 構成するリン脂質は生体内での分解により半減期が短く、安定性が低いとの報告もある⁸。 また、医薬品へ応用するためには高純度なリン脂質は必要となるが高価であり、さらに安定 したリン脂質を供給するためには、その保管方法や取扱いに特別な注意が必要である。した がって、リポソームは遺伝子治療において効率的な遺伝子送達能を有するが、安定性や生産

性に関していくつか課題点が残る。

近年、ニオソームはリポソームと類似した構造及び物理的特性を有していることから、薬物の送達担体として研究されている。ニオソームは水溶液中で非イオン性界面活性剤(nonionic surfactant; NIS)が疎水性相互作用により自己会合して形成される閉鎖ベシクルである¹⁷⁾。リポソームと同様にベシクル二重層の形成や膜の安定化に寄与する cholesterol (chol)等のヘルパー脂質が配合されている。ニオソームはリポソームよりも物理的に安定であるため、 生体内安定性や貯蔵安定性、費用対効果等の利点を有する^{18,19)}。例えば、リポソームを構成 するリン脂質は、水溶液中で加水分解により不安定化されるが¹⁹⁾、ニオソームは1ヶ月以上 に亘り安定して粒子形態を維持する^{20,21)}。加えて、ニオソームはカルセイン等の薬物の搭載 能力がリポソームよりも高く、浸透圧等の様々な物理的要因に対して抵抗性を有することも 証明されている²²⁾。また、ニオソームを構成する NIS はリポソームを構成するリン脂質に 要求される取扱いや保管方法は必要ではなく、さらにリン脂質よりも安価であるため、製造 工業の面でも大幅なコストの低減化が期待できる。近年では、ニオソームは薬物輸送担体だ けでなく遺伝子導入ベクターへの応用も検討されている。遺伝子導入ベクターとしてニオソ ームを用いる場合、遺伝子との相互作用や細胞膜との静電的相互作用を可能とするために、

カチオン性脂質が利用されており、ニオソームと pDNA との複合体が癌細胞や網膜細胞に 対してリポソームに匹敵する遺伝子導入能を示したことが報告されている。また数ヶ月間に わたるニオソームの安定性や核酸分解酵素等、種々外部環境に対して保護効果を有すること から、リポソームに代替した有用性の高い遺伝子導入ベクターになると考えられる^{21,23}。

遺伝子は標的とする組織に送達できなければ、目的とする治療効果が十分に得られない可 能性があり、さらに標的外細胞への遺伝子導入による予期せぬ副作用の発現が懸念される。 遺伝子を標的組織へ送達させるために様々なターゲティング技術が検討されている。これに は生体の解剖学的特性・生理学的特性など、標的組織が備えている機能を利用し、薬物担体 の物理化学的特性を利用し、非特異的な相互作用を最小化して標的組織への集積・作用を図 る受動的ターゲティング、及び積極的に抗体や標的細胞がもつ受容体に対するリガンド等を 用いて標的指向化する能動的ターゲティングがある^{2,24)}。前者には遺伝子導入ベクターのポ リエレングリコール (PEG) 修飾等があり、細網内皮系 (RES) に対する認識を回避する (ス テルス性)により遺伝子導入ベクターの血中における滞留安定性を向上させることで、標的 組織への蓄積性を高める²⁵⁻²⁷⁾。さらに、PEG がもつステルス性は生体分子や免疫担当細胞 との非特異的な相互作用を抑制するので、遺伝子を安定して送達することができ、副作用を 軽減することができる^{27,28)}。一方、PEG 修飾によるステルス性は、標的とする部位での認 識もされにくくなり、かつベクターの正電荷を遮蔽し、細胞との相互作用も抑制する可能性 がある。その結果、遺伝子の細胞内導入効率を低下させる^{29,30)}。そこで、より効率的に標的 組織に遺伝子を導入するためには後者の方法が有用である。これまでに、数多くの能動的タ ーゲティングに関する研究がなされているが、癌細胞では増殖能や浸潤、転移のための様々 な受容体(葉酸受容体、トランスフェリン受容体、線維芽細胞増殖因子受容体等)が存在し、 これらは正常細胞よりもその発現量が過剰であることが分っている³¹⁻³³⁾。そのため、 癌細胞 特異的に薬物や遺伝子を送達させるための研究が盛んに行われている。

乳癌や胃癌、肺癌などの癌細胞表面には CD44 が過剰に発現しており、癌細胞の増殖能、 浸潤・転移能に関与することが多くの研究によって示されている³⁴⁾。CD44 はヒアルロン酸 (HA)の受容体であり、他のリガンド分子と同様に癌細胞に対して標的指向性を有してい

る^{35,36}。HA を修飾したリポソームにドキソルビシンやマイトマイシン C 等の制癌剤を搭載 した薬物送達担体は癌細胞に対して効率的に送達することが示された^{37,38}。さらに遺伝子 デリバリーにおいても同様に、その有用性が示唆されている³⁹⁻⁴¹。また、HA は側鎖にカル ボキシル基を有するので分子全体としてアニオン性を示し、生体内での非特異的相互作用や 副作用の発現を抑制することができる³⁹⁾。このように、HA は遺伝子導入ベクターの標的指 向性だけでなく、安全性も向上できると考えられる。

本研究の目的は、リポソームに代わる遺伝子導入ベクターとしてニオソームに注目して遺 伝子導入ニオソームを調製し、さらに HA と複合体化することで癌細胞への標的指向性を付 与し、安定性・安全性・有効性の高い遺伝子導入ベクターを開発することである。まず NIS の化学的特性、特に親水性鎖長が異なる NIS を用いてニオソームを調製した。また、遺伝子 をベクター内に効率的に保持させるために、ポリカチオンである poly-L-ornithine (PLO) を 遺伝子と複合化して、その遺伝子-PLO 複合体とニオソームとの三元複合体を調製し、その 粒子特性や安定性、遺伝子発現効率、細胞生存性に対する影響を検討した。その後、遺伝子 -PLO-ニオソーム三元複合体を用いて HA を複合し、遺伝子-PLO-ニオソーム三元複合体の さらなる遺伝子発現効率や細胞生存性、複合体の安定性の向上及び HA による腫瘍標的指向 性の検討を試みた。

第1章では、ニオソームに用いる NIS の化学的構造の違いや質量比による粒子特性や遺 伝子発現効率、安全性等の影響を調査するため、まず直鎖状 NIS であるポリオキシエチレン ステアリルエーテル (INCI 名: Steareth) に注目して、種々エチレンオキシド (EO) 鎖長を 有する Steareth (Steareth-2, Steareth-5 及び Steareth-20) ニオソームを調製した。ニオソーム の調製は薄膜水和法及び超音波法により行い、その粒子特性や粒子安定性を評価した。また、 pDNA をポリカチオンで凝縮した後、各ニオソームと複合し、その粒子特性や DNA 保持能、 複合体の安定性を評価した。第2章では、第1章で調製した pDNA/PLO/Steareth ニオソーム 三元複合体を用いて細胞に遺伝子導入し、遺伝子発現効率や細胞生存性、血清存在下におけ る遺伝子導入能について評価した。第3章では、腫瘍細胞に過剰発現している CD44 に対す る標的指向性を付加するために HA を pDNA/PLO/Steareth ニオソーム三元複合体に組み込

み、その粒子特性や DNA 保持能、複合体の安定性、遺伝子発現効率及び細胞生存性を評価 した。さらに CD44 に対する抗体を用いて、複合体による CD44 を介した遺伝子導入の関与 を検討した。Scheme 1 にニオソーム、pDNA/PLO/Steareth ニオソーム三元複合体及び pDNA/PLO/Steareth ニオソーム/HA 四元複合体の調製の概要を示す。

Scheme 1 Schematic diagram illustrating pDNA/PLO/Steareth niosome/HA quaternary complexes

formation for CD44-targeted gene delivery.

(A) Structure of non-ionic surfactant (NIS) and composition of niosome.The NIS in the schematic diagram illustrated Steareth-2 as an example. The hydrophilic portion of Steareth increased with the lengthening of the ethylene oxide (EO) chain.(B) Formation of pDNA/PLO/Steareth niosome/HA quaternary complexes.Niosomes prepared in this study were illustrated assuming monolayer vesicles because of imperfect structural information of niosome.

第1章 pDNA/PLO/ニオソーム三元複合体の調製とその物性、DNA 保持能及 び安定性

第1節 小緒言

ニオソームは高い物理的定性、低い製造コスト、薬物の搭載能、薬物の徐放性の付与等な ど、リポソームよりも数多くの利点を有しており、薬物送達担体の一つとして研究されてい る。近年、薬物のみならず遺伝子送達のベクターへの応用にも研究が進められており、非ウ イルス性ベクターの新たな選択肢として注目されている。遺伝子導入ニオソームは NIS や ヘルパー脂質に加えて、負に荷電する遺伝子や細胞表面と相互作用するカチオン性脂質から なり、遺伝子を安定にベクター内に保持し、標的細胞に導入する。いくつかの研究で、遺伝 子をニオソームに保持させ、標的細胞に対して効率的に遺伝子を導入したことが報告されて おり^{21,23}、その送達能力はリポソームにも匹敵することから、有用性は高いと考えられる。

遺伝子導入ニオソームの粒子特性や遺伝子送達能は、ニオソームの組成だけでなく、構成 される NIS の化学的構造の影響を受ける。例えば、ポリオキシエチレンソルビタン脂肪酸エ ステル (INCI 名: Tween) は、ソルビタン脂肪酸エステルにエチレンオキシド (EO) が約 20 個縮合し、脂肪酸の構造がそれぞれ異なる NIS であり、オレイル基を有する Tween 80 から なるニオソームが、ラウリル基を有する Tween 20 からなるニオソームよりも腫瘍細胞に対 して高い遺伝子発現効率を示すことが報告されている²⁰⁾。このように、NIS の構造の違いは 遺伝子導入ニオソームの効率的な遺伝子送達に影響を及ぼすため、ニオソームを調製する上 で、NIS の特性を把握することは重要である。NIS は数多くの種類が存在し、医薬品や化粧 品の添加剤として使用されているにもかかわらず、遺伝子導入ニオソームに使用される NIS は Tween やソルビタン脂肪酸エステル (INCI 名: Span)、ポリオキシプロピレンポリオキシ エチレングリコール共重合体 (INCI 名: Poloxamer) がほとんどであり^{20,21,23,42,43}、その種 類はまだ少ない。直鎖状 NIS であるポリオキシエチレンステアリルエーテル (INCI 名: Brij 又は Steareth) もまた、ニオソームなどのベシクルを形成することが知られており⁴⁴⁴⁶、遺 伝子導入ベクターとしての応用が期待されている。Steareth は疎水性鎖長のステアリル基に 異なる数の親水性 EO 鎖長が縮合した分子であり、EO 鎖長の違いは調製したニオソームの 粒子特性や遺伝子発現効率等に影響を与えると考えられる。

そこで本研究では、まず NIS の親水性鎖長の違いに着目し、種々EO 鎖長の Steareth (Steareth-2, Steareth-5 及び Steareth-20) を用いた遺伝子導入ニオソームを調製し、EO 鎖長 の長さに対する遺伝子導入ニオソームの粒子特性や安定性、遺伝子発現効率、安全性に対す る影響を検討した。ニオソームの構成には NIS とニオソーム膜の安定性を向上させる cholesterol (chol) に加えて²⁰⁾、エマルション等で効率的な遺伝子導入能を示すカチオン性脂 質 octadecylamine (ODA)を選択した⁴⁷⁾。また、遺伝子をより強固に凝縮し、標的細胞に導 入するためにポリカチオンを構成成分に追加した⁴⁸⁻⁵⁰⁾。Poly-L-lysine (PLL) や chitosan 誘導 体、polyethyleneimine (PEI) 等のポリカチオンは遺伝子を強固に凝縮することで、トランス フェクション効率を増大することが報告されている 51-53)。その他にも数多くのポリカチオン が存在するが、塩基性アミノ酸ホモポリマーの poly-L-ornithine (PLO) もまた、遺伝子を効 率的に細胞へ導入することが知られている^{54,55)}。Tokunaga らは、PLO が PLL 等のポリカチ オン性ペプチドよりも高い遺伝子発現活性(chloramphenicol acetyltransferase activity)を示す ことを報告している⁵⁵⁾。本研究室においても PLO の分子量に依存した遺伝子発現活性 (luciferase activity)の増大が確認されている⁵⁶⁾。上記のことから、ニオソームに最も高い 遺伝子発現活性を示した 78 kDaの PLO を複合して、遺伝子をベクター内に保持させ、遺伝 子導入ニオソームの有用性の向上を図った。

以上を踏まえ、第1章ではまず種々親水性 EO 鎖長数の Steareth からなるニオソームを、 ニオソームの一般的調製法である薄膜水和法により調製し、ニオソーム粒子の粒子径や粒度 分布、表面電荷等の粒子特性や粒子安定性を評価した。また、透過型電子顕微鏡(TEM)に より、粒子形態を観察した。次に、各 Steareth ニオソームに PLO で pDNA を凝縮した pDNA/PLO 複合体を複合化して pDNA/PLO/Steareth ニオソーム三元複合体を調製し、その粒 子特性や粒子形態を評価した。また、複合体の DNA 保持能やポリアニオンに対する複合体 の安定性をアガロースゲル電気泳動及び SYBR[®] Gold インカーカレーション法により評価

し、さらに核酸分解酵素に対する複合体の DNA の安定性も電気泳動法により検討した。ま た、高い遺伝子発現効率を示すことが証明されている Tween 80 ニオソームによる遺伝子導 入ニオソームも調製し^{20,23)}、Stearethニオソームと比較した。Table 1 に遺伝子導入ニオソー ムの調製に用いた化合物の構造と物性を示す。

Chemical structure	Chemical name (INCI name ^a)	Molecular weight (M. W.)	CMC ^b (mM)	HLB ^c
H ₃ C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Polyoxyethylene (2) stearyl ethe (Steareth-2)	r 358	2.5×10^{-4}	4
H ₃ C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Polyoxyethylene (5) stearyl ethe (Steareth-5)	^r 490	_	8
H ₃ C	H Polyoxyethylene (20) stearyl etho (Steareth-20)	er 1,096	5.7×10 ⁻³	13
	Polyoxyethylene sorbitan monoolea (Tween 80)	^{ate} 1,310	1.0×10 ⁻²	15
$H_{3}C$ $H_{4}C$ H	Cholesterol	387	_	_
H ₂ N CH ₃	Ocyadecylamine	270	_	_

Table 1 Chemical structures and physicochemical properties of the compounds used for the preparation of niosomes in this study.

^a International Nomenclature of Cosmetic Ingredient. ^b Critical micelle concentration. The CMC value was obtained from reference [57]. The value was not

obtained from reference in Steareth-5.

^c Hydrophilic-lipophilic balance.

第2節 実験方法

1-2-1 試薬

Escherichia coli JM109 Competent Cell (*E. coli*) をタカラバイオ株式会社(滋賀)より 購入し、luciferase 遺伝子(*Luc*⁺)及び ampicillin 耐性遺伝子をコードする plasmid DNA (pDNA) pGL-3 Control Vector (Fig. 1) を Promega Co. (Madiason, WI, U.S.A.) より購入し た。SYBR[®] Gold Nucleic Acid Gel Stain (10,000×concentrate in DMSO) を Thermo Fisher Scientific, Inc. (Waltham, MA)より購入した。QIAGEN Plasmid Midi kit を QIAGEN Co. (Hilden, Germany)より購入した。10×loading buffer 及び DL5,000 DNA Marker をタカラバイオ株式 会社(滋賀)より購入した。Luria-Bertani (LB)培地「ダイゴ」、agarose medium electroendosmosis (ME)、50×TAE、Tris-EDTA (TE) buffer (pH 8.0)、cholesterol (Chol)、2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid (HEPES)、Tween 80 (polyoxyethylene sorbitan monooleate)、 dextran sulfate sodium (DS, M.W. 36-50 kDa)及び DNase I (RNase free)を富士フィルム和光 純薬工業株式会社(大阪)より購入した。Octadecylamine (ODA)を東京化成工業株式会社 (東京)より購入した。Ethylenediamine-*N*,*N*,*N*',*N*'-tetraacetic acid, disodium salt (EDTA・2Na)、

抗生物質 ampicillin sodium salt (amp) を Merck KGoA (Darmstadt, Germany) より購入した。 Poly-L-ornithine hydrobromide (PLO, M.W. 78 kDa) を Alamanda Polymers Inc. (AL, U.S.A.) から購入した。EMALEX 602 (polyoxyethylene (2) stearyl ether, Steareth-2)、EMALEX 605 (polyoxyethylene (5) stearyl ether, Steareth-5) 及び EMALEX 620 (polyoxyethylene (20) stearyl

ether, Steareth-20) は日本エマルジョン株式会社(東京)より譲渡された。その他の試薬は全 て市販の特級品を用いた。

Fig. 1 pGL3-Control Vector circle map ⁵⁸⁾.

1-2-2 pDNA の調製

1 ng/μL pDNA 溶液 10 μL を、*E. coli* 懸濁液 50 μL に加え、氷上で 30 分間静置した。その 後、混合液を 42℃で 45 秒間加温し、pDNA を *E. coli* に導入し、形質転換を行った(Heat shock 法)。その後、氷上に 3 分間静置し、super optimal broth with catabolite repression (SOC) 液体培地 (2% polypeptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgSO₄, 10 mM MgCl₂, 20 mM glucose) 1 mL を加え、37℃、60 分間静置培養し、pDNA の ampicillin 耐性遺 伝子の誘導を行った。誘導後、10,000 rpm で約 20 秒間遠心分離し、菌体を沈殿させた。*E. coli* 懸濁液 100 μL を LB/Amp 寒天培地上に塗布し、37℃、12~16 時間静置培養した。培養 後、LB/Amp 寒天培地上でコロニーを得た。Table 2 に LB/Amp 寒天培地の組成を示す。

得られたコロニーから pDNA 導入 *E. coli* を少量採取し、LB/Amp 液体培地 2 mL に植菌 して、恒温振とう培養機 (BR-42FL, タイテック株式会社, 愛知) 内で、37°C、8 時間、250 rpm にて振とう培養した。振とう培養後、培養液 50 µL を LB/Amp 液体培地 25 mL に移し、 再度 37°C、16 時間、220 rpm にて振とう培養した。振とう培養後、培養液を遠心分離 (6,000 ×g, 15 分間, 4°C) により集菌し、上清を取り除いた。その後、QIAGEN Plasmid Midi kit の 製造会社のプロトコールに従い、菌体から pDNA の抽出を行った。pDNA を抽出した後、 抽出した pDNA をイソプロパノール沈殿及び 70% エタノール沈殿により濃縮精製し、TE buffer 420 µL に溶解させた。精製した pDNA の濃度及び純度をライフサイエンス分光光度 計 (BioSpec-nano, 島津製作所株式会社, 京都) により測定した。なお、 pDNA の濃度は波 長 260 nm における吸光度 (O.D.260) を測定して算出した。又、pDNA の吸光度及びタンパ ク質の吸光度 (O.D.280)の比 (O.D.260/O.D.280)より pDNA の純度を算出した。精製した pDNA の 0.D.260/O.D.280 が 1.8 よりも高いものを以後の実験に使用した。

	Polypeptone	2.0 g		
LB	Yeast extract	1.0 g		
	NaCl	2.0 g		
Agar		3.0 g		
Amp^*		0.02 mL		
Distilled water		q.s.		
Total		20 mL		
		(pH 7.0 - 7.4)		

Table 2Composition of LB agar medium.

*Final concentration : 125 μ g/mL. After LB powder and agar were dissolved by heating and cooled to 60°C, Amp was added to the LB medium.

1-2-3 ニオソームの調製

Figure 2 に示す薄膜水和法 (Bangham 法)及び超音波法によりニオソームを調製した 20,21 , 59,60 。各 NIS(100 µmol)及び Chol(100 µmol)、ODA(5 µmol)をそれぞれクロロホルム (CHCl₃) に溶解し、試験管に混合した(全量 3 mL)。その後、試験管を減圧デシケーター (東京硝子株式会社,東京)内に入れ減圧し、CHCl₃を除去して脂質膜を形成させた。さら に、CHCl₃を完全に除去するために、デシケーター内で一晩減圧乾燥した。減圧乾燥後、10 mM HEPES buffer(pH 7.4)5 mL を加え、vortex mixer で 5 分間攪拌し水和させた。試験管 を水浴に入れ、60°Cで 20 分間インキュベーションした。その後、試験管をプローブ型超音 波音波ホモジナイザー(Sonifer[®] SFX, Branson Ultrasonics. Corp., Danbury, CT, USA)に移し、 超音波処理(0°C, 150 W, 60 秒間×3 サイクル)を行った。その後、0.20 µm シリンジフィル ター(アドバンテック株式会社,東京)で濾過して、各ニオソーム懸濁液を調製した。

Fig. 2 Schematic of niosomes preparation method.

1-2-4 pDNA/PLO 複合体の調製

PLO を 10 mM HEPES buffer に溶解し、PLO 溶液(1,000 ng/µL)を調製した。PLO 溶液及 び pDNA 溶液の濃度をそれぞれ 100 ng/µL となるように 10 mM HEPES buffer で希釈した。 PLO 溶液 2.4 mL と pDNA 溶液 0.6 mL を混合し、vortex mixer で数秒間攪拌した。攪拌後、 室温で 30 分間静置し、 pDNA: PLO の質量比が 1:4 の pDNA/PLO 複合体溶液(pDNA と して 20 ng/µL)を調製した。

1-2-5 pDNA/PLO/ニオソーム三元複合体の調製

ニオソーム配合比(質量比)を 30 に固定してニオソームを構成する NIS (Steareth-2, Steareth-5, Steareth-20 及び Tween 80)の種類を変えた pDNA/PLO/ニオソーム三元複合体 (pDNA: PLO: ニオソーム = 1:4:30)を調製するために、1-2-3 で調製した各ニオソーム 懸濁液 2.2 mL と pDNA/PLO 複合体溶液 0.5 mL を混合し、vortex mixer で 30 秒間攪拌した。攪拌後、室温で 30 分間静置し、pDNA/PLO/ニオソーム三元複合体懸濁液 (pDNA として 3.7 ng/μL)を調製した。また、NIS を Steareth-2 に固定してニオソーム配合比を 2, 5, 10,

15 及び 30 に変えた pDNA/PLO/Steareth-2 ニオソーム三元複合体 (pDNA: PLO: Steareth-2 ニ オソーム = 1:4:n, n = 2, 5, 10, 15 及び 30) を調製するために、Steareth-2 ニオソーム懸濁液 (0.15, 0.37, 0.74, 1.1 及び 2.2 mL) と pDNA/PLO 複合体溶液 0.5 mL を混合し、上記と同じ 手順により各質量比の pDNA/PLO/Steareth-2 ニオソーム三元複合体懸濁液 (pDNA として 15.4, 11.5, 8.0, 6.3 及び 3.7 ng/µL) を調製した。

1-2-6 粒子特性の測定

1-2-3 及び 1-2-5 で調製した各ニオソーム及び pDNA/PLO/ニオソーム三元複合体懸濁液を 10 mM HEPES buffer で 25 倍希釈した後、Zetasizer 3000 HSA (Malvern, Worcestershire, UK) を用いて平均粒子径、粒度分布、PolyDispersity Index (PDI) 及びζ電位を測定した。

1-2-7 保存安定性試験

1-2-3 で調製した各ニオソーム懸濁液をマイクロチューブに 2.0 mL ずつ分注し、25±0.1℃ で 28 日間保存した。保存したサンプルの平均粒子径、粒度分布及びζ電位を 28 日まで経時 的 (0, 7, 14, 21 及び 28 日) に測定した。

1-2-8 ネガティブ染色法による形態学的観察

200 mesh のフォルムバール支持膜付銅グリッド (イーエムジャパン株式会社,東京)の表 面をイオンスパッタリング装置 (FC-1100E,日本電子株式会社,東京)によりエッチングし、 親水化処理した。その後、銅グリッド上に 1-2-3 及び 1-2-5 で調製した各ニオソーム又は pDNA/PLO/ニオソーム三元複合体を 5 µL 滴下した。なお、三元複合体はニオソームを構成 する NIS の種類 (Steareth-2, Steareth-5, Steareth-20 及び Tween 80)を変えたものを観察に用 いた。余分な液を濾紙で吸い取り、乾かないうちに 1% 酢酸ウラニル水溶液につけて染色し た。その後、余分な染色液を濾紙で吸い取り、乾燥させた。乾燥後、透過電子顕微鏡 (TEM, JEM-1400,日本電子株式会社)を用いて 100 kV 加速電圧下で粒子の形態を撮影した。

1-2-9 アガロースゲル電気泳動 61)

pDNA 溶液、1-2-4 及び 1-2-5 で調製した pDNA/PLO 複合体溶液及び各 pDNA/PLO/ニオソ ーム三元複合体懸濁液 30 µL に、10×loading buffer(5% glycerol, 0.09% SDS, 0.005% Bromophenol Blue)3 µL を添加した。1% アガロースゲルの各ウェル内に pDNA 溶液、 pDNA/PLO 複合体溶液及び pDNA/PLO/ニオソーム三元複合体懸濁液を 10 µL ずつ入れ、 Mupid[®]-2plus(コスモ・バイオ株式会社,東京)を用いて、電気泳動(100 V, 40 分間, 4℃) を行った。なお、泳動液には Tris-acetate-EDTA (TAE) buffer (40 mmol/L Tris-HCl, 20 mmol/L acetic acid, 1 mol/L EDTA)を用いた。泳動後、1×SYBR[®]Gold 染色液にゲルを入れ、30 分間 ゆっくりと振盪させながら染色した。染色後、Gel Doc EZ (Bio-Rad Laboratories Ltd., Maryland, U.S.A.)を用いてバンドを確認した。得られた電気泳動画像を、Image LabTM ソフトウェア (Bio-Rad Laboratories Ltd.)を用いて解析した。

1-2-10 ポリアニオン耐性試験 61,62)

pDNA 溶液、1-2-4 及び 1-2-5 で調製した pDNA/PLO 複合体溶液及び各 pDNA/PLO/ニオソ ーム三元複合体懸濁液 15 μL に 1% DS 溶液又は 10 mM HEPES buffer を 15 μL ずつ加え、 各サンプルを室温で 30 分間インキュベーションした。インキュベーション後、各サンプル 30 μL に 10×loading buffer 3 μL を添加し、1-2-9 と同様な手順でアガロースゲル電気泳動、 染色及び画像の解析を行った。

1-2-11 DNase I 耐性試験 61-63)

pDNA 溶液、1-2-4 及び 1-2-5 で調製した pDNA/PLO 複合体溶液及び各 pDNA/PLO/ニオソ ーム三元複合体懸濁液 50 µL に 10×reaction buffer (40 mM Tris-HCl, 100 mM NaCl, 6 mM MgCl₂, 1 mM CaCl₂, pH 7.9) 6 µL を添加し、0.01 units/µL DNase I 溶液 5 µL を反応液に添加 した。DNase I 添加後、37℃で 30 分間酵素反応を行った。その後、0.1 M EDTA 溶液 (pH 8.0) 5 µL を添加して酵素反応を停止させ、さらに 75℃で 10 分間インキュベーションすること で、DNase I を失活させた。反応液から 15 µL を移し、1% DS 溶液 15 µL を加えて、室温で 30 分間インキュベーションした。その後、各サンプル 30 µL に 10×loading buffer 3 µL を添 加し、1-2-9 と同様な手順でアガロースゲル電気泳動、染色及び画像の解析を行った。

1-2-12 SYBR Gold[®] assay ^{64, 65)}

pDNA 溶液、1-2-4 及び 1-2-5 で調製した pDNA/PLO 複合体溶液及び各 pDNA/PLO/ニオソ ーム三元複合体懸濁液を 10 mM HEPES buffer で複合体中の DNA 濃度が 2.0 ng/µL となるよ うに希釈した。希釈した各サンプル 200 µL を 96-well black plate に加え、種々濃度 (0.01, 0.05, 0.1, 0.5, 1, 5 mg/mL) の DS 溶液又は 10 mM HEPES buffer を 20 µL ずつ適用し、室温で 20 分 間静置した。静置後、4×SYBR[®] Gold 溶液を 20 µL ずつ添加して遮光し、さらに室温で 20 分間静置した。その後、SYBR[®] Gold 分子が DNA の塩基対間にインターカレーションした 際に発する蛍光を、microplate reader (SpectraMax M5^e Absorbance Microplate Reader, Molecular Devices Inc.)を用いて励起波長 495 nm、蛍光波長 537 nm の測定波長で測定した。得られた 蛍光強度から相対蛍光強度を下記の (1) 式より算出し、複合体の DNA 保持能及び DS に対 する複合体の安定性を評価した。

Relative fluorescence (%) =
$$\frac{\text{Fluorescence}_{\text{Sample}} - \text{Fluorescence}_{\text{Blank}}}{\text{Fluorescence}_{\text{DNA only}} - \text{Fluorescence}_{\text{Blank}}} \times 100 \cdots (1)$$

ここで、Fluorescence _{Sample} は種々複合体適用群より生じた蛍光強度、Fluorescence _{DNA only} は pDNA 単独適用群より生じた蛍光強度、Fluorescence _{Blank} は SYBR[®] Gold 溶液のみで生じた 蛍光強度を示す。

また、複合体による DNA 凝縮を抑制し、相対蛍光強度を 50%増大させた DS 濃度(50% 阻害濃度: IC₅₀)を、Image J(NIH)を用いて作成したロジスティック曲線から算出した。

1-2-13 統計解析

データを平均値 ± 標準偏差(standard deviation, S. D.)で示した。二群間の比較には、 Student's *t*-tests を用いて解析し、両側 p < 0.05 を統計学的に有意とみなした。 第3節 結果

1-3-1 各種ニオソームの粒子特性

Table 3 に各 NIS(Steareth-2, Steareth-5, Steareth-20 及び Tween 80)を用いて調製したニオ ソームの平均粒子径、ζ 電位及び PDI、Figure 3 に各ニオソームの粒度分布を示す。各 Steareth ニオソーム(Steareth-2 ニオソーム、Steareth-5 ニオソーム及び Steareth-20)の平均粒子径は それぞれ 156 nm、153 nm 及び 132 nm であり(Table 3)、Steareth の EO 鎖長が長くなるほど 小さくなった。各 Steareth ニオソームの PDI は 0.21~0.28 であり、いずれも単峰性の粒度分 布を有する粒子が得られた(Table 3 and Fig. 3 (A)~(C))。一方、Tween 80 ニオソームの平均 粒子径は 77 nm を示し、他の Steareth ニオソームよりも小さい粒子が得られたが、PDI は 0.59 と大きく、二峰性の粒度分布を示した(Table 3 and Fig. 3 (D))。

各 Steareth ニオソームのζ電位は、カチオン性脂質 ODA が含まれているため、いずれも 正電荷を示した。Steareth ニオソームのζ電位は EO 鎖長が短い Steareth-2 で最も大きい値 (+ 39.9 mV)を示し、EO 鎖長が長い Steareth-20 ニオソームで最も低い値(+ 13.3 mV)を 示した(Table 3)。Tween 80 ニオソームのζ電位は、ODA がニオソームの構成成分に含まれ

ているのにもかかわらず、比較的中性に近い表面電荷(+2.3 mV)を示した(Table 3)。 Figure 4 に TEM により観察した各ニオソームの形態画像を示す。いずれのニオソームの

粒子も粒子径にばらつきはあるものの比較的球状に近い形態を示した。さらに、どのニオソ ームも粒子の外縁部と内部で薄い区切りがあり、リポソームに類似した層状構造をとってい た。

これらの結果から、薄膜水和法により各 NIS を用いて調製したニオソームはいずれもリ ポソームと類似した形態を有し、ニオソームの粒子特性は Steareth の EO 鎖長の影響を受け ることが示された。

Type of NIS	Size (nm)	ζ potential (mV)	PDI*
Steareth-2	156.3 ± 3.4	39.9 ± 1.7	0.24 ± 0.03
Steareth-5	153.3 ± 8.3	16.9 ± 2.8	0.28 ± 0.02
Steareth-20	132.4 ± 3.0	13.3 ± 3.8	0.21 ± 0.02
Tween 80	77.0 ± 8.7	2.3 ± 0.2	0.59 ± 0.04
			· · · · · · · · · · · · · · · · · · ·

Table 3Particle size, PDI and ζ potential of each niosome.

*PDI : PolyDispersity Index

(Mean \pm S.D., n = 3)

Fig. 3 Size distribution of each niosome. (A) Steareth-2 niosome, (B) Steareth-5 niosome, (C) Steareth-20 niosome, (D) Tween 80 niosome.

Fig. 4 Transmission electron microscope picture of each niosome.
(A) Steareth-2 niosome, (B) Steareth-5 niosome, (C) Steareth-20 niosome, (D) Tween 80 niosome.
Original magnification ×40,000. Scale bar : 200 nm.

1-3-2 各種ニオソームの粒子安定性

Figure 5 に各 NIS(Steareth-2, Steareth-5, Steareth-20 及び Tween 80)を用いて調製したニオ ソームを 28 日間室温で静置保存した際の平均粒子径及びく電位の経時的変化、Figure 6 に 各ニオソームの粒度分布の経時的変化を示す。また、Table 4 に調製直後(0 日目)と 28 日 間静置保存後の平均粒子径及びく電位を示す。各 Steareth ニオソーム懸濁液を 28 日間保存 した後の平均粒子径、粒度分布及び ζ 電位は、調製直後とほとんど変化がみられなかった (Table 4, Figs. 5 and 6 (A)~(C))。一方、Tween 80 ニオソーム懸濁液では、平均粒子径は約 77 nm から約 92 nm に有意に増大し(Fig. 5 (A) and Table 4, *p < 0.05)、粒度分布の最大ピー クも約 69 nm から約 93 nm にシフトした (Fig. 6 (D))。Tween 80 ニオソームのく電位もまた、

0 mV により近い値を示した(Fig. 5 (B) and Table 4, *p < 0.05)。
(A) (B)
²¹⁰
180

Table 4	Particle size and	ζ potential of	each niosomes	on initial day	and after 28 day	ys storage at 25°C
		2		•/		

Type of	Size	e (nm)	ζ potential (mV)		
NIS	Initial (day 0)	Day 28	Initial (day 0)	Day 28	
Steareth-2	156.3 ± 3.4	159.2 ± 5.5	39.9 ± 1.7	38.6 ± 2.6	
Steareth-5	153.3 ± 8.3	154.5 ± 7.2	16.9 ± 2.8	15.2 ± 2.4	
Steareth-20	132.4 ± 3.0	136.3 ± 4.5	13.3 ± 3.8	14.2 ± 0.9	
Tween 80	77.0 ± 8.7	$92.5\pm5.9^{*}$	2.3 ± 0.2	0.9 ± 0.1^{st}	

Each value represents the mean \pm S.D. (n = 3).

p < 0.05 compared with each niosome in the initial day.

Fig. 6 Size distribution of each niosomes following storage at 25°C for 28 days.
(A) Steareth-2 niosome, (B) Steareth-5 niosome, (C) Steareth-20 niosome, (D) Tween 80 niosome.
; Initial (0 day), - - ; 7 day, - ; 14 day, ----; 21 day,
; 28 day.

1-3-3 粒子特性、DNA 保持能及び安定性に対する pDNA/PLO/ニオソーム三元複合体の非 イオン性界面活性剤の種類の影響

Table 5 に各 NIS を用いて調製したニオソーム単独及びニオソーム配合比を 30 としてニオ ソームを構成する NIS の種類 (Steareth-2, Steareth-5, Steareth-20 及び Tween 80) を変えた場 合の pDNA/PLO/ニオソーム三元複合体の平均粒子径、PDI 及びく電位、Figure 7 に各ニオソ ーム、pDNA/PLO/ニオソーム三元複合体及び pDNA/PLO 複合体の粒度分布を示す。いずれ の pDNA/PLO/ニオソーム三元複合体も複合化前と比べて平均粒子径、PDI 及びく電位に大 きな変化はみられなかった (Table 5)。また、pDNA/PLO/ニオソーム三元複合体の粒度分布 は、いずれもニオソーム単独と変化はみられず、pDNA/PLO 複合体に由来するピークは観察 されなかった (Fig. 7)。pDNA/PLO/Steareth ニオソーム三元複合体はニオソーム単独と同様 に、Steareth の EO 鎖長が長くなるほど、平均粒子径及びく電位は減少する傾向にあった (Table 5)。

Figure 8 にニオソーム配合比を 30 としてニオソームを構成する NIS の種類(Steareth-2, Steareth-5, Steareth-20 及び Tween 80)を変えた場合の pDNA/PLO/ニオソーム三元複合体の TEM による形態画像を示す。どの複合体もニオソーム単独と同様に、層状構造を確認できた。どの複合体も、pDNA/PLO 複合体との複合による粒子形態の大きな変化は確認されなかった。

Type of	Size (nm)		ζ potential (mV)		PDI [*]		
NIS	Niosome	pDNA/PLO/niosome	Niosome	pDNA/PLO/niosome	Niosome	pDNA/PLO/niosome	
Steareth-2	156.3 ± 3.4	163.0 ± 4.6	39.9 ± 1.7	45.0 ± 5.7	0.24 ± 0.03	0.25 ± 0.03	
Steareth-5	153.3 ± 8.3	151.2 ± 7.4	16.9 ± 2.8	20.7 ± 5.1	0.28 ± 0.02	0.30 ± 0.02	
Steareth-20	132.4 ± 3.0	131.5 ± 1.9	13.3 ± 3.8	19.1 ± 2.9	0.21 ± 0.02	0.22 ± 0.02	
Tween 80	77.0 ± 8.7	76.5 ± 4.3	2.3 ± 0.2	4.8 ± 2.2	0.59 ± 0.04	0.54 ± 0.03	
IDDI DIDI					1-		

Table 5 Particle size, PDI and ζ potential of each niosome and pDNA/PLO/niosome ternary complexes.

*PDI : PolyDispersity Index

 $(Mean \pm S.D., n = 3)$

(B) pDNA/PLO/Steareth-5 niosome ternary complexes,

(C) pDNA/PLO/Steareth-20 niosome ternary complexes,
 (D) pDNA/PLO/Tween 80 niosome ternary complexes.
 ______; niosome, ______; pDNA/PLO/niosome terary complexes (1 : 4 : 30),

; pDNA/PLO complexes (1:4).

- (A) pDNA/PLO/Steareth-2 niosome ternary complexes,
- (B) pDNA/PLO/Steareth-5 niosome ternary complexes,
- (C) pDNA/PLO/Steareth-20 niosome ternary complexes,
- (D) pDNA/PLO/Tween 80 niosome ternary complexes.
- Original magnification ×40,000. Scale bar : 200 nm.

次に、pDNA/PLO/ニオソーム三元複合体による DNA 保持能をアガロースゲル電気泳動に より評価した。一般的に、DNA は水溶液中では負に荷電するため、アガロースゲルのウェ ルにアプライして電気泳動すると、DNA は負極から正極の方に向かってゲル内を移動し、 バンドが出現する。一方、DNA 及び正に荷電する遺伝子ベクターが静電的に複合体化する と、複合化した遺伝子ベクターの量に依存して DNA 表面の電荷が中和され、ゲル内を移動 する DNA の割合が減少し、完全に電荷が中和されると複合体はウェル内に保持される。し たがって、ウェル内に存在する DNA バンドの輝度の度合いから、遺伝子ベクターの DNA 保持能を見積もることができる⁶¹⁾。また、ポリアニオンに対する pDNA/PLO/ニオソーム三 元複合体の安定性も同様に電気泳動により評価した。DNA を複合化した遺伝子ベクターは ポリアニオンが存在すると、正に荷電した複合体と競合的なイオン交換反応を起こすことが 知られており、電気泳動後に流れたゲル中に流れた DNA 量から、ポリアニオン存在下での 複合体の物質を保持する能力の強さを評価することができる⁶¹⁾。今回、ポリアニオン存在下 での複合体の安定性を評価するために、ポリアニオン性高分子のモデル化合物として強酸基 (スルホン基)を有する DS を用いた。さらに、核酸分解酵素による DNA 分解に対する複 合体の保護能も、エキソヌクレアーゼの DNase I を用いて同様に行った^{61,63)}。この試験で は、DNase I により複合体中の DNA を酵素分解し、DNA が断片化されているかを確認する ため、DNase I 処理後、DS により複合体から pDNA を遊離させ、電気泳動を行った。

Figure 9 にアガロースゲル電気泳動により評価した DS 非存在下又は存在下での pDNA/PLO 複合体とニオソーム配合比を 30 としてニオソームを構成する NIS の種類 (Steareth-2, Steareth-5, Steareth-20 及び Tween 80)を変えた場合の pDNA/PLO/Steareth ニオ ソーム三元複合体の DNA 保持能の結果、Figure 10 に DS 存在下及び DS/DNase I 存在下で の DNA 保持能の結果を示す。pDNA 単独は負極から正極に向かってウェルから移動し、ゲ ル内にバンドが確認された(Fig. 9, lane 1)。DS 非存在下の pDNA/PLO 複合体中の pDNA は、 高い輝度でウェル内にバンドが確認されたが、一部はゲル内を移動した(Fig. 9, lane 2)。一 方、pDNA/PLO/ニオソーム三元複合体はウェル内にのみ DNA バンドが確認され、pDNA/PLO 複合体よりも DNA を保持能が高いことが示された(Fig. 9, lanes 3~6)。

次に、pDNA/PLO 複合体に DS を混合すると、ウェル内の DNA バンドがゲル内に移動した (Fig. 9, lane 7)。これは、複合体及び DS とのイオン交換反応により、pDNA/PLO 複合体 から pDNA がほとんど解離し、ゲル内を移動したためと考えられる。各 pDNA/PLO/ニオソ ーム三元複合体に DS を添加すると、複合体から pDNA が解離してゲル内にバンドが出現したが、一部はウェル内にバンドが残っており、pDNA/PLO 複合体よりもイオン交換反応を受けにくいと考えられた (Fig. 9, lanes 8~11)。pDNA/PLO/ニオソーム三元複合体の中でも、 Steareth-2 ニオソームからなる三元複合体では他の複合体よりもゲル内を流れる pDNA バンドの輝度が小さく、DS 存在下でも比較的高い DNA 保持能を維持していた (Fig. 9, lane 8)。

さらに、各サンプルに DNase I 処理を行い、複合体による pDNA の保護能を評価した。 なお、pDNA 分解の有無は DS により複合体から pDNA を遊離させて確認した。pDNA 単独 では DNase I で処理した後、pDNA バンドが消失した(Fig. 10, lane 7)。これは、DNase I 処 理により pDNA が DNA Marker の最小 DNA 断片の鎖長(Lane M, 100 bp)よりも短い DNA 断片に分解され、SYBR[®] Gold で検出できなかったと考えられる。次に、各サンプルに DNase I 処理後、DS により複合体から pDNA を遊離させたところ、いずれの複合体も pDNA の分 解は確認されず、pDNA 単独(Fig. 10, lane 1)及び DS 単独適用したとき(Fig. 10, lanes 2~ 6)と同一位置にゲル内にバンドが出現した (Fig. 10, lanes 8~12)。また、ウェル内にも pDNA のバンドが同程度の輝度で確認された。

上記の結果より、各 NIS のニオソームからなる三元複合体は、NIS の種類によらず pDNA を複合体内に効率的に保持できることが示された。また、DS 存在下での複合体の DNA 保 持能は EO 鎖長が最も短い Steareth-2 ニオソームからなる三元複合体で最も高くなり、これ は Steareth の EO 鎖の長さが複合体と DS とのイオン相互作用の強さに影響を与えることを 示唆していた。また、DNase I に対する各三元複合体の pDNA 保護効果は NIS の種類によら ず、高いことも示された。

Fig. 10 Protective effect of pDNA/PLO complexes and pDNA/PLO/niosome ternary complexes

against nuclease (DNase I).

Lane M : DNA marker, Lanes 1 and 7 : Naked pDNA, Lanes 2 and 8 : pDNA/PLO complexes, Lanes 3 and 9 : pDNA/PLO/Steareth-2 niosome ternary complexes, Lanes 4 and 10 : pDNA/PLO/Steareth-5 niosome ternary complexes, Lanes 5 and 11 : pDNA/PLO/Steareth-20 niosome ternary complexes, Lanes 6 and 12 : pDNA/PLO/Tween 80 niosome ternary complexes. The weight ratios of pDNA/PLO complexes and each pDNA/PLO/niosomes ternary complexes were 1 : 4 and 1 : 4 : 30, respectively. Lanes 1-6 : Samples were treated with DS but not with DNase I (Untreated). Lanes 7-12 : Samples were treated with DS and DNase I. 複合体の DNA 保持能及び DS に対する安定性を SYBR[®] Gold の DNA へのインターカレ ートを利用した SYBR[®] Gold assay でも評価した。シアニン系色素 SYBR[®] Gold は、DNA の 塩基対間に特異的にインターカレートすることで複合体を形成し、強い蛍光を発する。一方、 DNA が遺伝子ベクターとの複合体を形成すると、SYBR[®] Gold 分子によるインターカレー ションが阻害され、SYBR[®] Gold/DNA 複合体による蛍光強度は低下する。したがって、SYBR [®] Gold assay は、DNA と遺伝子ベクターとの複合体形成による SYBR[®] Gold の蛍光強度の 減少を利用して、遺伝子ベクターによる DNA 保持能の強さを評価することができる ⁶⁴。 さ らに、ポリアニオンを DNA/遺伝子ベクター複合体に添加した後、SYBR[®] Gold を加えて複 合体から遊離した DNA にインターカレートすることで、遊離した DNA の割合を見積もる ことができ、電気泳動法と同様に複合体の物質を保持する能力の強さやポリアニオン存在下 での複合体の安定性を評価することができる ^{64,65)}。

Figure 11 に SYBR[®] Gold assay による、pDNA/PLO 複合体及びニオソーム配合比を 30 と してニオソームを構成する NIS の種類(Steareth-2, Steareth-5, Steareth-20 及び Tween 80)を 変えた場合の pDNA/PLO/ニオソーム三元複合体の DNA 保持能及び DS に対する複合体の安 定性の結果を示す。DS 非存在下での各複合体の相対蛍光強度は約 1~3%であることから、 どの pDNA/PLO/ニオソーム三元複合体も SYBR[®] Gold によるインターカレーションを抑制 して DNA を複合体中に強く保持していることが示された。

次に、各三元複合体に DS を 30 分間処理すると、DS 濃度の増加に伴い相対蛍光強度が増 大し、複合体からの pDNA の遊離が観察された。ここで、pDNA/PLO 複合体のインターカ レーションに対する IC₅₀ は 0.099 mg/mL であり、低濃度の DS であっても pDNA の遊離が観 察された。また、ニオソームを構成する NIS の種類を変えた場合の pDNA/PLO/ニオソーム 三元複合体のインターカレーションに対する IC₅₀ はそれぞれ 2.1 mg/mL (Steareth-2)、0.34 mg/mL (Steareth-5)、0.57 mg/mL (Steareth-20) 及び 0.73 mg/mL (Tween 80) であり、これら の複合体も pDNA が遊離するためには、pDNA/PLO 複合体よりも高い DS 濃度が必要とし、 DS に対して三元複合体が高い DNA 保持能を有していることを示した。さらに、 pDNA/PLO/Steareth-2 ニオソーム三元複合体のインターカレーションに対する IC₅₀ の値から、

pDNA/PLO/Tween 80 ニオソーム三元複合体よりも DNA 保持能が高いことも示された。最大 DS 濃度の時、pDNA/PLO/Tween 80 ニオソーム三元複合体の相対蛍光強度は約 81%まで増大 し、pDNA/PLO 複合体と同程度の pDNA 遊離を観察したが、各 pDNA/PLO/Steareth ニオソ ーム三元複合体では相対蛍光強度が 64~78%となり、pDNA/PLO 複合体よりも pDNA の遊 離が有意に抑制された(*p < 0.05)。特に、pDNA/PLO/Steareth-2 ニオソーム三元複合体は pDNA/PLO 複合体だけでなく、pDNA/PLO/Tween 80 ニオソーム三元複合体よりも pDNA の 遊離が抑制された([†]p < 0.05)。

以上の結果より、ニオソームを構成する NIS の種類を変えた pDNA/PLO/ニオソーム三元 複合体もまた、高い DNA 保持能を有していることが明らかとなった。また、DS に対する複 合体の保持能は Steareth の EO 鎖長に依存しており、EO 鎖が最も短い Steareth-2 ニオソーム からなる三元複合体は、pDNA/PLO 複合体及び pDNA/PLO/Tween 80 ニオソーム三元複合体 よりも DS に対して高い保持能を示すことが示唆された。

Fig. 11 Condensation efficiency and protective effect of pDNA/PLO complexes and pDNA/PLO/niosome

ternary complexes against anionic polysaccharides (DS) by SYBR[®] Gold intercalation.

- : pDNA/PLO complexes,
- \bigcirc : pDNA/PLO/Steareth-2 niosome ternary complexes,
- \diamond : pDNA/PLO/Steareth-5 niosome ternary complexes complexes,

 \triangle : pDNA/PLO/Steareth-20 niosome ternary complexes complexes,

- $\times\,$: pDNA/PLO/Tween 80 niosome ternary complexes.
- Each data point represents the mean \pm S.D. (n = 3).

*p < 0.05 compared with pDNA/PLO complexes, p < 0.05 compared with pDNA/PLO/Tween 80 complexes.

1-3-4 粒子特性、DNA保持能及び安定性に対する pDNA/PLO/ニオソーム三元複合体のニ オソームの質量比の影響

前節までの結果から、Steareth-2をNISとして用いた pDNA/PLO/ニオソーム複合体が DNA 保持能及び安定性の点で、優れていると考えられたため、Steareth-2 ニオソームを用いてニ オソーム配合比の影響を検討した。

Table 6 に Stareth-2 ニオソーム単独及び Steareth-2 ニオソームで調製した配合比 2,5,10,15 及び 30 に変えた各 pDNA/PLO/Steareth-2 ニオソーム三元複合体の平均粒子径、PDI 及びζ 電位を示す。各 pDNA/PLO/Steareth-2 ニオソーム三元複合体の平均粒子径は 153~163 nm、 PDIは 0.24~0.28、 (電位は +39~+45 mV であり、 複合前と大きな変化は認められなかっ たが、Steareth-2 ニオソームの質量比の増大に伴い、平均粒子径及びく電位が Steareth-2 ニ オソーム単独よりも大きくなる傾向にあった。

Table 6 Particle size, PDI and ζ potential of Steareth-2 niosome and pDNA/PLO/Steareth-2 niosome ternary complex with a different weight ratio.

pDNA : PLO : niosome weight ratio	Size (nm)	ζ potential (mV)	PDI [*]
0:0:1	156.3 ± 3.4	39.9 ± 1.7	0.24 ± 0.03
1:4:2	153.9 ± 12	39.4 ± 7.7	0.28 ± 0.09
1:4:5	158.8 ± 11	39.3 ± 8.8	0.26 ± 0.05
1:4:10	158.2 ± 7.3	39.7 ± 8.8	0.27 ± 0.02
1:4:15	163.2 ± 2.3	40.5 ± 1.7	0.24 ± 0.02
1:4:30	163.0 ± 4.6	45.0 ± 5.7	0.24 ± 0.03
*PDI · PolyDispersity Index			(Mean + S.D., n = 3)

PDI : PolyDispersity Index

 $mean \pm S.D., n = 3$
Figure 12 に pDNA/PLO 複合体溶液と Steareth-2 ニオソームで調製した配合比 2, 5, 10, 15 及び 30 に変えた各 pDNA/PLO/Steareth-2 ニオソーム三元複合体懸濁液をアガロースゲルの 各ウェルにアプライし、電気泳動した後のバンド画像を示す。pDNA/PLO/Steareth-2 ニオソ ーム三元複合体は、いずれの Steareth-2 ニオソームの質量比においてもウェル内に DNA の バンドが確認され (Lanes 3~7)、そのバンドの輝度は Steareth-2 ニオソームの質量比の増加 に伴い増大した。また、ゲル内を移動した DNA のバンドの輝度は複合した Steareth-2 ニオ ソームの量の増加に伴い減少した。したがって、pDNA は PLO に加えてニオソームを複合 化することで、ニオソームの質量比に依存して、PLO 単独よりも効率的に pDNA を保持で きることが示された。

Fig. 12 Gel retardation of pDNA/PLO complexes and pDNA/PLO/Steareth-2 niosome ternary complexes with various weight ratio. Lane 1 : Naked pDNA, Lane 2 : pDNA/PLO complexes (pDNA : PLO = 1 : 4), Lanes 3-7 : pDNA/PLO/Steareth-2 niosome ternary complexes (pDNA : PLO : Steareth-2 niosome = 1 : 4 : n , n = 2, 5, 10, 15, 30).

Figure 13 にアガロースゲル電気泳動により評価した DS 存在下及び DS/DNase I 存在下での pDNA/PLO 複合体及び Steareth-2 ニオソームで調製した配合比 2, 5, 10, 15 及び 30 に変えた各 pDNA/PLO/Steareth-2 ニオソーム三元複合体の DNA 保持能の結果を示す。DS 非存在下でウェル内に DNA のバンドが確認された各 pDNA/PLO/ Steareth-2 ニオソーム三元複合体は(Fig. 12, lanes 3~7)、DS との混合でゲル内にバンドが出現するようになった(Fig. 13, lanes 3~7)。複合化した Steareth-2 ニオソーム量が少ないとき、一部はウェル内にバンドが残っていたが、pDNA の多くが複合体から解離して pDNA バンドがゲル内に確認された(Fig. 13,

lanes 3 and 4)。一方、複合した Steareth-2 ニオソームの量を増加させると、ウェル内に保持 される pDNA バンドの輝度が大きくなり、ゲル内を流れる pDNA バンドの輝度が減少した (Fig. 13, lanes 5~7)。

次に、pDNA/PLO 複合体及び各 pDNA/PLO/Steareth-2 ニオソーム複合体を DNase I 処理 後、DS により複合体から pDNA を遊離させたところ、いずれも pDNA の分解は確認され ず、pDNA 単独(Fig. 13, lane 1) 及び DS 単独適用したとき(Fig. 13, lanes 2~7) と近い位置 にゲル内にバンドが出現し、かつウェル内にも pDNA のバンドが同程度の輝度で確認され た(Fig. 13, lanes 9~14)。これにより、各複合体は DNase I 処理後も pDNA を保護している ことが示された。

上記の結果より、pDNA/PLO/Steareth-2 ニオソームはポリアニオンに対して pDNA/PLO 複 合体よりも高い DNA 保持能を有し、さらに複合化したニオソーム量に依存して、その効果 が強くなることが示された。また、pDNA を PLO 及び Steareth-2 ニオソームと複合化するこ とで、DNase I による pDNA の酵素反応部位への結合がされなくなり、pDNA を保護するこ とができた。

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14

complexes against anionic polysaccharides (DS) and nuclease (DNase I).

Lane M : DNA marker, Lanes 1 and 8 : Naked pDNA, Lanes 2 and 9 : pDNA/PLO complexes (pDNA : PLO = 1 : 4), Lanes 3-7 and 10-14 : pDNA/PLO/Steareth-2 niosome ternary complexes (pDNA : PLO : niosome = 1 : 4 : n, n = 2, 5, 10, 15, 30), Lanes 1-7 : Samples were treated with DS but not with DNase I (Untreated). Lanes 8-14 : Samples were treated with DS and DNase I. Figure 14 に SYBR[®] Gold assay による、pDNA/PLO 複合体及び Steareth-2 ニオソームで調 製した配合比 2, 5, 10, 15 及び 30 に変えた各 pDNA/PLO/Steareth-2 ニオソーム三元複合体の DNA 保持能及び DS に対する複合体の安定性の結果を示す。DS 非存在下での各複合体の相 対 蛍 光 強度 は約 1~2% である ことから、pDNA/PLO 複合体及びいずれの質量比の pDNA/PLO/Steareth-2 ニオソーム三元複合体も、複合体の形成により DNA が強く保持され、 SYBR[®] Gold によるインターカレーションを抑制したことが示された。

次に、各複合体に DS を 30 分間処理すると DS 濃度の増加に伴い相対蛍光強度が増大し、 複合体からの pDNA の遊離が観察された。ここで、種々質量比の pDNA/PLO/Steareth-2 ニオ ソーム三元複合体のインターカレーションに対する IC₅₀ はそれぞれ 0.26 mg/mL (1:4:2)、 0.45 mg/mL (1:4:5)、0.50 mg/mL (1:4:10) 及び 2.1 mg/mL (1:4:30) であり、複合化し たニオソーム配合量の増大に伴い値が高くなった。したがって、種々質量比の三元複合体は、 複合体から pDNA が遊離するためには pDNA/PLO 複合体よりも高い DS 濃度が必要である ため、DS に対して三元複合体が高い DNA 保持能を有していることを示した。さらに、DS 濃度を最大 1 mg/mL まで増大させると、pDNA/PLO 複合体の相対蛍光強度は約 87%まで増 大し、アガロースゲル電気泳動の結果と同様に多くの pDNA が遊離した。一方、最大 DS 濃 度における各 pDNA/PLO/Steareth-2 ニオソーム三元複合体の相対蛍光強度は 64~87%であ り、ニオソーム配合量の増大に伴い、複合体からの pDNA の遊離が抑制された。特に、Steareth-2 ニオソームの配合比が 30 のとき、pDNA の遊離が pDNA/PLO 複合体よりも有意に抑制さ れた (*p < 0.05)。

以上の結果より、種々質量比の pDNA/PLO/Steareth-2 ニオソーム三元複合体は、pDNA/PLO 複合体と同様に非常に低い相対蛍光強度を示したことから、高い DNA 保持能を有している ことが明らかとなった。また、pDNA/PLO 複合体及び Steareth-2 ニオソームを複合化するこ とで、Steareth-2 ニオソームの配合比に依存して DS に対して高い保持能を示すことが示唆 された。

Fig. 14 Condensation efficiency and protective effect of pDNA/PLO complexes and pDNA/PLO/Steareth-

2 niosome ternary complexes against anionic polysaccharides (DS) by SYBR[®] Gold intercalation.

- : pDNA/PLO complexes,
- \Box : pDNA/PLO/Steareth-2 ternary complexes (pDNA : PLO : Steareth-2 niosome = 1 : 4 : 2),

 \triangle : pDNA/PLO/Steareth-2 ternary complexes (pDNA : PLO : Steareth-2 niosome = 1 : 4 : 5),

- \times : pDNA/PLO/Steareth-2 ternary complexes (pDNA : PLO : Steareth-2 mosone = 1 : 4 : 5), \bigcirc : pDNA/PLO/Steareth-2 ternary complexes (pDNA : PLO : Steareth-2 niosome = 1 : 4 : 10), \bigcirc : pDNA/PLO/Steareth-2 ternary complexes (pDNA : PLO : Steareth-2 niosome = 1 : 4 : 30), Each data point represents the mean ± S.D. (n = 3).

*p < 0.05 compared with pDNA/PLO complexes.

第4節 小括

第1章では、Steareth ニオソームをそれぞれ調製し、pDNA/PLO/ニオソーム三元複合体を 調製した後の粒子特性や DNA 保持能、複合体の安定性を評価した。まず、本研究では Steareth の構造特性の違いによるニオソームの物性や遺伝子発現効率の影響を調査するため、親水性 EO 鎖長の長さが異なる 3 つの NIS(Steareth-2, Steareth-5, Steareth-20)を選択し、ヘルパー 脂質 Chol 及びカチオン性脂質 ODA と組合わせた。さらに、遺伝子導入ニオソームとして 高い遺伝子発現効率を示すことが報告されている Tween 80 ニオソームも同様に試験した。

ニオソームはベシクル調製の一般的手法として汎用されている薄膜水和法及び超音波法 により調製した。各ニオソームは本調製法によりナノサイズの粒子を得ることができ、比較 的球形に近く、層状構造を確認することができた(Table 3 and Fig. 4)。各 Steareth ニオソー ムの平均粒子径及びζ電位は、Steareth の EO 鎖長が長くなるほど減少しており(Table 3)、 類似した傾向が他の研究でも報告されていた^{44,66)}。これは、Steareth が自己会合してニオソ ームを形成するとき、EO 鎖長の短い Steareth-2 では長いものよりも EO 鎖長による立体障 害が小さいため、より多くの Steareth 分子が自己会合して粒子径が増大したと考えられる。 また、Steareth ニオソームの EO 鎖長に伴うζ電位の減少は、ODA のアミノ基が Steareth の EO 鎖長の増大に伴い、ニオソームのより中心に近い位置に存在するためにみられたと考え られ、親水性鎖長の長さが生成したニオソームの物性に影響を与えていることが示された。 次に、ニオソームの経時的な粒子特性の変化を評価したところ、いずれの Steareth ニオソー ムも28日間経過しても平均粒子径、粒度分布及びζ電位に変化はみられず、安定してニオ ソーム粒子が溶液中に懸濁していた(Table 4, Figs. 5 and 6 (A)~(C))。粒子の安定性を左右 する要因の一つとして粒子の表面電荷があり、正又は負電荷の大きな絶対値同士は静電的反 発により、粒子同士の凝集が抑制され、分散した状態が維持される^{20,67)}。今回調製した Steareth ニオソームはいずれも正に荷電していたため、長期にわたる安定性を維持できたと 考えられる。一方、Tween 80 ニオソームは平均粒子径が調製直後よりも僅かに増大してお り(Fig.5(A) and Table 4)、これは Tween 80 ニオソームの電荷が中性に近いため電荷による 反発が弱くなり、若干の粒子の凝集を引き起こしたと推察される。

調製したニオソームに pDNA を効率的に複合するために、pDNA を PLO で凝縮した後、 ニオソームと混合した。pDNA/PLO 複合体の質量比 (pDNA: PLO) はこれまでの当研究室 の結果から、高い遺伝子発現効率及び安全性を示した 1:4 に設定した ⁵⁰。まず、ニオソー ム配合比を 30 に固定し、ニオソームを構成する NIS の種類を変えた pDNA/PLO/ニオソーム 三元複合体を調製し、Steareth の EO 鎖長に対するその粒子特性や DNA 保持能、複合体の安 定性を評価した。ニオソームを構成する NIS の種類を変えた pDNA/PLO/ニオソーム三元複 合体の粒子特性もまた、ニオソーム単独と同様に Steareth の EO 鎖長の長さに依存していた (Table 5 and Fig. 7)。また、pDNA/PLO 複合体との複合化による粒子特性や形態学的な変化 は確認されなかった (Table 5 and Figs. 7 and 8)。約 100~200 nm 程度の粒子径で正電荷を有 する遺伝子導入ベクターは、遺伝子の細胞内取込みを促進することが知られており ⁶⁸、本研

究で調製した pDNA/PLO/ニオソーム三元複合体はこの条件を満たしていることが明らかに

なった。

次に、遺伝子をベクター内に安定して保持されているかを確認するために、アガロースゲ ル電気泳動及び SYBR[®] Gold assay を行った。各三元複合体は電気泳動後もゲルのウェル内 に pDNA バンドが確認されており、ゲル内を流れた pDNA は pDNA/PLO 複合体よりも少な かった (Fig. 9, lanes 3~6)。SYBR[®] Gold assay でも同様に、pDNA、PLO 及び各ニオソーム の複合化により、pDNA への SYBR[®] Gold のインターカレートが抑制されて、相対蛍光強度 の減少が確認されため、いずれの複合体も pDNA を強く保持していることが示された (Fig. 11)。したがって、pDNA が 2 種類のカチオン性成分と相互作用することで、PLO 又はニオ ソーム単独よりも効率的に pDNA を凝縮させ、複合体内に保持したと考えられる。遺伝子 導入ベクターに求められる性質は DNA を必須合く内に保持する能力だけでなく、生体内で の外部環境に対して DNA を保護することができることも重要である。例えば、ヘパリンや ヘパラン硫酸等の GAGs とよばれるアニオン性多糖は、正に荷電する複合体と静電的相互 作用により競合的なイオン交換反応を起こすことが知られており⁶⁹、DNA を標的細胞に送 達できない可能性がある。そこで、今回調製した複合体のポリアニオン性化合物存在下での 安定性を評価するために、アニオン性多糖 DS を用いてアガロースゲル電気泳動及び SYBR

[®] Gold assay により試験した。pDNA/PLO 複合体は DS (5 mg/mL) 存在下で、ウェル中の pDNA バンドがほとんど消失し、相対蛍光強度が 90%近くまで増大しており、DS により複 合体から pDNA を容易に遊離させた(Fig. 9, lane 7 and Fig. 11)。一方、各三元複合体のいず れも pDNA/PLO 複合体よりもウェル中に pDNA バンドを保持させ、相対蛍光強度の増大を 抑制した (Fig. 9, lanes 9~11 and Fig. 11)。また、遊離した pDNA の割合は Steareth の EO 鎖 長に依存し、EO 鎖長の最も短い Steareth-2 で最も少なくなった。これは、Steareth-2 の EO 鎖長による立体障害が他の NIS よりも小さいため、pDNA、PLO 及び Steareth-2 ニオソーム の静電的相互作用が強くなり、外部環境の影響を受けにくくなったと考えられる。さらに、 DS に対する各複合体の DNA 保持能を比較するために、各複合体のインターカレーション に対する IC50を算出したが、Steareth-2 ニオソームからなる三元複合体で pDNA/PLO 複合体 より約21倍高く、Tween 80 ニオソームからなる三元複合体よりも約2.9倍高い値を示した。 さらに、最大 DS 濃度の相対蛍光強度の値を考慮すると、Steareth-2 ニオソームからなる三 元複合体は高い DS 濃度の中でも pDNA を複合体中に保持し、DS に対して高い DNA 保持 能を有していることが明らかになった。DNase I に対する複合体の安定性試験についても、 pDNA/PLO/ニオソーム三元複合体の遺伝子保護効果が確認された(Fig. 10, lanes 9~12)。 DNA との複合体にさらにカチオン性物質を組込むことで、pDNA の保持能及び保護効果を 亢進させることが他の研究でも示されており^{50,70}、今回の結果でも複数のカチオン性化合 物を複合し、その割合を増やすことで pDNA の保持能だけでなく、様々な外部環境に対し ても高い保護効果をもたらしたことが示唆された。

次に、ニオソームの質量比に対する pDNA/PLO/ニオソーム三元複合体の粒子特性や DNA 保持能、安定性の影響を評価した。ここで、複合化するニオソームには最も高い複合体の安 定性を示した Steareth-2 を用いた。種々質量比の pDNA/PLO/Steareth-2 ニオソーム三元複合 体の粒子特性は、Steareth-2 ニオソーム単独と同等の粒子特性を示し、質量比による影響は みられなかった(Table 6)。調製した種々質量比の pDNA/PLO/Steareth-2 ニオソーム三元複 合体も同様に、比較的小さい粒子径及び高いζ電位を有していたので、遺伝子導入ベクター としての要件を満たしていた。 さらに、各三元複合体の DNA 保持能についても同様に評価し、pDNA/PLO/Steareth-2 ニオ ソーム三元複合体は複合化したニオソーム量に依存して、DNA 保持能が増大することが確 認された(Fig. 12, lanes 3~7 and Fig. 14)。また、DS による複合体の安定性試験では、複合 化した Steareth-2 ニオソームの割合の増加させることで、ウェル中に pDNA バンドを保持さ せ、相対蛍光強度を約 64%に抑制した(Fig. 13, lanes 3~7 and Fig. 14)。各複合体のインター カレーションに対する IC₅₀を算出すると、いずれの質量比の三元複合体も pDNA/PLO 複合 体より約 2.6~21 倍高く、複合化したニオソーム量に依存して値が増大しており、DS に対 して高い DNA 保持能を有していることが明らかになった。また、核酸分解酵素である DNase I に対する複合体の pDNA 保護効果もアガロースゲル電気泳動により評価を行ったが、いず れの複合体も pDNA の分解はみられず、DNase I に対して安定して pDNA を保持している ことが確認された(Fig. 13, lanes 9~14)。

以上の結果から、pDNA/PLO/Steareth ニオソーム三元複合体は遺伝子導入ベクターとして 適した物理化学的性質を有していることが明らかとなった。また、各複合体が有する粒子特 性や複合体の DNA 保持能、安定性は用いた Steareth の EO 鎖長の長さに影響し、最も短い Steareth-2 では、pDNA/PLO 複合体及び pDNA/PLO/Tween 80 ニオソーム三元複合体よりも高 い安定性を有することが示された。

第2章 pDNA/PLO/ニオソーム三元複合体による遺伝子導入と安全性

第1節 小緒言

これまでに種々Steareth (Steareth-2, Steareth-5 及び Steareth-20) ニオソーム及び Tween 80 ニオソームを用いた pDNA/PLO/ニオソーム複合体を調製し、粒子特性や複合体の DNA 保 持能、DNA の安定性を評価した。第1章では、直鎖状 NIS の Steareth もまた Tween と同様 に、遺伝子導入に適した物性をもち、高い DNA 保持能及び安定性を有することが示され、 遺伝子導入を行うための良好な結果を得ることができた。しかし、今回調製した各 pDNA/PLO/Steareth ニオソーム三元複合体が、実際に遺伝子を送達して遺伝子発現をするこ とができるか否かは不明である。

そこで第2章では、第1章で調製した各pDNA/PLO/ニオソーム三元複合体を種々条件で 培養細胞に適用し、pDNAの遺伝子発現活性を評価した。本研究では、レポーター遺伝子と して化学発光を触媒する酸化還元酵素 luciferase の遺伝子がコードされている pDNA を用い て、基質の luciferin を加えることで、発光強度を高感度に定量化できる方法を選択した⁷¹⁾。 遺伝子導入を行う培養細胞には、異なる種類の細胞間での遺伝子発現効率の違いを検討する ために、癌細胞株のヒト肺胞基底上皮腺癌(A549)細胞及び正常細胞株のヒト胎児腎 (HEK293)細胞の2種類を用いた。一方、血液中には赤血球や白血球などの細胞成分だけ でなく、アルブミンや血液凝固因子、グロブリン等多種の成分が含まれており、遺伝子導入 ベクターを生体内に投与するとき、これらが正に荷電した遺伝子導入ベクターとの静電的相 互作用し、凝集塊の形成や毛細血管の塞栓、遺伝子の分解を招くおそれがある。一般に、PEI 等を用いた polyion complex (polyplex) は、血清成分との非特異的相互作用により、複合体 の電荷の中和や凝集塊の形成、遺伝子導入の阻害が確認されており、十分な有効性を発揮し ていないことが知られている^{8,72)}。そこで、効率的な遺伝子導入を達成するためには、血清 存在条件下でも遺伝子発現活性を維持していることが重要であると考え、本章では血清成分 (FBS)を含有する試験培地での遺伝子導入も実施し、pDNA/PLO/ニオソーム三元複合体が 生体成分に近い条件下で遺伝子導入できるかも検証した。

効率的な遺伝子送達を達成するためには安全に遺伝子を送達できることも重要である。 Polyplex や lipoplex の過剰な正電荷は細胞膜を傷害し、アポトーシスやネクローシスのよう な細胞死の引き金となることが示されており、炎症や溶血等を惹起する恐れがある^{73,74)}。そ こで第1章で調製したニオソーム単体や pDNA/PLO/ニオソーム三元複合体の安全性を評価 するために、赤血球を用いた溶血活性試験や細胞内代謝活性から細胞毒性を評価する MTT assay も行った。

第2節 実験方法

2-2-1 試薬

Triton[®] X-100を富士フィルム和光純薬工業株式会社(大阪)より購入した。3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2*H*-tetrazolium bromide (MTT)を株式会社同仁化学研究所(熊本)よ り購入した。Dulbecco's Modified Eagle's Medium (DMEM)、牛胎児血清(FBS)、非必須アミ ノ酸(MEM NEAA)、GlutaMAXTM-1、Antibiotic-Antimycotic (Anti-Anti, 10,000 units/mL penicillin, 10,000 µg/mL streptomysin 及び 25 µg/mL amphotericin B)、0.25% Trypsin-EDTA、Opti-MEM[®] I Reduced-Serum Medium 及び Pierce[®] BCA Protein Assay kit を Thermo Fisher Scientific, Inc. (MA, USA)より購入した。Luciferase assay system を Promega Co. (Madison, WI, U.S.A.)より購 入した。

種々ニオソームを用いて調製した pDNA/PLO/ニオソーム三元複合体は、第1章と同様なものを、その他の試薬は全て市販の特級品を用いた。

2-2-2 溶血活性試験 21,75,76)

Wistar 系雄性ラット(8週齢)(三協ラボサービス株式会社,東京)より全血を採取し、遠 心分離(2,000×g,4℃,5分間)した。遠心分離後、上清を除去し、リン酸緩衝生理食塩液 (PBS)で赤血球を3回洗浄した。3回洗浄後、上清を除去し、赤血球をPBSで再懸濁させ、 5%赤血球懸濁液を調製した。調製した5%赤血球懸濁液600 µL に各ニオソームを50 µL ず つ混合し、37℃で4時間インキュベートした。また、negative control として PBS 50 µL を混 合し、positive control として10% Triton[®] X-100 50 µL を混合した。インキュベーション後、 遠心分離(2,000×g,4℃,5分間)し、上清100 µL を96-well microplate (Non-coated, flat, AGC テクノグラス株式会社,千葉)に分注し、赤血球より放出されたヘモグロビン(Hb)の波長 540 nm における吸光度を microplate reader (Multiskan Ascent, Ascent, MTX Lab Systems, FL USA)により測定した。測定後、溶血活性 (Hemolysis)を(2)式により算出した。

Hemolysis (%) =
$$\frac{\text{Absorbance}_{\text{Sample}} - \text{Absorbance}_{\text{PBS}}}{\text{Absorbance}_{\text{TritonX-100}} - \text{Absorbance}_{\text{PBS}}} \times 100 \cdots$$
 (2)

ここで、Absorbance sample は種々ニオソーム適用により放出された Hb の吸光度、Absorbance PBS は PBS 適用により放出された Hb の吸光度、Absorbance TritonX-100 は 10% Triton[®] X-100 適 用により放出された Hb の吸光度を示す。

2-2-3 細胞培養

A549 細胞は本学大学院薬学研究科生理学講座 加園 恵三 教授より贈与され、HEK293 細胞は American Type Culture Collection (ATCC, VA, USA) より購入した。細胞培養用ディッシュ (AGC テクノグラス株式会社) 及び DMEM を用いて、CO₂ インキュベーター (アステック株式会社, 福岡) 内で 5% CO₂存在下、37°C で細胞を培養した。2日もしくは3日おき に培地を交換し、細胞がセミコンフルエント (70~80%) の状態で Trypsin-EDTA を用いて 継代した。実験には、継代数 15-40 代の細胞を使用した。Table 7 に培地の組成を示す。

		Final concentration (%)	
DMEM	13.5 g		
NaHCO ₃	2.2 g		
MEM NEAA	10 mL	1	
GlutaMAX TM -I	10 mL	1	
Anti-Anti	10 mL	1	
FBS	100 mL	10	
Ultra pure water	870 mL		

Table 7Composition of culture medium.

2-2-4 トランスフェクション試験

A549 細胞又は HEK293 細胞を Collagen Type I coated 24-well microplate (AGC テクノグラ ス株式会社) に 1.0×10^5 cells/well でそれぞれ播種した。37℃、5% CO₂存在下で 24 時間培養 し、セミコンフルエントに達した後に試験に使用した。培地を Opti-MEM[®] I Reduced-Serum Medium 又は DMEM (+10% FBS) 0.5 mL に置換し、ニオソーム配合比を 30 に固定してニ オソームを構成する NIS (Steareth-2, Steareth-5, Steareth-20 及び Tween 80) の種類を変えた pDNA/PLO/ニオソーム三元複合体と NIS を Steareth-2 に固定してニオソーム配合比を 2, 5, 10 及び 30 に変えた pDNA/PLO/Steareth-2 ニオソーム三元複合体を各々のウェルに適用した (pDNA: 500 ng/well)。なお、本研究では調製直後の DNA/PLO/ニオソーム三元複合体を使 用した。また、pDNA のみの溶液を negative control として適用した (500 ng/well)。適用後、

37℃、5% CO₂ 存在下で 3 時間インキュベートした。その後、培地をフレッシュな DMEM 0.5 mL に置換し、37℃、5% CO₂ 存在下で 48 時間まで再度インキュベートした。

2-2-5 Luciferase assay

2-2-4 でトランスフェクションした後、PBS 300 µL で細胞を1回洗浄し、Luciferase assay system キット付属の1×Luciferase Cell Culture Lysis Reagent 100 µL で細胞を溶解した。細胞 ライセートを96-well white microplate (AGC テクノグラス株式会社) の各ウェルに 20 µL 入 れ、Luciferase Assay Reagent 50 µL を加えた。Microplate reader (SpectraMax M5^e Absorbance Microplate Reader, Molecular Devices Inc) で luciferin の発光強度を測定した。なお、luciferase と luciferin のとの反応で生じる発光は非常に短命であるため、細胞ライセートと Luciferase assay reagent をウェルに添加した後、直ちに測定した。その後、細胞ライセート中の全タン パク質量を Pierce[®] BCA Protein Assay kit を用いて測定し、 luciferase activity を下記の(3) 式より算出した。

Luciferase activity (RLU/mg protein) = $\frac{\text{Relative light units (RLU)}}{\text{Total protein (mg)}} \cdots (3)$

2-2-6 MTT assay

2-2-4 でトランスフェクションした後、PBS 0.3 mL で細胞を1回洗浄し、0.5 mg/mL MTT 含有 DMEM 0.5 mL を加え、37℃で4時間インキュベートした。その後培地を除去し、生成 したホルマザン色素を dimethyl sulfoxide (DMSO)を用いて溶解した。波長 540 nm における DMSO 中のホルマザンの吸光度を microplate reader (Multiskan Ascent Plate Reader, MTX Lab System)を用いて測定した。得られた吸光度から細胞生存率(cell viability)を(4)式より 算出した。

Cell viability (%) =
$$\frac{\text{Absorbance }_{\text{Sample}} - \text{Absorbance }_{\text{Blank}}}{\text{Absorbance }_{\text{pDNA only}} - \text{Absorbance }_{\text{Blank}}} \times 100 \cdots$$
 (4)

ここで、Absorbance _{Sample} は種々サンプル適用群の吸光度、Absorbance _{pDNA only} は pDNA 単 独適用群の吸光度、Absorbance _{Blank} は DMSO のみの吸光度を示す。

2-2-7 統計解析

得られたデータを平均値 ± S. D.で示した。二群間の比較には Student's *t*-tests で解析し、 多群間の比較には、一元配置分散分析 (one-way ANOVA) で解析した後、Tukey's *post hoc* test を用いて解析した。なお、全ての統計解析において、両側 p < 0.05 を統計学的に有意とみな した。 第3節 結果

2-3-1 各ニオソームの溶血活性

ニオソームによる細胞膜の傷害性を評価するために、溶血試験を行った。溶血活性は、細 胞モデルとして赤血球を用いて界面活性剤や薬物輸送担体などの試験化合物による膜傷害 性を評価する方法の一つであり、試験化合物により赤血球より放出された Hb の吸光度を測 定することで、その化合物の膜に対する毒性を見積もることができる^{21,76,77)}。

Figure 15 に赤血球懸濁液に各種ニオソーム懸濁液を 240 分間インキュベートした後の溶 血活性を示す。240 分経過した後の Tween 80 ニオソームの溶血活性は約 14%であった。一 方、Steareth-2 ニオソーム及び Steareth-5 ニオソームの溶血活性は約 3~4%であり、Tween 80 ニオソームよりも溶血活性が低く、赤血球の細胞膜に対する傷害性はほとんど示さなかった。 一方、Steareth-20 ニオソームの溶血活性は約 91%まで増大し、Tween 80 ニオソームよりも 高い膜傷害性が認められた。

Fig. 15 Hemolysis activities of each niosome. Niosomes were incubated with erythrocytes for 240 min at 37°C. After incubation, hemolysis activity was determined by measuring hemoglobin release at 540 nm. Data are shown as the mean ± S.D. (n = 3).

2-3-2 遺伝子発現効率及び細胞生存性に対する pDNA/PLO/ニオソーム三元複合体の非イオン性界面活性剤の種類の影響

Figure 16 にニオソーム配合比を 30 としてニオソームを構成する NIS の種類(Steareth-2, Steareth-5, Steareth-20 及び Tween 80)を変えた場合の pDNA/PLO/ニオソーム三元複合体を A549 細胞 (A) 及び HEK293 細胞 (B) に適用した後の遺伝子発現効率を示す。A549 細胞 に各 pDNA/PLO/Steareth ニオソーム三元複合体を適用した後の luciferase activity は、いずれ も naked pDNA 適用群と比べて増大した (Fig. 16 (A))。 pDNA/PLO/Steareth-2 ニオソーム三 元複合体による luciferase activity は最も高い値を示し、naked pDNA 適用群よりも約 240 倍 増大した (Fig. 16 (A), **p < 0.01)。さらに、pDNA/PLO/Steareth-2 ニオソーム三元複合体に よる luciferase activity は最も高い値を示し、naked pDNA 適用群よりも約 240 倍 増大した (Fig. 16 (A), **p < 0.01)。さらに、pDNA/PLO/Steareth-2 ニオソーム三元複合体に よる luciferase activity は最も高い値を示し、naked pDNA 適用群よりも約 240 倍 増大した (Fig. 16 (A), **p < 0.01)。さらに、pDNA/PLO/Steareth-2 ニオソーム三元複合体に よる luciferase activity は、かずれ も naked pDNA/PLO/Steareth-2 ニオソーム三元複合体に りも luciferase activity が低い値を示した。また、各 pDNA/PLO/Steareth ニオソーム三元複合体に なるほど増大して おり、Steareth-2 ニオソームを用いた三元複合体は他の Steareth ニオソームを用いた場合の 約 2.5~16 倍遺伝子発現効率が増大することが示された (Fig. 16 (A), *p < 0.05)。

HEK293 細胞に対しても各三元複合体を適用したところ、A549 細胞に適用した際と同様 に、naked pDNA 適用群よりも luciferase activity が増大した(Fig. 16 (B))。また、HEK293 細 胞でも pDNA/PLO/Steareth-2 ニオソーム三元複合体適用後の luciferase activity が最も高くな り、その値は naked pDNA 適用群の約 500 倍(Fig. 16 (B), **p < 0.01)、pDNA/PLO/Tween 80 ニオソーム三元複合体の約 1.9 倍であった。さらに、各 pDNA/PLO/Steareth ニオソーム三元 複合体による luciferase activity は、A549 細胞と同様に Steareth の EO 鎖が短くなるほど増大 した。

これらの結果より、2種の細胞株に各三元複合体を適用した後の luciferase activity は似た 挙動を示し、Steareth の EO 鎖が長くなるほど、立体障害により三元複合体の細胞内取込み が減少し、遺伝子発現効率が減少することが示された。また、Steareth-2 ニオソームを用い

た三元複合体は、naked pDNA 適用群及び他の pDNA/PLO/ニオソーム三元複合体よりも高い 遺伝子発現効率を示すことが明らかになった。

Fig. 16 Transfection efficiency of each pDNA/PLO/niosome ternary complex at a weight ratio of 1 : 4 : 30 in A549 cells (A) and HEK293 cells (B).

Data are shown as the mean \pm S.D. (n = 3). The significant differences were analyzed by a one-way ANOVA followed by Tukey's *post-hoc* test.

**p < 0.01 compared with naked pDNA, $\dagger p < 0.05$ compared with pDNA/PLO/Steareth-2 ternary complexes.

Figure 17 にニオソーム配合比を 30 としてニオソームを構成する NIS の種類(Steareth-2, Steareth-5, Steareth-20 及び Tween 80)を変えた場合の pDNA/PLO/ニオソーム三元複合体を A549 細胞(A) 及び HEK293 細胞(B) に適用した後の細胞生存率を示す。A549 細胞に pDNA/PLO/Steareth-2 ニオソーム三元複合体及び pDNA/PLO/Tween 80 ニオソーム三元複合 体を適用した後の細胞生存率はそれぞれ約 90%及び 84%であり、いずれも高い細胞生存率 を示した(Fig. 17 (A), p > 0.05)。一方、Steareth-5 ニオソーム及び Steareth-20 ニオソームを 用いた三元複合体を A549 細胞に適用した後の細胞生存率は Steareth-2 ニオソーム及び Tween 80 ニオソームを用いた三元複合体よりも減少し、その度合いは Steareth の EO 鎖長の増大に 伴い大きく減少した(Fig. 17 (A), Steareth-5 ニオソーム:約 49% (**p < 0.01), Steareth-20 ニ オソーム: 約 5% (**p < 0.01))。

HEK293 細胞に pDNA/PLO/Steareth-2 ニオソーム三元複合体及び pDNA/PLO/Tween 80 ニ オソーム三元複合体を適用した後の細胞生存率はそれぞれ約 78%及び 64%であり、A549 細 胞よりも細胞生存率が若干低下する傾向にあった(Fig. 17 (B), *p < 0.05)。また、Steareth-5 ニオソーム及び Steareth-20 ニオソームを用いた三元複合体を HEK293 細胞に適用した後の 細胞生存率は A549 細胞に適用した後と同様、Steareth-2 ニオソーム及び Tween 80 ニオソー ムを用いた三元複合体よりも減少しており、A549 細胞と類似した傾向がみられた(Fig. 17 (B), Steareth-5 ニオソーム:約 48% (**p < 0.01), Steareth-20 ニオソーム:約 6% (**p < 0.01))。

上記の結果より、ニオソームを構成する NIS を変えた三元複合体の細胞生存率は、Steareth の EO 鎖長に依存して減少することが示された。また、Steareth-2 ニオソームを用いた三元 複合体は、他の pDNA/PLO/ニオソーム三元複合体よりも高い細胞生存率を示すことが明ら かになった。

Data are shown as the mean \pm S.D. (n = 3). The significant differences were analyzed by Student's *t*-test. **p < 0.01 and *p < 0.05 compared with pDNA only.

Figure 18 に pDNA/PLO 複合体及びニオソーム配合比を 30 としてニオソームを構成する NIS の種類 (Steareth-2, Steareth-5, Steareth-20 及び Tween 80) を変えた場合の pDNA/PLO/ニ オソーム三元複合体を血清非存在及び血清存在下の A549 細胞に適用した後の遺伝子発現効 率を示す。血清存在下における pDNA/PLO/Steareth ニオソーム三元複合体の luciferase activity は、血清非存在下よりも約 14~28%減少したが、血清の存在による大きな影響はみられなか った (p > 0.05)。一方、pDNA/PLO/Tween 80 ニオソーム三元複合体の luciferase activity は血 清存在下で約 39%減少し、他の pDNA/PLO/ニオソーム三元複合体よりも血清による影響は 大きかった (**p < 0.01)。さらに、pDNA/PLO 複合体の luciferase activity は血清の存在によ り著しく減少し、血清による影響を強く受けた (**p < 0.01)。

2-3-3 遺伝子発現効率及び細胞生存性に対する pDNA/PLO/ニオソーム三元複合体のニオ ソームの質量比の影響

Figure 19 に Steareth-2 ニオソームで調製した配合比 2, 5, 10, 15 及び 30 に変えた各 pDNA/PLO/Steareth-2 ニオソーム三元複合体を、A549 細胞に適用した後の遺伝子発現効率 (luciferase activity) 及び細胞生存率を示す。いずれの質量比の pDNA/PLO/Steareth-2 ニオソ ーム三元複合体も、naked pDNA 適用群と比べて luciferase activity が有意に高い値を示し(Fig. 19 (A), **p < 0.01)、ニオソームの割合の増加に伴い、luciferase activity が増大した。 pDNA/PLO/Steareth-2 ニオソーム三元複合体の luciferase activity は、Steareth-2 ニオソームの 配合比が 30 のときに最大を示し、naked pDNA 適用群の約 240 倍になった。A549 細胞に pDNA/PLO/Steareth-2 ニオソーム三元複合体を適用した後の生存率は約 90~95%であり、い ずれの質量比でも細胞生存率に有意差は認められなかった (Fig. 19 (B),p > 0.05)。

上記の結果から、pDNA/PLO/Steareth-2 ニオソーム三元複合体適用による A549 細胞での 遺伝子発現効率は、複合化した Steareth-2 ニオソーム量に依存した。これは、細胞膜と静電 的相互作用するカチオン性成分の増加により、より細胞内へ取込まれやすくなったため、遺 伝子発現効率が増大したと考えられる。また、どの質量比の三元複合体でも naked pDNA 適 用群とほぼ同等の細胞生存率を示しており、細胞への毒性はほとんどないことが示された。

Fig. 19 Transfection efficiency (A) and cell viability (B) of each pDNA/PLO/Steareth-2 niosome ternary complex at various weight ratio in A549 cells.

第4節 小括

第2章では、第1章で調製したpDNA/PLO/ニオソーム三元複合体をA549細胞又はHEK293 細胞に適用した後の遺伝子発現効率を評価し、遺伝子送達能があるのか否かを検討した。さ らに、ニオソーム単独又は複合体の安全性についても同様に評価した。

pDNA/PLO/ニオソーム三元複合体による遺伝子トランスフェクション試験を種々適用条 件(質量比、細胞株、血清)で実施し、遺伝子発現活性への影響を評価した。まず、異なる 親水性 EO 鎖長を有する Steareth ニオソームで複合した pDNA/PLO/Steareth ニオソーム三元 複合体を各種細胞に適用し、遺伝子発現活性及び細胞生存率に対する NIS の構造の影響を 検討した。今回2種類の細胞株を用いて遺伝子導入試験を行ったが、いずれの三元複合体も 遺伝子発現効率が naked pDNA 適用群と比べて増大し、どちらの細胞に対しても類似した遺 伝子発現効率を示した(Fig. 16)。各三元複合体で遺伝子発現効率の増大がみられた要因の 一つとしてニオソームの粒子特性が考えられる。粒子径が約200 nm 未満で正に荷電する複 合体は GAGs により負に荷電する細胞膜表面と静電的に結合した後、エンドサイトーシス 機構を介して細胞内取込みを促進させる^{9,10)}。pDNA/PLO 複合体でも標的細胞に対して遺伝 子を送達することが示されているが、今回調製した三元複合体は正電荷を有しているため (第1章 Table 5)、ニオソーム及び PLO で細胞との静電的相互作用がより強くなり、エン ドサイトーシスにより複合体の細胞内への取込みを促進したと推察される。さらに、ニオソ ームを構成する NIS はカチオン性界面活性剤からなる遺伝子導入ベクターに添加すること で、低い分散安定性や遺伝子トランスフェクション効率を亢進させることを明らかにしてお り⁷⁸⁾、NISも遺伝子導入ニオソームによる遺伝子導入において重要な因子であると推察され る。細胞に適用した pDNA/PLO/Steareth ニオソーム三元複合体のうち、pDNA/PLO/Steareth-2 ニオソーム三元複合体が最も高い遺伝子発現活性を示し、EO 鎖が長くなるほど遺伝子発 現は減少した(Fig. 16)。遺伝子ベクターの細胞内取込みは、表面電荷が高くなるほど促進 するが、ニオソームを構成する NIS を変えた三元複合体では粒子径に依存した遺伝子発現 効率の増大はみられなかった(第1章 Table 5 and Fig. 16)。これは、Stearethの EO 鎖長の増 大に伴い、ODA がニオソームのより内側に位置するようになり、細胞膜との相互作用が減

少したことが推察され、本研究で調製した pDNA/PLO/Steareth ニオソーム三元複合体による 細胞内取込みでは、粒子径よりも Steareth の EO 鎖の長さが大きく影響を与えると考えられ る。また、EO 鎖は PEG と同じ構造であり、EO 鎖による立体障害により血漿タンパク質等 との非特異的相互作用を抑制し、生体内安定性向上に寄与するが、その一方で細胞との相互 作用も抑制するため²⁵⁻³⁰、Steareth の EO 鎖が長くなるほど複合体の立体障害が大きくなり、 細胞膜との相互作用が阻害されたことで複合体粒子が細胞に取込まれにくくなったと考え られる。

次に、細胞生存性に対する各 pDNA/PLO/ニオソーム三元複合体適用の影響を評価したと ころ、遺伝子発現活性と同様に EO 鎖が長くなるほど、細胞生存率が大きく低下した(Fig. 17)。一般的に、正に荷電したナノ粒子は、静電的相互作用を介して細胞内取込みを促進す るが、過剰な正電荷は細胞傷害を引き起こす^{73,74)}。しかし、今回調製した pDNA/PLO/Steareth ニオソーム三元複合体では、正電荷に対して細胞生存性には影響がみられなかった。正電荷 の小さい pDNA/PLO/Steareth-20 ニオソーム三元複合体の傷害性が高くなった他の要因とし ては、界面活性剤による膜傷害性が深く関係していると考えられる。界面活性剤による膜傷 害性は、界面活性剤分子が細胞表面に吸着・浸透した後、脂質膜の構造に変化をもたらし、 水の細胞膜透過性の増大による細胞の膨張の結果、細胞膜の破壊を引き起こす過程と界面活 性剤と脂質膜成分との混合ミセルの形成により膜の可溶化を引き起こす過程が関与してい ると考えられている^{79,80)}。ニオソームの NIS による膜傷害性を溶血試験より評価したが、 Steareth-20 ニオソームで最も高い溶血が観察され(Fig. 15)、MTT assayの結果と類似した。 Vinardell らは NIS の疎水性基の割合が多く、HLB の値が小さいほど、溶血性、すなわち膜 傷害性が小さくなることを報告している⁷⁷⁾。各 Steareth の HLB の順序は Steareth-20> Steareth-5>Steareth-2 であり、HLB が最も大きい Steareth-20 で最も高い溶血性を示し、 Vinardell らの報告と同様な傾向が観察された。したがって、溶血試験による膜傷害性及び MTT assay による細胞生存性の結果から、Steareth-20 は最も高い膜傷害性を示しており、粒 子の表面電荷よりも界面活性剤の構造的特徴の影響の方が大きく、HLB が高くかつ親水性 鎖長が長くなるほど、膜傷害性を増大させたものと推察される。

次に、ニオソーム配合比に対する遺伝子発現効率及び細胞生存率の影響について、 Steareth-2 ニオソームから調製した三元複合体を用いて評価したが、遺伝子発現効率は複合 化したニオソーム量の増加に伴い大きくなり、ニオソームの割合が最も多い質量比(1:4: 30)でも、培養細胞に対してほとんど細胞毒性を示さないことが明らかとなった(Fig. 19)。 pDNA/PLO/Steareth-2 ニオソーム三元複合体の遺伝子発現効率がニオソームの質量比に依存 して増大した要因として、前述したように粒子特性に加え、三元複合体形成よる DNA 保持 能の増大と外部要因(ポリアニオンや核酸分解酵素)に対する複合体の安定性の向上もまた (第1章 Fig. 12, lanes 3~7)、遺伝子を細胞内へ効率的に送達させた要因であると考えられ る。この高い DNA 保持能はさらに、細胞内導入後のエンドソームから細胞質への移行さら に、核膜通過後の核内へ至るまでの過程で、遺伝子を保護して細胞質中での分解酵素などの 影響を最小限に抑えて送達することができると予想される。

In vitro における遺伝子トランスフェクション試験では、血清等の影響を除くために試験 用培地が使用されるが、生体内では血漿タンパク質等の多数の成分が含まれるため、それら との相互作用により十分に標的細胞に遺伝子を送達することができない可能性がある。そこ で、血清成分である FBS を添加した培地中での遺伝子トランスフェクション試験を行い、 pDNA/PLO/ニオソーム三元複合体の遺伝子発現活性に対する血清の影響を調査した。 pDNA/PLO 複合体では、血清存在下での遺伝子発現活性は著しく低下した(Fig. 18)。これ は、pDNA/PLO 複合体は粒子表面が正に荷電しているので、負に荷電する種々血清タンパク 質との非特異的な静電的相互作用により複合化し、粒子径の増大や凝集体形成により、細胞 内への取込みが減少したと推察され、カチオン性ポリマーの PEI を用いた遺伝子導入試験で も同様な傾向が観察された^{81,82)}。一方、pDNA/PLO/Steareth ニオソーム三元複合体では血清 存在下においても、遺伝子発現活性に大きな影響はみられなかった(Fig. 17)。 pDNA/PLO/Steareth ニオソーム三元複合体では血清 互作用すると予想されるが、Steareth の EO 鎖長がニオソーム粒子の外側に存在するため、 EO 鎖長による立体障害により血漿タンパク質等との静電的な結合が pDNA/PLO 複合体よ りも抑制され、細胞内取込みに対する血清の影響が小さくなったと考えられる。また、pDNA

solid lipid nanoparticle 及びプロタミンを組合せた三元複合体においても血清存在下でも安定 した遺伝子発現効率を示したことが報告されており⁸³⁾、ポリカチオン及びニオソームやリ ポソーム等の脂質ナノ粒子を組合せることが生体内での粒子の安定性向上や送達効率の増 大に寄与すると思われる。

以上より、pDNA/PLO/Steareth ニオソーム三元複合体の遺伝子発現活性や細胞生存性は、 Steareth の構造や複合体の物性、組成により影響されることが明らかになった。特に、Steareth の EO 鎖は短いほど、細胞膜中の GAGs による pDNA とのイオン交換反応を受けにくくな るため、安定して複合体を細胞内に送達することができ、さらに複合体中の ODA や PLO と 細胞膜との相互作用が起こりやすくなることで、膜傷害性を起こすことなく細胞内取込みを 増大させることが示された。したがって、EO 鎖が最も短い Steareth-2 で構成したニオソー ムを用いた三元複合体は高い有効性及び細胞生存性をもち、さらに Tween 80 で構成した三 元複合体 に匹敵する遺伝子送達能を有することが示された。本研究において、 pDNA/PLO/Steareth-2 ニオソーム三元複合体を用いて高い遺伝子発現効率示すことを確認す ることはできたが、その導入機構はまだ不明であるため、エンドサイトーシス阻害剤や蛍光 プローブを用いた複合体の細胞取込み及び細胞内動向をより詳細に調査することで、遺伝子 導入ニオソームの更なる最適化や *in vivo* 遺伝子治療への応用が期待できる。

第3章 pDNA/PLO/ニオソーム/HA 四元複合体の物性と遺伝子導入

第1節 小緒言

これまでに、Steareth をベースとする遺伝子導入ニオソームを調製し、その粒子特性や安 定性、有効性及び安全性について評価してきた。その結果、pDNA: PLO: Steareth-2 ニオソ ームの質量比が1:4:30 で調製した pDNA/PLO/Steareth-2 ニオソーム三元複合体は最も高い 複合体の安定性、遺伝子導入能及び細胞生存率を示し、血清存在下でも効率的に遺伝子を送 達することが明らかになった。さらに、これまで遺伝子導入ニオソームの調製で広く使用さ れている Tween 80 ニオソームに匹敵する遺伝子送達能を有することも明らかとなった。し かし、本研究で調製した pDNA/PLO/Steareth-2 ニオソーム三元複合体を遺伝子治療に適用し たとき、全身循環により様々な組織に分布されるため、標的とする組織以外にも遺伝子が送 達され、予期しない副作用が引き起こされる可能性がある。したがって、標的細胞へ効率的 に遺伝子を送達させるためには遺伝子導入ベクターの安定性や物性だけでなく、標的指向性 も高いものが望まれる。

遺伝子の標的組織への送達を向上させる方法の1つとしてターゲティングがある。標的細胞に特異的に発現している受容体に対するリガンド分子や標的の抗原に特異的な抗体を遺伝子導入ベクターに付与すること等で、その細胞への標的指向性を向上させることができる。 例えば *in vivo* において、肝非実質細胞(kupper 細胞等)のマンノース受容体を標的としてマンノースを修飾したリポソームは、未修飾リポソームと比較して肝細胞での遺伝子発現効率を他の臓器よりも増大させることが報告されており、組織特異的デリバリーの有用性を示している¹⁴⁾。数多くのターゲティングに関する研究がなされているが、特に癌細胞は増殖能や浸潤、転移を行うための様々な受容体が存在し、これらは正常細胞よりもその発現量が過剰であることが知られている。そのため、がん細胞に特異的に発現する受容体へのターゲティングは有用性が高いと考えられる。癌は我が国において、死亡率が最も高い疾患であり、既存の制がん剤では耐性の獲得により、治療効果が上手く得られないケースがあり、また近

年使用されているゲフィチニブやニボルマブなどの分子標的薬物は、高い治療効果が得られ ることがわかっているが、副作用のリスクや高い医療費は治療の妨げになることが多い。し たがって、癌の治療法として遺伝子治療を提唱し、癌細胞特異的な遺伝子デリバリーが可能 となれば、治療の選択肢を増やすことができると考えられる。

HA の主要な受容体である CD44 はヒト細胞のほぼ全ての細胞膜に発現しているが、特に 肺癌や結腸癌、乳癌、胃癌、黒色腫等の多くの固形腫瘍細胞に過剰発現していることが知ら れている^{34,36}。CD44 は細胞内ドメインをもつ1回膜貫通型糖タンパク質(85 kDa)であり、 リンパ球の活性化、細胞運動、細胞-細胞外マトリックスとの接着、癌細胞の増殖能、浸潤・ 転移能等、数多くの機能を有する³⁶。CD44 の遺伝子は 20 個のエキソンにより構成され、 そのうちの 10 個のエキソンはバリアントエキソンとして選択的にスプライシングされ、バ リアントアイソフォーム (CD44v)を形成する^{84,85}。CD44v は特に癌幹細胞などに高発現し ており、選択的スプライシング及び糖鎖等の翻訳後修飾によるコンフォメーション変化によ りヒアルロン酸結合モチーフが、正常細胞の CD44 のものとは異なる。成熟正常細胞に発現 する CD44 は、ほとんどあるいは全く HA への結合能を示さないことが示されているが⁸⁶、 CD44v をもつ癌幹細胞では、前述したコンフォメーション変化により HA との高い親和性 を保持することが報告されている⁸⁷。これにより薬物担体を HA で修飾することで、CD44 を過剰発現する癌細胞に対して特異的に送達することができると考えられる。

HA は D-グルクロン酸と N-アセチル-D-グルコサミンの二糖が交互に連なる直鎖状多糖で あり、その分子量は最大で 2.0×10⁷ Da にも及ぶ高分子グリコサミノグリカンとして知られ ている。HA は生体適合性・非免疫原性・生分解性の親水性高分子であるため、生体内に安 全に投与することができる。また、高分子量 HA は受容体認識後、エンドサイトーシス経路 により細胞内へ取込まれることから、CD44 過剰発現細胞に対する遺伝子導入の材料にも有 用であると考えられる⁸⁴⁾。さらに、HA はアニオン性を示すため、負電荷による静電的反発 により生体分子との非特異的相互作用を抑制し、細胞膜に対する電荷誘発性傷害性を軽減す ることができる。このような特性から、HA はナノ粒子のコーティング剤としても使用され ており^{39,88)}、遺伝子導入ベクターの安全性や安定性の更なる向上に繋がると考えられる。

そこで第3章では、第1章及び第2章の結果より選定した pDNA/PLO/Steareth-2 ニオソー ム三元複合体(1:4:30)に HA(1,200 kDa)をさらに HAと複合化して、その粒子特性や 複合体の DNA 保持能、安定性に基づいてその有用性を評価した。さらに、調製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体を A549 細胞に適用し、質量比や DNA の適 用量に対する遺伝子発現効率や細胞生存率の影響を評価した。対照として、一般に使用され る遺伝子導入剤である Lipofectamine[®] 2000を用いた。さらに、ベクターの受容体を介在し た細胞内取込みの有無を検討するために、CD44 に対する抗体を遺伝子導入試験の前に適用 し、本研究で調製した四元複合体の効果が CD44 を介したものであるかどうかを検証した。

第2節 実験方法

3-2-1 試薬

4%パラホルムアルデヒドリン酸緩衝液を富士フィルム和光純薬工業株式会社(大阪)から購入した。CD44 (8E2) Mouse mAb (一次抗体、抗 CD44 モノクローナル抗体) 及び Prolong Antifade Reagent with DAPI を CST ジャパン株式会社(東京)から購入した。Lipofectamine[®] 2000 Transfection Reagent 及び Alexa fluor 488 goat anti-mouse IgG (二次抗体) を Thermo Fisher Scientific, Inc. (MA, USA) より購入した。Bovine Serum Albumin (BSA) を Merck KGoA (Darmsadt, Germany) から購入した。

Hyaluronic acid sodium (FCH-120, HA, M.W. 1,200 kDa) をキッコーマンバイオケミファ株 式会社(東京)より譲渡された。

pDNA/PLO/Steareth-2 ニオソーム三元複合体は第1章と同様のものを、その他の試薬は全て市販の特級品を用いた。

3-2-2 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の調製

HA を HEPES buffer に溶解させ、HA 溶液(6,000 μ g/mL)を調製した。また、HA の配合 比を 2,5 及び 10 に変えた pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体 (pDNA: PLO: Steareth-2 ニオソーム:HA=1:4:30:n,n=2,5,10)を調製するために、HEPES buffer で希 釈し、種々濃度の HA 溶液(400,1,000,2,000 μ g/mL)を調製した。1-2-5 で Steareth-2 ニオソ ームの配合比を 30 で調製した pDNA/PLO/Steareth-2 ニオソーム三元複合体 (pDNA: PLO: Steareth-2 ニオソーム = 1:4:30) 2.7 mL に種々濃度の HA 溶液 0.05 mL を混合し、vortex mixer で数秒間攪拌した。攪拌後、室温で 30 分間静置し、種々質量比の pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体懸濁液(DNA として 3.6 ng/ μ L)を調製した。

3-2-3 粒子特性の測定

3-2-2 で調製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の平均粒子径、PDI 及び ζ 電位を 1-2-6 と同様な方法で測定した。

3-2-4 ネガティブ染色法による形態学的観察

3-2-2 で HA の配合比を 2 及び 10 で調製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の形態学的観察を 1-2-8 と同様な方法で行った。

3-2-5 アガロースゲル電気泳動⁶¹⁾

1-2-4 及び 1-2-5 で調製した pDNA/PLO 複合体溶液及び pDNA/PLO/Steareth-2 ニオソーム 三元複合体懸濁液、3-2-2 で調製した各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の DNA 保持能の評価を 1-2-9 と同様な方法で行った。

3-2-6 ポリアニオン耐性試験 61,62)

1-2-4 及び 1-2-5 で調製した pDNA/PLO 複合体溶液及び pDNA/PLO/Steareth-2 ニオソーム 三元複合体懸濁液、3-2-2 で調製した各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の ポリアニオン (DS) に対する複合体の DNA 保持能の評価を 1-2-10 と同様な方法で行った。

3-2-6 DNase I 耐性試験 61-63)

1-2-4 及び 1-2-5 で調製した pDNA/PLO 複合体溶液及び pDNA/PLO/Steareth-2 ニオソーム 三元複合体懸濁液、3-2-2 で調製した各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の DNase I に対する複合体による pDNA 保護能の評価を 1-2-11 と同様な方法で行った。

3-2-7 SYBR Gold[®] assay ^{64, 65)}

1-2-4 及び 1-2-5 で調製した pDNA/PLO 複合体溶液及び pDNA/PLO/Steareth-2 ニオソーム 三元複合体懸濁液、3-2-2 で調製した各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の SYBR[®] Gold インターカレーション法による DNA 保持能及び DS に対する複合体の DNA 保持能の評価を 1-2-12 と同様な方法で行った。

3-2-8 細胞培養

HEK293 細胞及び A549 細胞の培養を、2-2-3 と同様の方法で行った。

3-2-10 免疫蛍光染色

HEK293 細胞及び A549 細胞を 4 well chamber slide (深江化成株式会社, 兵庫) に 1.0×10^5 cells/well で播種した。 37°C、5% CO₂存在下で 24 時間培養し、セミコンフルエント (70~80%) に達した後に試験に使用した。細胞を PBS (pH 8.0) で 2 回洗浄し、4%パラホルムア ルデヒドリン酸緩衝液 300 µL を加え、室温で 15 分間固定した。固定した細胞に PBS (pH 8.0) 0.3 mL を加え、5 分間の洗浄を 3 回行った。洗浄後、5% BSA 含有 blocking buffer (pH 8.0) 0.3 mL 加え、室温で 60 分間ブロッキングした。その後、1% BSA 含有 dilution buffer で 希釈した一次抗体 (1:1,600) 0.4 mL を加え、4°Cで一晩インキュベートした。インキュベー ション後、PBS による 5 分間の洗浄を 3 回行い、1% BSA 含有 dilution buffer で希釈した二次抗体 (1:250) 0.25 mL を加えて遮光し、室温で 1 時間インキュベートした。その後、PBS による 5 分間の洗浄を 3 回行い、退色防止用封入剤 (Prolong Antifade Reagent with DAPI) を 用いて、スライド上に封入し、蛍光顕微鏡 (BZ-X800, キーエンス株式会社, 大阪) を用いて 蛍光画像を取得した。

3-2-11 トランスフェクション試験

A549 細胞を Collagen Type I coated 24-well microplate に 1.0×10^5 cells/well でそれぞれ播種 した。37℃、5% CO₂存在下で 24 時間培養し、セミコンフルエント(70~80%)に達した後 に試験に使用した。培地を Opti-MEM[®] I Reduced-Serum Medium 0.5 mL に置換し、Steareth-2 ニオソームの配合比を 30 で調製した pDNA/PLO/Steareth-2 ニオソーム三元複合体と HA の 配合比を 2, 5 及び 10 に変えた pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体を各々のウ ェルに適用した(pDNA: 500, 1,000 ng/well)。なお、本研究では調製直後の三元複合体及び 四元複合体を使用し、さらに HA 配合比を 10 とした四元複合体は 1,500 ng/well での適用も 行った。また、pDNA のみの溶液を negative control として適用し (500, 1,000 ng/well)、positive control として、pDNA と Lipofectamine[®] 2000 の混合液 (pDNA: Lipofectamine[®] 2000 = 1:1, pDNA: 500, 1,000 ng/well)を適用した。適用後、37℃、5% CO₂存在下で 3 時間インキュベ ートした。その後、培地をフレッシュな DMEM 0.5 mL に置換し、37℃、5% CO₂存在下で 45 時間再度インキュベートした。

3-2-12 Luciferase assay

3-2-11 でトランスフェクションした後、2-2-5 と同様な手順で細胞ライセートを調製し、 luciferase による発光強度を測定した。その後、全タンパク質量を Pierce[®] BCA Protein Assay kit を用いて測定し、得られた発光強度と全タンパク質量から luciferase activity を算出した。

3-2-13 MTT assay

3-2-11 でトランスフェクションした後、2-2-5 と同様な手順で MTT assay を行い、細胞生 存率を算出した。

1-2-14 抗 CD44 抗体存在下での luciferase assay 40, 41, 89)

A549 細胞を Collagen Type I coated 24-well microplate に 1.0×10^5 cells/well でそれぞれ 播種した。37℃、5% CO₂存在下で 24 時間培養し、セミコンフルエント (70~80%) に達し た後に試験に使用した。培地を Opti-MEM[®] I Reduced-Serum Medium 0.45 mL に置換した後、 抗 CD44 抗体溶液(最終適用濃度:0,0.1,1 µg/mL)を 0.05 mL を各々のウェルに添加し、 37℃、5% CO₂存在下で 1 時間インキュベートした。その後、Steareth-2 ニオソームの配合比 を 30 で調製した pDNA/PLO/Steareth-2 ニオソーム三元複合体と HA の配合比を 2,5 及び 10 に変えた pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体を各々のウェルに適用した (DNA 適用量:1,000 ng/well)。適用後、37℃、5% CO₂存在下で 3 時間インキュベートした。その 後、培地をフレッシュな DMEM 0.5 mL に置換し、37℃、5% CO₂存在下で 45 時間再度イン キュベートした。各複合体を A549 細胞にトランスフェクションして 48 時間後、3-2-12 と 同じ手順で luciferase assay を行い、luciferase activity を算出した。抗 CD44 抗体適用における 各複合体の相対遺伝子発現効率(relative luciferase activity)を下記の(5)式より算出した。

Relative luciferase activity (%) = $\frac{\text{Luciferase activity}_{anti-CD44 \text{ mAb treated}}(\text{RLU/mg protein})}{\text{Luciferase activity}_{anti-CD44 \text{ mAb untreated}}(\text{RLU/mg protein})} \times 100 \cdots (5)$

3-2-15 統計解析

データを平均値 ± S. D. で示した。各群間の比較を Student's *t*-tests を用いて解析した。なお、全ての統計解析において、両側 p < 0.05 を統計学的に有意とみなした。

第3節 結果

3-3-1 粒子特性、DNA保持能及び安全性に対する pDNA/PLO/Steareth-2 ニオソーム/HA 四 元複合体中の HA の質量比の影響

Table 8 に Steareth-2 ニオソームの配合比を 30 で調製した pDNA/PLO/Steareth-2 ニオソー ム三元複合体及び HA の配合比を 2,5 及び 10 に変えて調製した pDNA/PLO/Steareth-2 ニオ ソーム/HA 四元複合体の平均粒子径、PDI 及びく電位を示す。pDNA/PLO/Steareth-2 ニオソ ーム/HA 四元複合体の平均粒子径は 161~195 nm、PDI は 0.24~0.36、く電位は + 36~+41 mV であり、HA との複合化で平均粒子径が pDNA/PLO/Steareth-2 ニオソーム三元複合体よ りも増大し、く電位は低下した。

Figure 20 に HA の配合比を 2 及び 10 に変えて調製した pDNA/PLO/Steareth-2 ニオソーム /HA 四元複合体の形態画像を示す。HA の配合比を 2 で調製した四元複合体ではどの粒子も 球形を示していたが、HA 添加による大きな変化はみられなかった(Fig. 20 (A))。一方、HA の配合比を 10 で調製した四元複合体は、Steareth-2 ニオソームの配合比を 30 で調製した pDNA/PLO/Steareth-2 ニオソーム三元複合体及び HA の配合比を 2 で調製した四元複合体よ りも粒子径の大きい粒子が多く観察された(Fig. 11 (A) and Fig. 20 (B))。さらに、他のニオ ソームや複合体とは異なり、多層状の構造をとっていた。

これらの結果から、今回検討した HA 配合比では、負に荷電する HA 及び正に荷電する三 元複合体との静電的相互作用を介した複合化により、粒子径や粒子の形態に変化をもたらす ことが示された。また、四元複合体のζ電位は低下したものの、正電荷を示していた。

Table 8 Particle size, PDI and ζ potential of pDNA/PLO/Steareth-2 niosome/HA quaternary complexes with a different weight ratio.

pDNA : PLO : niosome : HA weight ratio	Size (nm)	ζ potential (mV)	PDI [*]
1:4:30:0	163.0 ± 4.6	45.0 ± 5.7	0.24 ± 0.03
1:4:30:2	161.7 ± 2.4	41.2 ± 1.0	0.24 ± 0.01
1:4:30:5	163.4 ± 4.2	41.7 ± 0.5	0.24 ± 0.001
1:4:30:10	195.9 ± 2.0	36.5 ± 1.6	0.36 ± 0.07
*PDI · PolyDispersity Index			(Mean + SD - n - 3)

*PDI : PolyDispersity Index

 $(Mean \pm S.D., n = 3)$

Transmission electron microscope picture of each pDNA/PLO/Steareth-2 niosome/HA Fig. 20

quaternary complexes.

(A) pDNA/PLO/Steareth-2 niosome/HA quaternary complexes (1:4:30:2), (B) pDNA/PLO/Steareth-2 niosome/HA quaternary complexes (1:4:30:10). Original magnification ×40,000. Scale bar : 200 nm.

Figure 21 にアガロースゲル電気泳動により評価した pDNA/PLO 複合体、Steareth-2 ニオ ソームの配合比を 30 で調製した pDNA/PLO/Steareth-2 ニオソーム三元複合体及び HA の配 合比を 2,5 及び 10 に変えて調製した各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の DNA 保持能の結果、Figure 22 に DS 存在下及び DS/DNase I 存在下での DNA 保持能の結果 を示す。DS 非存在下では、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体においても三元 複合体同様、遊離の pDNA がほとんど存在しないことが確認された。ウェル内の DNA のバ ンドの輝度は、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の複合化した HA 量の増加 に伴い増大していた(Fig. 21, lanes 4~6)。

次に、各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体に DS を添加すると、三元複合 体と同様に複合体から pDNA が解離し、pDNA バンドがゲル内に確認されたが、一部はウェ ル内にバンドが残っており、DS 存在下でも pDNA が複合体内に保持されていた (Fig. 22, lanes 4~6)。いずれの質量比の pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体も、ウェル 内に存在する DNA バンドの輝度は、HA の質量比による違いがみられなかった。さらに、 各サンプルに DNase I 処理後、DS により複合体から pDNA を遊離させたところ、いずれの 複合体も pDNA の分解は確認されず、pDNA 単独 (Fig. 22, lane 1) 及び DS 単独適用したと き (Fig. 22, lanes 2~6) と同一位置にゲル内にバンドが出現した (Fig. 22, lanes 8~12)。ま た、ウェル内にも pDNA のバンドが同程度の輝度で確認された。

上記の結果より、HA を三元複合体に加えても、pDNA を遊離させることなく四元複合体 を形成し、pDNA を保持したことが示された。また、DS 存在下での四元複合体の DNA 保持 能は複合化した HA 量に依存して高くなり、これは複合体表面の負電荷を有する HA が DS との相互作用を抑制することを示唆していた。また、DNase I に対する各四元複合体の pDNA 保護効果は、三元複合体と同様に高いことも示された。

Fig. 21 Gel retardation of pDNA/PLO complexes, pDNA/PLO/Steareth-2 niosome ternary

complexes and pDNA/PLO/HA/Steareth-2 niosome quaternary complexes.

Lane 1 : Naked pDNA, Lane 2 : pDNA/PLO complexes (pDNA : PLO = 1 : 4), Lane 3 : pDNA/PLO/Steareth-2 niosome ternary complexes (pDNA : PLO : Steareth-2 niosome = 1 : 4 : 30), Lanes 4-6 : pDNA/PLO/HA/Steareth-2 niosome quaternary complexes (pDNA : PLO : HA : Steareth-2 niosome = 1 : 4 : 30 : n, n = 2, 5, 10).

Fig. 22 Protective effect of pDNA/PLO complexes, pDNA/PLO/Steareth-2 niosome ternary

complexes and pDNA/PLO/Steareth-2 niosome/HA quaternary against anionic

polysaccharides (DS) and nuclease (DNase I). Lanes 1 and 7 : Naked pDNA, Lanes 2 and 8 : pDNA/PLO complexes (pDNA : PLO = 1 : 4), Lanes 3 and 9 : pDNA/PLO/Steareth-2 niosome ternary complexes (pDNA : PLO : niosome = 1 : 4 : 30), Lanes 4-6 and 10-12 : pDNA/PLO/Steareth-2 niosome/HA quaternary complexes (pDNA : PLO : Steareth-2 niosome : HA = 1 : 4 : 30 : n, n = 2, 5, 10), Lanes 3-6 : Samples were treated with DS and were not treated with DNase I (Untreated). Lanes 7-11 : Samples were treated with DS and DNase I.
Figure 23 に SYBR[®] Gold assay による pDNA/PLO 複合体、Steareth-2 ニオソームの配合比 を 30 で調製した pDNA/PLO/Steareth-2 ニオソーム三元複合体及び HA の配合比を 2,5 及び 10 に変えて調製した各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の DNA 保持能及び DS に対する複合体の安定性の結果を示す。DS 非存在下での各複合体の相対蛍光強度は約 2 ~5%であることから、どの四元複合体も SYBR[®] Gold によるインターカレーションを抑制 して DNA を複合体中に強く保持していることが示された。

次に、各四元複合体に DS を 30 分間処理すると、DS 濃度の増加に伴い相対蛍光強度が増 大し、複合体からの pDNA の遊離が観察された。ここで、各 pDNA/PLO/Steareth-2 ニオソー ム/HA 四元複合体のインターカレーションに対する IC₅₀ はそれぞれ 2.5 mg/mL (1:4:30: 2)、4.5 mg/mL (1:4:30:5)、5.6 mg/mL (1:4:30:10) であり、複合化した HA 配合量の 増大に伴い値が高くなった。これらの複合体も pDNA が複合体から遊離するためには、 pDNA/PLO 複合体 (IC₅₀:0.099 mg/mL) や pDNA/PLO/Steareth-2 ニオソーム三元複合体 (IC₅₀: 2.1 mg/mL) よりも高い DS 濃度が必要とし、DS に対して四元複合体が高い DNA 保持能を 有していることを示した。さらに、最大 DS 濃度における各 pDNA/PLO/Steareth-2 ニオソー ム/HA 四元複合体の相対蛍光強度は 47~62%となり、pDNA/PLO 複合体よりも pDNA の遊 離が有意に抑制された (*p < 0.05)。さらに、HA 配合比を 5 及び 10 で調製した四元複合体 では、pDNA/PLO/Steareth-2 ニオソーム三元複合体に対しても pDNA の遊離が抑制されてい た (*p < 0.05)。

以上の結果より、HA の配合比を変えて調製した各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体もまた、高い DNA 保持能を有していることが明らかとなった。また、DS に対す る四元複合体の DNA 保持能は、HA の配合量に依存して高くなっており、HA の高い配合量 は DS との相互作用を抑制して、複合体からの pDNA の遊離を減少させることを示唆した。

Fig. 23 Condensation efficiency and protective effect of pDNA/PLO complexes, pDNA/PLO/Steareth-2 niosome ternary complexes and pDNA/PLO/Steareth-2 niosome/HA quaternary complexes against DS by SYBR[®] Gold intercalation.

- : pDNA/PLO complexes (pDNA : PLO = 1 : 4),
- \bigcirc : pDNA/PLO/Steareth-2 niosome ternary complexes (pDNA : PLO : Steareth-2 niosome = 1 : 4 : 30),
- : pDNA/PLO/Steareth-2 niosome/HA quaternary complexes
- (pDNA : PLO : Steareth-2 niosome : HA= 1 : 4 : 30 : 2),
- ▲ : pDNA/PLO/Steareth-2 niosome/HA quaternary complexes
- (pDNA : PLO : Steareth-2 niosome : HA=1 : 4 : 30 : 5),
- : pDNA/PLO/Steareth-2 niosome/HA quaternary complexes

(pDNA : PLO : Steareth-2 niosome : HA = 1 : 4 : 30 : 10).

Each data column point represents the mean \pm S.D. (n = 3).

*p< 0.05 compared with pDNA/PLO complexes, ${}^{\dagger}p$ < 0.05 compared with pDNA/PLO/Steareth-2 niosome ternary complexes.

3-3-2 免疫蛍光染色法による CD44 の局在性

Figure 24 に HEK293 細胞及び A549 細胞に抗 CD44 抗体を適用し、蛍光染色した際の免疫 蛍光画像を示す。HEK293 細胞は CD44 に由来する蛍光は観察されず、核に由来する青色蛍 光のみ検出されたが、A549 細胞は細胞膜部分に CD44 に由来する緑色蛍光が観察された。 したがって、A549 細胞表面に CD44 抗原が特異的に発現していることが示された。

Fig. 24 Immunofluorescence of CD44 in HEK293 cells and A549 cells. The blue channel shows the DAPI stained nuclei, Green channel displays binding to anti-CD44 antibody, and the overlay represents the cellular localization of CD44. Scale bar : 30 μm.

3-3-3 遺伝子発現効率及び細胞生存性に対する pDNA/PLO/Steareth-2 ニオソーム/HA 四元 複合体中の HA の質量比の影響

Figure 25 に Steareth-2 ニオソームの配合比を 30 とする pDNA/PLO/Steareth-2 ニオソーム 三元複合体及び HA の配合比を 2,5 及び 10 に変えた各 pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合を調製し、pDNA 含有量を変え (500 ng pDNA/well (低用量) 及び 1,000 ng pDNA/well (高用量))、A549 細胞に適用したときの遺伝子発現効率及び細胞生存率を示す。いずれの 質量比の pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体も、luciferase activity が naked pDNA 適用群よりも増大し、低用量では約 230~500 倍 (*p<0.05)、高用量では約 1,100~2,000 倍 高い値を示した (**p<0.01)。また、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の luciferase activity は、複合化した HA の割合の増加に伴い増加する傾向にあり、HA の配合比 が 10 のとき、luciferase activity が最大になった。さらに、HA の配合比を 10 で調製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の luciferase activity は、pDNA/PLO/Steareth-2 ニオソーム三元複合体よりも低用量で約 2.6 倍 ($^{\dagger}p$ <0.05)、高用量で約 3.2 倍有意に高く なった ($^{\dagger}p$ <0.01)。

A549 細胞に低用量の pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体を適用した際の細胞生存率は約 88~91%であり、いずれの質量比でも細胞生存率に有意差は認められなかった (p > 0.05)。一方、高用量における細胞生存率は約 80~81%であり、naked pDNA 適用群よりも若干の細胞生存率の低下が認められたが (p < 0.05)、pDNA/PLO/Steareth-2 ニオソーム三元複合体より細胞生存率は約 16~17%高くなった。

これらの結果より、pDNA/PLO/Steareth-2ニオソーム/HA四元複合体はpDNA/PLO/Steareth-2ニオソーム三元複合体よりも細胞毒性が低く、HAの配合比及び DNA 適用量に依存して 効率的に細胞内へ送達できることが示された。

Fig. 25 Transfection efficiency (A) and cell viability (B) of each pDNA/PLO/Steareth-2 niosome/HA

quaternary complexes at various weight ratio in A549 cells.

■ : 500 ng pDNA/well, 💟 : 1,000 ng pDNA/well.

Data are shown as the mean \pm S.D. (n = 3). The significant differences were analyzed by a Student's *t*-test. **p*<0.05; ***p*<0.01 compared with naked pDNA, [†]*p*<0.05; ^{††}*p*<0.01 compared with pDNA/PLO/stearerth-2 niosome ternary complexes.

Figure 26 に naked pDNA、pDNA/Lipofectamine[®] 2000 複合体及び HA の配合比を 10 で調 製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体を A549 細胞に適用したときの遺伝 子発現効率及び細胞生存率の比較を示す。pDNA/Lipofectamine[®] 2000 複合体による luciferase activity は naked pDNA 適用よりも約 6,000 倍~約 9,000 倍増大し、非常に高い値を示した (Fig. 26(A))。一方、pDNA/Lipofectamine[®] 2000 複合体適用による細胞生存率は naked pDNA の約 47~57%となり、 naked pDNA のみよりも大きく減少した (Fig. 26 (B))。

HA 配合比を 10 で調製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体による luciferase activity は、pDNA の適用量に依存して大きく増大し、最大適用量(1,500 ng pDNA/well) では naked pDNA 適用よりも約4,600 倍増大した(Fig. 26 (A))。さらに、この DNA 適用量における pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の luciferase activity は、 pDNA/Lipofectamine[®] 2000 複合体の最大適用量(1,000 ng pDNA/well) のときの約1/2 倍で あった。また、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体適用後の細胞生存率は最大 適用量で約75%となり、若干の細胞生存性の低下が認められるものの、pDNA/Lipofectamine [®] 2000 複合体よりも15%以上高かった(Fig. 26 (B))。

これらの結果から、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体による遺伝子導入は、 pDNA/Lipofectamine[®] 2000 複合体には劣るものの、遺伝子を安全かつ効率的に標的細胞に 送達できることが示された。

Fig. 26 Comparison of transfection efficiency (A) and cell viability (B) of naked pDNA, pDNA/Lipofectamine[®] 2000 complexes and pDNA/PLO/Steareth-2 niosome/HA/quaternary complexes (1:4:30:10) in A549 ☑ : 500 ng pDNA/well, ☑ : 1,000 ng pDNA/well, □ : 1,500 ng pDNA/well. Data are shown as the mean ± S.D. (n = 3).

3-3-4 抗 CD44 抗体処理による pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体による遺 伝子導入の変化

今回調製した四元複合体は正電荷を有していることから、細胞膜との静電的相互作用を介 して細胞内に遺伝子が導入されたことが考えられるが、遺伝子発現効率は pDNA/PLO/Steareth-2 ニオソーム三元複合体よりも高い値を示しており、複合体の表面電荷 以外にHAの受容体であるCD44が関与している可能性がある。そこで、CD44による遺伝 子発現効率の影響を評価するために、抗CD44抗体を用いた受容体競合試験を行った。

Figure 27 に種々濃度の抗 CD44 抗体を 1 時間適用後、pDNA/PLO/Steareth-2 ニオソーム三 元複合体及び pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体を細胞に適用した際の相対的 遺伝子発現効率を示す。各複合体の抗体未適用群における luciferase activity を 100%とした とき、pDNA/PLO/Steareth-2 ニオソーム三元複合体による遺伝子発現効率は約 100~105%で あり、抗 CD44 抗体の濃度を増加させても、遺伝子発現効率に変化はみられなかった (p >0.05)。一方、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体では、抗 CD44 抗体濃度の増 加に伴い遺伝子発現効率は相対的に低下した (*p < 0.05)。この結果は抗体適用量依存的で あり、1 µg/mL 抗 CD44 抗体溶液を適用した時、相対的遺伝子発現効率は抗体未適用群の約 45%まで減少した。

したがって、本四元複合体は細胞膜との静電的相互作用を介した細胞内取込みに加えて、 HA 及び CD44 との相互作用を介した機構により、複合体がより効率的に細胞内に取込まれ、 高い遺伝子発現をもたらしたことが示唆された。

ternary complexes and pDNA/PLO/Steareth-2 niosome/HA quaternary complexes in A549 cells.

 \Box : pDNA/PLO/Steareth-2 niosome ternary complexes (1 : 4 : 30),

■ : pDNA/PLO/Steareth-2 niosome/HA quaternary complexes (1 : 4 : 30 : 10).

A549 cells were incubated with Opti-MEM[®] containing anti-CD44 mAb (final concentration : 0, 0.1 and 1 μ g/mL) prior to the transfection.

Data are shown as the mean \pm S. D. (n = 3). The significant differences were analyzed by Student's *t*-test. *p < 0.05 compared with anti-CD44 mAb untreated cells.

第4節 小括

第3章では癌細胞に対する標的指向性を検討するために、癌細胞に過剰発現している CD44に注目し、CD44標的指向性遺伝子導入ニオソームの調製を試みた。今回、CD44過剰 発現細胞に対する標的指向性を付与するために、CD44のリガンドであるアニオン性多糖HA を選択し、第1章及び第2章で遺伝子導入に適したpDNA/PLO/Steareth-2ニオソーム三元複 合体にHAを複合化して、その四元複合体によるCD44標的指向性の有無を検討した。また、 HA 複合化による四元複合体の粒子特性やDNA保持能、安定性、細胞生存性への影響につ いても調査した。

まず、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体が粒子特性に与える影響を評価した。pDNA/PLO/Steareth-2 ニオソーム三元複合体に HA を複合化すると、四元複合体の平均 粒子径は増大し、ニオソームや他の三元複合体よりも多層構造を有する粒子が得られた

(Table 8 and Fig. 20)。これは、pDNA/PLO/Steareth-2 ニオソーム三元複合体表面及び HA と の静電的相互作用により、複合体の粒子特性に変化をもたらすことが示された。一方、複合 体のく電位は低下したものの、正電荷を示しており(Table 8)、複合体表面が完全には HA に より覆われていない可能性が考えられた。最大配合比における四元複合体について、複合体 形成に関与する分子(アニオン分子の pDNA 及び HA、カチオン性分子のニオソーム内の ODA 及び PLO)の荷電基当りの各分子のモルを算出すると、そのモル比はおおよそ1:0.8: 9:0.03 (pDNA: HA: ODA: PLO)であり、複合体中の電荷としての割合は正電荷が多く、 これも複合体の表面電荷が大きく変化しなかった要因であると思われる。

次に、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体を A549 細胞に適用して、HA 複合 化による複合体の細胞内取込みへの影響を評価した。CD44 過剰発現細胞に対する標的指向 性を検討するにあたり、使用する癌細胞の CD44 の発現の有無を確認した。肺癌細胞の一種 である A549 細胞は、フローサイトメトリーを用いた CD44 発現量測定試験で高い発現量が 確認されており ^{36,90}、本研究でも免疫染色法による観察から、ほとんどの細胞で CD44 の発 現が確認された(Fig. 24)。pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体を A549 細胞に 適用すると、luciferase activity は複合化した HA 量や DNA 適用量に依存して増大し、HA 最

大配合比である 10 の四元複合体では、pDNA/PLO/Steareth-2 ニオソーム三元複合体よりも 2 ~3 倍以上高い値を示した(Fig. 25 (A))。このように、HA を複合化することで、複合体粒 子をより細胞内に取込むことが示された。高い正電荷を有する遺伝子ベクターは、細胞膜と の静電的相互作用が増強され、エンドサイトーシスにより取込まれるが、今回調製した四元 複合体の表面電荷は三元複合体と大きな差はないにも関わらず(Table 8)、それよりも高い 遺伝子発現効率を示した。したがって、遺伝子発現効率の増大に表面電荷以外に HA の受容 体である CD44 が関与している可能性があるため、抗 CD44 抗体を用いた CD44 競合試験を 行い、複合体の遺伝子導入に対する CD44 の影響を検討した。抗 CD44 抗体を適用後、各複 合体による遺伝子導入を行った結果、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体で 50%以上の遺伝子発現効率の減少が観察された(Fig. 27)。この結果より、四元複合体による 遺伝子導入は表面電荷を介した細胞内導入に加えて、CD44 を介した受容体介在性エンドサ イトーシス経路も関与している可能性が示唆された。HA を複合した遺伝子導入ベクターが CD44 に結合した後、CD44 が細胞表面のコレステロールに富む脂質ラフトに局在すること から、脂質ラフト/カベオラ依存性エンドサイトーシスを介して取込まれることが知られて いるが ^{36,91)}、本研究で調製した四元複合体によるその取り込み機構はまだ明らかではなく、 今後の検討が必要である。

本研究で調製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体は CD44 に対する標的 指向性を有し、高い遺伝子発現能を有することが明らかになったが、三元複合体と同様に DNA を安定して複合体内に保持し、細胞に対する毒性を最小限にして標的細胞に送達でき なければ、*in vivo* 遺伝子治療への応用は困難である。そこで、四元複合体の DNA 保持能や 安定性、細胞生存性についても検討した。電気泳動法及び SYBR[®] Gold assay による DNA 保 持能の評価では、どの HA 配合比においても pDNA の遊離は確認されず、複合体内に DNA が保持されていた (Fig. 21, lanes 4~6 and Fig. 23)。HA は、ヘパリンやコンドロイチン硫酸、 DS 等の分子内に強酸の硫酸基を有する硫酸化 GAGs とは異なり、硫酸基が弱酸のカルボキ シル基に置き換わっており、分子内の負電荷密度が硫酸化 GAGs よりも低くなっている^{69, 82,92)}。この HA の低い負電荷密度から、弱酸のリン酸基を有する DNA と遺伝子ベクターと

の複合体に対して、イオン競合反応による複合体の不安定化が硫酸化 GAGs よりも起こり にくくなり、HA を複合化しても pDNA は遊離されず効率的に保持されたと推察される。ま た、上記で算出した最大 HA 配合比での各成分のモル比を考慮しても、HA の割合は比較的 少ないため、過剰なポリアニオンによる pDNA の放出はみられなかったと考えられる。DS による四元複合体の安定性試験では、三元複合体と同様にウェル中に pDNA バンドを保持 させ、相対蛍光強度の増大を抑制した (Fig. 22, lanes 4~6 and Fig. 23)。また、遊離した pDNA の割合は HA の配合比に依存して少なくなり、さらに四元複合体の IC₅₀ は pDNA/PLO 複合 体や三元複合体よりも高い値を示したことから、DS に対する耐性能が高く、安定して pDNA を複合体内に保持していた。したがって、HA を複合化することで、HA のカルボキシルが DS のスルホン基との静電的反発を起こしてイオン交換反応による複合体からの pDNA 放出 を抑制し、HA は複合体の安定性をより高めたと考えられた。また、DNase I による分解も 確認されておらず、分解酵素等に対しても抵抗性をもつことが示された (Fig. 22, lanes 10~ 12)。このような利点は、本遺伝子導入ベクターを生体に投与したとき、血中のタンパク質 や細胞成分、分解酵素等との非特異的相互作用を抑制し、標的とする細胞に対して効率的に 遺伝子を送達できる点で、有意にはたらくと考えられる。

安全な遺伝子導入ベクターであることを確認するために、pDNA/PLO/Steareth-2 ニオソー ム/HA 四元複合体の細胞適用後の細胞生存性も評価した。四元複合体は、DNA 適用量に依 存した細胞生存率の低下は観察されたが、その低下は pDNA/PLO/Steareth-2 ニオソーム三元 複合体よりも低く、有意な影響は確認されなかった(Fig. 25 (B))。これにより、四元複合体 は細胞毒性を示さずに標的細胞に効率的に遺伝子を導入できる可能性があることが示され た。さらに、本複合体は遺伝子発現効率の点では市販の遺伝子導入剤 Lipofectamine[®] 2000 に劣るものの、四元複合体の適用量を増大させることで、Lipofectamine[®] 2000 適用の半分程 度まで遺伝子発現効率を増大させ(Fig. 26 (A))、さらに細胞毒性を最小限に抑えることが明 らかとなり(Fig. 26 (B))、遺伝子導入のための非ウイルス性ベクターとして有用であると考 えられた。

以上より、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体は CD44 に対する標的指向性

を有していることが明らかとなり、pDNA を標的とする癌細胞に効率的に送達できることが 示された。さらに、pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体の DNA 保持能及び外部 要因に対する安定性は、標的細胞への遺伝子送達効率を向上に寄与すると考えられる。HA を用いた遺伝子ベクターを *in vivo* 遺伝子治療に用いる場合、血中からの速やかなクリアラ ンスやヒアルロニダーゼによる HA の分解など^{93,94}、安定性に関してまだ課題点があるた め、PEG 等の機能性化合物の修飾により更なる安定性・有効性の改善が期待できると考えら れる。

総括

本研究では、ポリオキシエチレンステアリルエーテル(Steareth)からなるニオソーム及び PLO、HA 及び pDNA からなる遺伝子導入ニオソームを調製し、粒子特性、DNA 保持能、安 定性、遺伝子発現効率及び安全性、更に HA による CD44 標的性を評価した。

遺伝子導入ニオソームは一般的に Tween や Span 等の医薬品等にも使用される NIS が用い られているが、Steareth 等の直鎖状 NIS を用いた例は報告されていない。また、NIS の化学 的構造によるニオソームの物性や遺伝子発現効率などの影響は他の研究でも研究されてい るが、親水性鎖長の長さによる遺伝子発現効率の違いは多くは検討されていない。そこで本 研究では、Steareth による遺伝子導入ニオソームの開発とその化学構造による様々な影響を 調査するため、種々EO 鎖長を有する Steareth を用いてニオソームを調製し、さらに遺伝子 を効率的に凝縮する PLO を組合わせて、pDNA/PLO/Steareth ニオソーム三元複合体を調製 し、ニオソームの質量比や NIS の構造的特徴の違いによる粒子特性や DNA 保持能、複合体 の安定性の影響を評価した。また、Stearethニオソームの有用性を検討するために、Tween 80 ニオソームとの比較も行った。次いで、調製した pDNA/PLO/Steareth ニオソーム三元複合体 を用いて細胞に遺伝子導入試験を行い、ニオソームの質量比や NIS の構造的特徴の違いに よる遺伝子発現効率や細胞生存性の影響を調査した。また、血清の有無による遺伝子発現効 率への影響も評価した。粒子特性や遺伝子発現効率、細胞生存性等の評価をもとに選定した pDNA/PLO/Steareth ニオソーム三元複合体に HA を複合し、その粒子特性や DNA 保持能、 安定性、遺伝子発現効率、細胞生存性を評価した。さらに、市販の遺伝子導入剤との遺伝子 発現効率との比較及び CD44 に対する標的性の検討も行った。これらの検討を行った結果、 以下の結論を得た。

1. pDNA/PLO/ニオソーム三元複合体の調製とその物性、DNA保持能及び安定性

本研究で用いた NIS により、比較的球形でリポソームに似た層状構造をとるニオソーム

を調製できたことが示された。各 Steareth ニオソームの平均粒子径及びく電位は、Steareth の EO 鎖が長くなるほど低下しており、親水性鎖長の長さが得られたニオソームの物性に影響 を与えていることが示された。また、各 Steareth ニオソーム単独の粒子安定性は長期にわた り維持され、正に荷電する粒子同士の静電的反発により溶液中に安定して分散していること が明らかになった。これらのニオソームを用いて pDNA/PLO 複合体と複合化した pDNA/PLO/ニオソーム三元複合体は、質量比や NIS の親水性鎖長の違いによらず、複合前 と物性や形態に大きな影響はみられなかった。一方、DNA 保持能や DS に対する複合体の 安定性は、ニオソームの質量比が大きくなるほど高くなることが示され、ニオソーム中の ODA と PLO 及び pDNA の複数の成分により pDNA/PLO 複合体よりもより強固な複合体を 生成し、ニオソームの割合を増やすことで高い DNA 保持能や安定性が得られることが明ら かになった。さらに、複合体の安定性は Steareth の EO 鎖長が短いほど高くなり、EO 鎖長 が DS 存在下における複合体の DNA 保持能に影響を与えることが示された。また、DNase I に対する複合体の pDNA 保護効果も確認することができた。

2. pDNA/PLO/ニオソーム三元複合体による遺伝子導入と安全性

ニオソームの赤血球に対する膜傷害性を評価し、かつ調製した pDNA/PLO/ニオソーム三 元複合体を A549 細胞や HEK293 細胞に適用して遺伝子発現効率及び細胞生存性を検討し た。さらに、血清存在下における遺伝子送達能への影響も調査した。pDNA/PLO/ニオソーム 三元複合体による遺伝子発現効率は、いずれも naked pDNA 適用よりも増大し、異なる細胞 株でも同様な発現効率を示していた。また、三元複合体による遺伝子発現効率はニオソーム を構成する Steareth の EO 鎖が短く、複合体へのニオソーム配合比が多くなるほど大きくな ることが明らかになった。最も高い遺伝子発現効率を示したニオソーム配合比が 30 で Steareth-2 ニオソームからなる三元複合体では、他の NIS よりも高い正電荷、DNA 保持能及 びポリアニオンに対する安定性を有しており、これは EO 鎖による立体障害による影響を最 小限にして細胞膜との静電的相互作用を増大させ、エンドサイトーシス機構により取込まれ てから核へ移行するまでの間、pDNA を安定して複合体に保持して送達することができると 考えられる。

各複合体の細胞毒性を評価した結果、ニオソームの配合比増大による細胞生存率の低下は みられなかったが、遺伝子発現効率の結果と同様に Steareth の EO 鎖長が長くなるほど、細 胞の生存率は低下した。この結果はニオソームによる溶血活性試験でも似た傾向が観察され た。これは、今回調製した複合体による膜傷害性は粒子の表面電荷よりも界面活性剤の構造 的特徴の影響の方が大きく、HLB が高くかつ親水性鎖長が長くなるほど、膜傷害性を増大 させたことを推察している。また血清下での遺伝子導入効率についても検討を行ったところ、 わずかな導入効率の低下が確認されたものの、pDNA/PLO 複合体よりも高い遺伝子導入を 示し、これは PLO 及びニオソームを組合わせることが生体内での粒子の安定性向上や送達 効率の増大に寄与したことが示唆された。

3. pDNA/PLO/ニオソーム/HA 四元複合体の物性と遺伝子導入

pDNA/PLO/ニオソーム三元複合体の中でも、Steareth-2 ニオソームを用いた複合体は高い 安定性、遺伝子発現効率を有し、細胞毒性もほとんどみられなかった。さらに、血清存在下 でも、比較的安定して遺伝子を導入できる可能性があることが示唆された。しかし、その効 果はまだ十分ではない可能性があり、かつ効率的な遺伝子導入を行うためには標的細胞への 標的性も重要である。そこで、標的細胞に対する標的指向性を検討するために、癌細胞に過 剰発現している CD44 に注目し、そのリガンドであるアニオン性多糖 HA を複合化して、 CD44 標的指向性遺伝子導入ニオソーム調製をした。pDNA/PLO/Steareth-2 ニオソーム三元 複合体に HA を複合化すると、複合体の粒子形態に変化をもたらしたが、表面電荷の大きな 低下がみられなかったことから、HA は複合体表面が完全に HA により覆われていない可能 性が示された。調製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体について、HA の CD44 標的化による複合体の細胞内取込みへの影響を評価するために、CD44 を過剰発現す る癌細胞 A549 細胞に適用したが、遺伝子発現効率は naked pDNA 及び pDNA/PLO/Steareth-2 ニオソーム三元複合体よりも大きく増大し、その発現効率は複合した HA 量や DNA 適用 量に依存した。この pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体による遺伝子発現効率 の増大が複合体の表面電荷以外に CD44 が関与してものかどうかを検証するために、抗体に よる競合試験も行った。その結果、四元複合体による遺伝子発現効率を約 45%まで減少する ことが示され、四元複合体は細胞膜との静電的相互作用とそれに続くエンドサイトーシス機 構による細胞内取込み以外にも、CD44 による受容体介在性エンドサイトーシスも関与して いる可能性が示唆された。さらに、本研究で調製した pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体が DNA を安定して複合体内に保持し、細胞毒性を起こすことなく標的細胞に送 達できるかも検討した。その結果、四元複合体は pDNA の放出を起こすことなく、pDNA を 複合体内に保持することが示され、ポリアニオンや分解酵素に対して高い安定性を有するこ とが明らかとなった。この四元複合体の高い保持能及びポリアニオンに対する安定性は、HA の低い電荷密度やポリアニオンと HA との静電的反発が主に関与していると考えられる。ま た、四元複合体適用後の細胞生存性を評価したところ、pDNA/PLO/Steareth-2 ニオソーム三 元複合体よりも細胞生存率は高く、さらに Lipofectamine[®] 2000 よりも遺伝子発現効率は劣 るものの、その半分程度まで遺伝子発現効率を増大させながら細胞毒性を最小限に抑えるこ とが明らかとなり、遺伝子導入のための非ウイルス性ベクターとして有用であると考えられ た。

以上より、Steareth ニオソームを用いた遺伝子導入ニオソームの粒子特性や DNA 保持能、 安定性、遺伝子発現効率及び細胞生存性は Steareth の親水性鎖長の長さに依存し、親水性鎖 長の短い Steareth-2 ニオソームを用いた複合体は、Tween 80 ニオソームに匹敵する高い特性 をもつことが明らかになった。さらに、pDNA/PLO/Steareth-2 ニオソーム三元複合体に HA を混合することで、複合体の安定性や遺伝子発現効率、細胞生存性を向上し、かつ CD44 を 過剰発現する腫瘍細胞への指向性が高い遺伝子導入ベクターを開発できることが示唆され た。pDNA/PLO/Steareth-2 ニオソーム/HA 四元複合体による CD44 標的指向性は、治療遺伝 子を全身投与又は癌組織へ直接投与したとき、目的外の正常から目的とする癌細胞への移行 性を向上し、副作用の軽減に繋がると考えられるため、遺伝子を用いた癌治療への応用が期 待される。しかし、遺伝子ベクターや HA は生体内に投与したとき、RES による認識や腎か らの排泄などにより速やかにクリアランスされるため、血中滞留性が低い可能性があり、ま た HA は細胞外マトリックスとの接触や細胞膜上のヒアルロニダーゼによる分解で HA を 複合した遺伝子ベクターの安定性を低下させる恐れがある。そこで、遺伝子ベクター又はHA への PEG 等の機能性化合物修飾により血中滞留性及び安定性を改善し、遺伝子治療での更 なる有効性の向上が期待できると考えられる。加えて、HA の受容体には CD44 以外にも RHAMM (Receptor for Hyaluronan Mediated Motility, CD168) や HARE (Hyaluronic acid receptor for endocytosis) receptor、Toll-like receptor (TLR)-2、TLR-4 等が存在するため³⁶⁾、必ずしも CD44 を標的とすることができない可能性があるため、HA 以外にも癌細胞を標的とするリ ガンド (葉酸、トランスフェリン等) をニオソームに修飾することで、目的組織への標的性 の向上に繋がると思われる。

謝辞

本研究に際して、終始御懇篤なる御指導、御鞭撻を賜りました城西大学大学院薬学研究科 製剤学講座教授 夏目秀視 先生に深甚なる謝意を表します。

本研究に際して、終始御指導並びに多大なる御助言を賜りました城西大学大学院薬学研究 科薬剤学講座教授 関俊暢 先生に深謝の意を表します。

本研究に際して、終始御指導並びに多大なる御助言を賜りました城西大学大学院薬学研究 科生体防御講座教授 日比野康英 先生に深謝の意を表します。

本研究に際して、終始御見守り頂き、御指導並びに有益な御助言を賜りました城西大学大 学院薬学研究科製剤学講座准教授 内田昌希 先生、城西大学薬学部製剤学研究室助教授 八巻努 先生に改めて深謝の意を表します。

また、本論文の作成、学位論文審査にあたり、ご教示とご校閲をいただきました城西大学 大学院薬学研究科 上田秀雄 先生、城西大学大学院薬学研究科生理学講座 加園恵三 先 生、城西大学大学院薬学研究科有機薬科学講座 山ノ井孝 先生に感謝の意を表します。

本研究の透過型電子顕微鏡による観察にあたり、御助言並びにご協力を賜りました城西大 学薬学部生化学講座教授 畑中朋美 先生、東海大学総合医学研究所教授 木村穣 先生、 東海大学伊勢原研究推進部生命科学統合支援センター技術員 福西菜穂子 さんに厚く御 礼申し上げます。

また、本研究の遂行に当たりご支援、ご協力をいただきました、城西大学薬学部製剤学 講座 川邊菜月 学士、鏡佑介 学士、永正知也 くんを始めとする関係諸氏に感謝いた します。

最後に、大学院への進学を快諾し、ここまで支えてくれた家族に深く感謝いたします。

引用文献

- 1) Mountain A., Gene therapy: The first decade. *Trends Biotechnol.*, **18**:119-128 (2000).
- 2) 田畑 泰彦, 原島 秀吉, 遺伝子医学 先端生物医学研究・医療のための遺伝子導入テク ノロジー ウイルスを用いない遺伝子導入法の材料、技術、方法論の新たな展開,株式会 社メディカルドゥ, 大阪 (2006).
- Ginn S. L., Amaya A. K., Abedi M. R., Alexander I. E., Gene therapy clinical trials worldwide to 2017: An update. *J Gene Med.*, e3015, https://doi.org/10.1002/jgm.3015 (2018).
- Marshall E., Gene therapy death prompts review of adenovirus vector. *Science*, 286: 2244-2245 (1999).
- Marshall E., Clinical research. Gene therapy a suspect in leukemia-like disease. *Science*, 298: 2244-2245 (2002).
- Kaiser J., Gene therapy. RAC hears a plea for resuming trials, despite cancer risk. *Science*, 299: 495 (2003).
- Issa P. C., Maclaren R. E., Non-viral retinal gene therapy: A review. *Clin. Exp. Ophthalmol.*, 40: 39-47 (2012).
- 8) Nishikawa M., Huang L., 遺伝子治療とDDS-Overview. Drug Delivery Syst., 15: 80-88 (2000).
- 9) Vercauteren D., Rejman J., Martens T. F., Demeester J., De Smedt S. C., Braeckmans K., On the cellular processing of non-viral nanomedicines for nucleic acid delivery: Mechanisms and methods. *J. Control. Release*, 161: 566-581 (2012).
- Perez Ruiz de Garibay A., Endocytosis in gene therapy with non-viral vectors. *Wien. Med. Wochenschr.*, 166: 227-235 (2016).
- 11) Lee S. Y., Lee Y., Choi J. S., Park J. S., Choi M. U., Stimulation of phospholipase D in HepG2 cells after transfection using cationic liposomes. *Bull. Korean Chem. Soc.*, **34**: 931-935 (2000).
- 12) Liu Y., Mounkes L. C., Liggitt H. D., Factors influencing the efficiency of cationic liposome-

mediated intravenous gene delivery. Nat. Biotechnol., 15: 167-173 (1997).

- Kawakami S., Hashida M., Nishida K., Nakamura J., Development of in vivo gene delivery system using cationic liposomes. *Drug Delivery Syst.*, 15: 89-97 (2000).
- Kawakami S., Sato A., Nishikawa M., Yamashita F. Hashida M., Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. *Gene Ther.*, 7: 292-299 (2000).
- 15) Simões S., Slepushkin V., Caspar R., Pedroso de Lima M. C., Düzgüneş N., Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. *Gene Ther.*, **5**: 955-964 (1998).
- Xu L., Huang C., Huang W., Tang W., Rait A., Yin Y. Z., Systemic Tumor-targeted Gene Delivery by Anti-Transferrin. *Mol. Cancer Ther.*, 1: 337-346 (2002).
- Uchegbu I. F., Vyas S. P., Non-ionic surfactant based vesicles (niosomes) in drug delivery. *Int. J. Pharm.*, **172**: 33-70 (1998).
- Abdelbary G., El-gendy N., Niosome-Encapsulated Gentamicin for Ophthalmic Controlled Delivery. *AAPS PharmSciTech.*, 9: 740-747 (2008).
- Rajera R., Nagpal K., Singh S. K., Mishra D. N., Niosomes: A Controlled and Novel Drug Delivery System. *Biol. Pharm. Bull.*, 34: 945-953 (2011).
- Huang Y., Rao Y., Chen J., Yang V. C., Liang W., Polysorbate cationic synthetic vesicle for gene delivery. J. Biomed. Mater Res., 96: 513-519 (2011).
- Paecharoenchai O., Niyomtham N., Leksantikul L., Ngawhirunpat T., Rojanarata T., Yingyongnarongkul B., Opanasopit P., Nonionic Surfactant Vesicles Composed of Novel Spermine-Derivative Cationic Lipids as an Effective Gene Carrier *In Vitro. AAPS PharmSciTech.*, 15: 722-730 (2014).
- Bartelds R., Nematollahi M. H., Pols T., Stuart M. C. A., Pardakhty A., Asadikaram G., Poolman B., Niosomes, an alternative for liposomal delivery. *PLoS One.*, 13: 1-18 (2018).
- 23) Puras G., Mashal M., Zárate J., Agirre M., Ojeda E., Grijalvo S., Eritja R., Diaz-Tahoces A.,

Martínez Navarrete G., Avilés-Trigueros M., Fernández E., Pedraz J. L., A novel cationic niosome formulation for gene delivery to the retina. *J. Control. Release*, **174**: 27-36 (2014).

- 24) 寺田 弘, 中川 晋作, 辻 孝三, 牧野 公子, 絹田 精鎮, 西野 敦, 応用が広がる DDS 人体環境から農業・家電まで, 株式会社エヌ・ティー・エス, 東京 (2013).
- 25) Ambegia E., Ansell S., Cullis P., Heyes J., Palmer L., MacLachlan I., Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. *Biochim. Biophys. Acta.*, **1669**: 155-163 (2005).
- 26) Kwok K. Y., Park Y., Yang Y., McKenzie D. L., Liu Y., Rice K. G., *In vivo* gene transfer using sulfhydryl cross-linked PEG-peptide/glycopeptide DNA co-condensates. *J. Pharm. Sci.*, **92**: 1174-1185 (2003).
- 27) Ogris M., Brunner S., Schüller S., Kircheis R., Wagner E., PEGylated DNA/transferrin-PEI complexes: Reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. *Gene Ther.*, **6**: 959-605 (1999).
- 28) Wang Y., Su J., Cai W., Lu P., Yuan L., Jin T., Chen S., Sheng J., Hepatocyte-targeting gene transfer mediated by galactosylated poly(ethylene glycol)-graft-polyethylenimine derivative. *Drug Des. Devel. Ther.*, 7: 211-221 (2013).
- 29) Hatakeyama H., Akita H., Harashima H., A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. *Adv. Drug Deliv. Rev.*, 63: 152-160 (2011).
- 30) 梅村 昂宏, 城西大学卒業論文 (2018).
- 31) Liu L., Zheng M., Renette T., Kissel T., Modular synthesis of folate conjugated ternary copolymers: Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate for targeted gene delivery. *Bioconjug. Chem.*, 23: 1211-1220 (2012).
- 32) Wagner E., Cotten M., Foisner R., Birnstiel M. L., Transferrin-polycation-DNA complexes: The effect of polycations on the structure of the complex and DNA delivery to cells. *Proc. Natl. Acad. Sci. USA.*, 88: 4255-4259 (1991).

- 33) Blessing T., Kursa M., Holzhauser R., Kircheis R., Wagner E., Different strategies for formation of PEGylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. *Bioconjug. Chem.*, 12: 529-537 (2001).
- 34) Naor D., Sionov R. V., Ish-Shalom D., CD44: Structure, function, and association with the malignant process. *Adv. Cancer Res.*, **71**: 241-319 (1997).
- 35) Arpicco S., De Rosa G., Fattal E., Lipid-Based Nanovectors for Targeting of CD44-Overexpressing Tumor Cells. J. Drug Deliv., **2013**: 1-8 (2013).
- 36) Qhattal H. S., Liu X., Characterization of CD44-Mediated Cancer Cell Uptake and Intracellular Distribution of Hyaluronan-Grafted Liposomes. *Mol. Pharm.*, 8: 1233-1246 (2011).
- 37) Eliaz R. E., Szoka J., Liposome-encapsulated doxorubicin targeted to CD44: A strategy to kill CD44-overexpressing tumor cells. *Cancer Res.*, 61:2592-2601 (2001).
- 38) Peer D., Margalit R., Loading mitomycin C inside long circulating hyaluronan targeted nanoliposomes increases its antitumor activity in three mice tumor models. *Int. J. Cancer.*, 108: 780-789 (2004).
- 39) Wang Y., Xu Z., Zhang R., Li W., Yang L., Hu Q., A facile approach to construct hyaluronic acid shielding polyplexes with improved stability and reduced cytotoxicity. *Colloids. Surfaces. B Biointerfaces*, 84: 259-266 (2011).
- Surace C., Arpicco S., Dufaÿ-Wojcicki A., Marsaud V., Bouclier C., Clay D., Cattel L., Renoir J. M., Fattal E., Lipoplexes targeting the CD44 hyaluronic acid receptor for efficient transfection of breast cancer cells. *Mol. Pharm.*, 6: 1062-1073 (2009).
- 41) Liang K., Bae K. H., Lee F., Xu K., Chung J. E., Gao S. J., Kurisawa M., Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery. *J. Control. Release*, **226**: 205-216 (2016).
- 42) Attia N., Mashal M., Soto-Sánchez C., Martínez-Navarrete G., Fernández E., Grijalvo S., Eritja R., Puras G., Pedraz J. L., Gene transfer to rat cerebral cortex mediated by polysorbate 80 and poloxamer 188 nonionic surfactant vesicles. *Drug Des. Devel. Ther.*, 12: 3937-3949 (2018).

- 43) Mashal M., Attia N., Martínez-Navarrete G., Soto-Sánchez C., Fernández E., Grijalvo S., Eritja R., Puras G., Pedraz J. L., Gene delivery to the rat retina by non-viral vectors based on chloroquine-containing cationic niosomes. *J. Control. Release*, **304**: 181-190 (2019).
- Bayindir Z. S., Yuksel N., Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. *J. Pharm. Sci.*, **99**: 2049-2060 (2010).
- 45) Pasquali R. C., Taurozzi M. P., Sacco N., Bregni C., Birefringent emulsions stabilized with Steareth-2 and Steareth-21. *Lat. Am. J. Pharm.*, **27**: 839-844 (2008).
- 46) Liu F., Yang J., Huang L., Liu D., Effect of non-ionic surfactants on the formation of DNA/emulsion complexes and emulsion-mediated gene transfer. *Pharm. Res.*, 13: 1642-1646 (1996).
- 47) Wang D., Jing N., Lin Q., Stearylamine Liposome as a New Efficient Reagent for DNA Transfection of Eukaryotic Cells eukaryotic cells. *Biochem. Biophys. Res. Commun.*, 226: 450-455 (1996).
- Li S., Rizzo M. A., Bhattacharya S., Huang L., Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. *Gene Ther.*, 5: 930-937 (1998).
- 49) Li P., Chen S., Jiang Y., Jiang J., Zhang Z., Sun X., Dendritic cell targeted liposomes-protamine-DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine. *Nanotechnology*, 24: 295101 (2013).
- 50) Puras G., Martínez-Navarrete G., Mashal M., Zárate J., Agirre M., Ojeda E., Eritja R., Diaz-Tahoces A., Avilés-Trigueros M., Fernández E., Pedraz J. L., Protamine/DNA/niosome ternary nonviral vectors for gene delivery to the retina: The role of protamine. *Mol. Pharm.*, **12**: 3658-3671 (2015).
- Dash P. R., Read M. L., Barrett L. B., Wolfert M. A., Seymour L. W., Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. *Gene Ther.*, 6: 643-650 (1999).
- 52) Wang W., Balk M., Deng Z., Wischke C., Gossen M., Behl M., Ma N., Lendlein A., Engineering

biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. *J. Control. Release*, **242**: 71-79 (2016).

- 53) Li X. W., Lee D. K., Chan A. S., Alpar, H. O., Sustained expression in mammalian cells with chitosan nanoparticles. *Biochim. Biophys. Acta.*, **1630**: 7-18 (2003).
- 54) Ramsay E., Hadgraft J., Birchall J., Gumbleton M., Examination of the biophysical interaction between plasmid DNA and the polycations, polylysine and polyornithine, as a basis for their differential gene transfection in-vitro. *Int. J. Pharm.*, **210**: 97-107 (2000).
- 55) Tokunaga M., Nagao M., Nagata M., Hazemoto N., Yotsuyanagi T., DNA Transfection Mediated by Synthetic Polycationic Peptides, *J. Pharm. Sci. Technol.*, **63**: 71-78 (2003).
- 56) 城間 愛香, 城西大学卒業論文 (2016).
- 57) Hait S. K., Moulik S. P., Determination of Critical Micelle Concentration (CMC) of Nonionic Surfactants by Donor-Acceptor Interaction with Iodine and Correlation of CMC with Hydrophile-Lipophile Balance and Other Parameters of the Surfactants, *J. Surfactants Deterg.*, 4: 303-309 (2001).
- 58) pGL3 Luciferase Reporter Vectors Product Datasheet (Promega).
- 59) Yuasa M., Oyaizu K., Hanyuu Y., Kasahata K., Yamaguchi A., Novel Functional Nano-size Nonionic Surfactant Particles on Which Cationic Metalloporphyrins Are Absorbed; Preparation, Characterization, and Anti-oxidant Properties. J. Oleo. Sci., 54: 465-471 (2005).
- 60) 山口 俊介, 東京理化大学博士論文 (2014).
- 61) Read M. L., Bettinger T., Oupicky D., Methods for Studying the Formation of Polycation-DNA Complexes and Properties Useful for Gene Delivery. *Methods Mol. Biol.*, 65: 131-148 (2001).
- 62) Aldawsari H. M., Dhaliwal H. K., Aljaeid B. M., Alhakamy N. A., Banjar Z. M., Amiji M. M., Optimization of the Conditions for Plasmid DNA Delivery and Transfection with Self-Assembled Hyaluronic Acid-Based Nanoparticles. *Mol. Pharm.*, 16: 128-140 (2019).
- 63) Fraga M., Bruxel F., Diel D., De Carvalho T. G., Perez C. A., Magalhães-Paniago R., Malachias A., Oliveira M. C., Matte U., Teixeira H. F., PEGylated cationic nanoemulsions can efficiently

bind and transfect pIDUA in a mucopolysaccharidosis type I murine model. *J. Control. Release.*, **209**: 37-46 (2015).

- 64) Nadithe V., Liu R., Killinger B. A., Movassaghian S., Kim N. H., Moszczynska A. B., Masters K. S., Gellman S. H., Merkel O. M., Screening nylon-3 polymers, a new class of cationic amphiphiles, for siRNA delivery. *Mol. Pharm.*, 12: 362-374 (2015).
- 65) Elsayed M., Corrand V., Kolhatkar V., Xie Y., Kim N. H., Kolhatkar R., Merkel O. M., Influence of oligospermines architecture on their suitability for siRNA delivery. *Biomacromolecules*, 15: 1299-1310 (2014).
- 66) Kim T. W., Kim Y. J., Chung H., Kwon I. C., Sung H. C., Jeong S. Y., The role of non-ionic surfactants on cationic lipid mediated gene transfer. *J Control. Release*, **82**: 455-465 (2002).
- 67) Ojeda E., Puras G., Agirre M., Zárate J., Grijalvo S., Pons R., Eritja R., Martinez-Navarrete G., Soto-Sanchez C., Fernández E., Pedraz J. L., Niosomes based on synthetic cationic lipids for gene delivery: The influence of polar head-groups on the transfection efficiency in HEK-293, ARPE-19 and MSC-D1 cells. *Org. Biomol. Chem.*, **13**: 1068-1081 (2015).
- 68) Jiang H. L., Kim Y. K., Arote R., Nah J. W., Cho M. H., Choi Y. J., Akaike T., Cho C. S., Chitosangraft-polyethylenimine as a gene carrier. *J. Control. Release.*, **117**: 273–280 (2007).
- Ruponen M., Ylä-Herttuala S., Urtti A., Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: Physicochemical and transfection studies. *Biochim. Biophys. Acta.*, 1415: 331-341 (1999).
- 70) Pinnapireddy S. R., Duse L., Strehlow B., Schäfer J., Bakowsky U., Composite liposome-PEI/nucleic acid lipopolyplexes for safe and efficient gene delivery and gene knockdown. *Colloids. Surf. B Biointerfaces.*, **158**: 93–101 (2017).
- 71) 日本薬学会編,第2版 スタンダード薬学シリーズ4 生物系薬学 Ⅱ 生命をミクロに理 解する,東京化学同人,東京 (2006).
- 72) Smiya M., Kuroda S., Potential of a non-cationic liposomes-based delivery system for nucleic acid medicines. *Drug Delivery Syst.*, **31**: 35-43 (2016).

- 73) Lv H., Zhang S., Wang B., Cui S., Yan J., Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release., 114: 100-109 (2006).
- 74) Moghimi S. M., Symonds P., Murray J. C., Hunter A. C., Debska G., Szewczyk A., A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. *Mol. Ther.*, 11: 990-995 (2005).
- 75) Botto C., Mauro N., Amore E., Martorana E., Giammona G., Bondì M. L., Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. *Int. J. Pharm.*, **516**: 334-341 (2017).
- 76) Noudeh G. H., Khazaeli P., Behravan E., Afzadi M. A., Dehghan-Noudeh A., Hassani M., Evaluating the toxicity of permeability enhanchers of polyethylene glycol brij ethers surfactants group on cellular membranes and some of their physicochemical properties. *Afr. J. Biotechnol.*, 10: 9931-9938 (2011).
- 77) Vinardell M. P., Infante M. R., The relationship between the chain length of non-ionic surfactants and their hemolytic action on human erythrocytes. *Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol.*, **124**: 117-120 (1999).
- 78) You J., Kamihira M., Iijima S., Surfactant-mediated gene transfer for animal cells. *Cytotechnology*,
 25: 45-52 (1997).
- 79) Manaargadoo-Catin M., Ali-Cherif A., Pougnas J. L., Perrin C., Hemolysis by surfactants A review. Adv. Colloid Interface Sci., 228: 1-16 (2016).
- 80) Noudeh G. D., Khazaeli P., Rahmani P., Study of the Effects of Polyethylene Glycol Sorbitan Esters Surfactants Group on Biological Membranes. *Int. J. Pharmacol.*, **4**: 27-33 (2008).
- Zhao L., Li Y., Pei D., Huang Q., Zhang H., Yang Z., Li F, Shi T., Glycopolymers/PEI complexes as serum-tolerant vectors for enhanced gene delivery to hepatocytes. *Carbohydr. Polym.*, 205: 167-175 (2019).
- 82) Wang C., Luo X., Zhao Y., Han L., Zeng X., Feng M. Pan S., Peng H., Wu C., Influence of the polyanion on the physico-chemical properties and biological activities of

polyanion/DNA/polycation ternary polyplexes. Acta. Biomater., 8: 3014-3026 (2012).

- 83) He S. N., Li Y. L., Yan J. J., Zhang W., Du Y. Z., Yu H. Y., Hu F. Q., Yuan H., Ternary nanoparticles composed of cationic solid lipid nanoparticles, protamine, and DNA for gene delivery. *Int. J. Nanomedicine.*, 8: 2859-2869 (2013).
- 84) 笠井 慎, 古市 嘉行, 杉田 完爾, CD44 高発現腫瘍と炎症メディエーター, 山梨医学 誌, 32: 53-63 (2017).
- 85) Yamanouchi S., Kanazawa H., CD44-Targeting Nanocarriers for Cancer Treatment. Drug Delivery Syst., **34**: 38-45 (2019).
- 86) Dougherty G. J., Dougherty S. T., Dirks J. F., Chui R. K., Peters C. E., Droll A., Regulation of the Functional Activity and Ligand Binding Specificity of the Adhesion Protein CD44. *Trends Glycosci. Glycotechnol.*, 7: 45-56 (1995).
- 87) Bourguignon L. Y. W., Hongbo Z., Shao L., Chen Y. W., CD44 interaction with Tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. *J. Biol. Chem.*, 275:1829-1838 (2000).
- 88) Martens T. F., Peynshaert K., Nascimento T. L., Fattal E., Karlstetter M., Langmann T., Picaud S., Demeester J., Smedt S. C. D., Remaut K., Braeckmans K., Effect of hyaluronic acid-binding to lipoplexes on intravitreal drug delivery for retinal gene therapy. *Eur. J. Pharm. Sci.*, 103:27-35 (2017).
- 89) Yamada Y., Hashida M., Harashima H., Hyaluronic acid controls the uptake pathway and intracellular trafficking of an octaarginine-modified gene vector in CD44 positive- and CD44 negative-cells. *Biomaterials*, **52**: 189-198 (2015).
- 90) Dufaÿ Wojcicki A., Hillaireau H., Nascimento T. L., Arpicco S., Taverna M., Ribes S., Bourge M., Nicolas V., Bochot A., Vauthier C., Tsapis N., Fattal E., Hyaluronic acid-bearing lipoplexes: Physico-chemical characterization and *in vitro* targeting of the CD44 receptor. *J. Control. Release*, 162: 545-552 (2012).
- 91) Contreras-Ruiz L., de la Fuente M., Párraga J. E., López-García A., Fernández I., Seijo B., Sánchez

A., Calonge M., Diebold Y., Intracellular trafficking of hyaluronic acid-chitosan oligomerbased nanoparticles in cultured human ocular surface cells. *Mol. Vis.*, **17**:279-290 (2011).

- 92) Xu P., Quick G. K., Yeo Y., Gene delivery through the use of a hyaluronate-associated intracellularly degradable crosslinked polyethyleneimine. *Biomaterials*, **30**: 5834-5843 (2009).
- 93) Pandey M. S., Harris E. N., Weigel J. A., Weigel P. H., The cytoplasmic domain of the hyaluronan receptor for endocytosis (hare) contains multiple endocytic motifs targeting coated pit-mediated internalization. *J. Biol. Chem.*, 283: 21453-21461 (2008).
- 94) Reed R. K., Laurent U. B. G., Fraser J. R. E., Laurent T. C., Removal rate of [3H]hyaluronan injected subcutaneously in rabbits. *Am. J. Physiol. Hear. Circ. Physiol.*, **259**: 200-203 (1990).