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Mathematical model for estimating the dermal absorption rates under finite dose

conditions to facilitate cosmetic safety assessments

Ryoki Kunita

The toxicity risk posed by chemicals is expressed using the hazard and human exposure levels. In the risk
assessment of systemic toxicity affecting organs such as the liver and kidneys, the hazard corresponds to the
no-observed-adverse-effect level (NOAEL) obtained from animal testing focused on the target chemical. For
human exposure levels, in the case of cosmetics, percutaneous exposure is primarily considered, which can be
calculated as the daily use amount of cosmetics, the concentration of the target chemical, and the dermal absorption
rate (the percentage of the chemical amount which penetrates below the stratum corneum compared to the amount
applied to the skin). Generally, if the ratio of the percutaneous exposure level to the NOAEL (Margin of safety:
MoS) exceeds 100, the systemic toxicity risk of substances in cosmetics is considered low". Therefore, the dermal
absorption rate would be important parameters in assessing the systemic toxicity risk of chemicals in cosmetics.

Although dermal absorption rates can be evaluated through in vifro skin permeation tests using excised
skin?, recent years have seen a focus on alternative assessment methods that do not involve excised skin,
considering animal welfare. Research has progressed using artificial membranes as a substitute for excised skin, as
well as studies on Quantitative Structure-Permeability Relationship (QSPR) models, which can calculate the skin
permeability based on the structural information and physicochemical characteristics of the target chemical.
However, it is important to note that these studies primarily focus on permeability coefficients (Kp) obtained under
infinite dose conditions, which are different from the finite dose conditions required to obtain dermal absorption
rates. This study aims to develop a method for estimating dermal absorption rates under finite dose conditions by
using Kp which can be obtained from artificial membranes or QSPR models, thereby achieving a safety evaluation
that considers dermal absorption without using excised skin.

In Chapter 1, I focused on the differences between infinite and finite dose conditions regarding the effects
to dermal absorption, positing that the skin permeation time of the target chemical is limited under finite dose due
to the evaporation of the vehicle. Therefore, based on Fick's first law of diffusion, I constructed a mathematical
model to estimate dermal absorption rates under finite dose conditions by assuming that the permeation from the
vehicle to the skin ceases due to evaporation. To evaluate the validity of the constructed mathematical model, I
applied the Kp obtained from infinite dose permeation tests using excised porcine skin to a mathematical model
targeting seven chemicals (121.12 < MW < 23434, 2.3 < Log Kymw < 2.0) and calculated the predicted
percutaneous absorption rates. I also obtained the actual measured values (averages) of percutaneous absorption
rates from finite dosage permeation tests using excised pig skin. By comparing the predicted values with the actual
measured values, I confirmed that the discrepancy between them was within a factor of 2. Therefore, the newly
constructed mathematical model is suggested to be potentially useful for predicting percutaneous absorption rates.

In Chapter 2, I evaluated the predictive performance of the dermal absorption rates when applying Kp
obtained from permeation tests using Strat-M®. For the seven substances used in Chapter 1, I compared the
predicted dermal absorption rates derived from Strat-M® and the mathematical model with and observed values. As
a result, for chemicals with Log K, < —0.4, the predicted values were estimated to be more than twice as low as
the observed values, indicating a discrepancy. Thus, it is suggested that Strat-M® may not be suitable for estimating
the dermal absorption rates of hydrophilic substances like those with Log K, < —0.4. On the other hand, for
chemicals with Log K4 > —0.4, I confirmed that the discrepancy between the predicted and observed values
remained within a 2-fold range. Hence, understanding the physicochemical characteristics of the target chemicals
may allow Strat-M® to be applied for predicting percutaneous absorption rates.

In Chapter 3, to develop a method for predicting dermal absorption rates, including hydrophilic chemicals,
I focused on commonly available QSPR models, specifically the Potts and Guy model and the ChemTunes model.
This chapter focused on two points. The first is the Kp prediction method using QSPR models. The evaluation of



the predictive performance of each model indicated that both tended to provide predicted values lower than
literature values. This could lead to underestimating the dermal absorption rate. Therefore, regarding a single
chemical, after predicting Kp with the Potts and Guy model and the ChemTunes model, the higher of the two
predicted values was applied as predicted Kp values from QSPR models. This method was defined as battery model.
Battery model reduced the extent to which the predicted Kp values were underestimated compared to literature
values. The second point is the variability in dermal absorption rates due to individual differences in skin. In the
safety evaluation of cosmetics, it is required to use a value (msDA) that incorporates the standard deviation (SD)
into the average dermal absorption rate data (mDA) obtained from permeation tests using excised skin. The results
from Chapters 1 and 2 suggest that applying Kp obtained from QSPR models to the mathematical model may allow
for the prediction of mDA. Therefore, to predict msDA from the obtained mDA, I constructed a regression model
by analyzing literature values of mDA and SD. The method to predict msDA from the mDA predicted using the
battery model and mathematical model through the regression model is defined as Integrating Mathematical
Approaches: IMAS.

For 54 substances with percutaneous absorption rate data (76.1 < MW < 362.5, —1.4 < Log Komw < 5.7), 1
compared the msDA predictions by IMAS with literature values, finding that the number of chemicals whose
discrepancies were within a 2-fold range was 27 (50%). Notably, chemiclas with MW > 220 and Log Ko > 3.1
showed a tendency to overestimate IMAS-predicted msDA values compared to literature values. Among the 54
substances, I compared the IMAS-predicted msDA values with literature values for 40 chemicals with MW < 220
and Log K, < 3.1, resulting in 26 chemicals (65%) whose discrepancies were within a 2-fold range.

In Chapter 4, I focused on the Kroes model, which classifies dermal absorption rates (msDA) into 10%,
40%, and 80% based on the maximum skin permeation rate (Juqa), obtained from the product of Kp and the
saturation solubility in water (Cyq*), comparing it with the msDA predictive performance of IMAS constructed in
Chapter 3. It was considered that since C./** affects Juay, it could significantly influence the classification values
of msDA. For 40 substances with MW < 220 and Log Kos < 3.1 of the 54 chemicals with dermal absorption rate
data used in Chapter 3, I compared the C,.** between groups classified by the Kroes model. A trend was observed
where the C,,** of the group classified with msDA of 80% was higher than that of the group classified with 40%.
However, hydrophilic chemicals with high C,,.** tend to have low msDA due to the effects of the lipid-rich stratum
corneum, leading to contradictions. Considering that the highest C,,** among the substances classified with msDA
of 40% by the Kroes model was 57.0 mg/cm?, I evaluated the predictive performance of IMAS and the Kroes
model for the msDA of 14 chemicals classified with msDA of 80% and Cy.*” > 57.0 mg/cm?. The results indicated
that the discrepancies between the IMAS-predicted msDA values and literature values were smaller than those of
the Kroes model. Thus, it was concluded that for predicting msDA of hydrophilic substances like those with Cy*
> 57.0 mg/cm?, the IMAS evaluation is considered more appropriate than the Kroes model.

In conclusion, this study established a new method, IMAS, for predicting dermal absorption rates
(msDA) under finite dose conditions by applying Kp obtained from artificial membranes and QSPR models to a
mathematical model. Particularly, IMAS has the potential to contribute to safety assessments through the estimation
of msDA when calculating MoS to explain systemic toxicity risks for hydrophilic active ingredients and additives
in cosmetics.
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