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ABSTRACT 

 
The aim of this review are to discusses the mechanisms by which insulin 
resistance develops in the presence of increased adiposity, to summarize the 
causative relationship between impaired NO bioavailability and insulin resistance, 
and also to show the implications of life-style changes to prevent insulin 
resistance. Obesity with increased visceral adiposity is an inflammatory condition 
that leads to insulin resistance. Because the insulin signalling pathway is linked 
to endothelial nitric oxide synthase (eNOS) activation, insulin resistance is 
always associated with decreased nitric oxide (NO) bioavailability. Recently, 
accumulating evidence has suggested that physical exercise and dietary 
nitrate/nitrite diets rich in vegetables improve insulin resistance by enhancing NO 
bioavailability, and thus provide potential preventive and therapeutic options for 
these patients with insulin resistance. 
  
Keywords:  Nitric oxide (NO); NO bioavailability; life-style-related disease; insulin 

resistance; nitrite; nitrate. 
 

1. INTRODUCTION 
 
The prevalence of obesity has recently increased, which has had a significant 
influence on global health [1]. In developed nations, obesity is a significant 
economic burden and the cause of a pre-diabetic condition [2]. Therefore, daily 
lifestyle adjustments linked to nutrition and exercise are strongly advised for 
obese people before turning to costly medication therapy [3]. A growing body of 
research has shown that vascular endothelial dysfunction may be a common 
mechanism underlying lifestyle-related diseases like insulin resistance, 
hypertension, and atherosclerosis, and that nitrate/nitrite-rich diets and exercise 
training can improve the characteristics of these pre-diabetic states by increasing 
the bioavailability of nitric oxide (NO) in both animal models and humans [3-5]. 
The aim of this review is to summarize the causal relationship between impaired 
NO bioavailability and insulin resistance, and to show the molecular-based 
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mechanisms and the preventive effects of exercise and nitrate/nitrite rich-diets on 
insulin resistance. 
 

2. OBESITY IS AN INFLAMMATORY STATE LEADING TO INSULIN 
RESISTANCE 

 
Insulin resistance is a characteristic feature of obese patients with type 2 
diabetes mellitus (DM) and/or metabolic syndrome. In particular, visceral obesity 
plays an important role in the development of insulin resistance [6]. The total 
number of adipocytes is thought to be determined in childhood and adolescence. 
Thus, young people can exhibit adipose hyperplasia due to the generation of de 
novo adipocytes, however, adults consuming a large number of calories and 
high-fat diets store the excess lipids in preexisting adipocytes due to their lower 
capacity for adipogenesis, resulting in adipocyte hypertrophy and visceral obesity 
[7]. 
 
Although adipose tissue is necessary for the normal secretion of leptin and 
adiponectin to enhance insulin sensitivity, impaired secretion of such adipokines, 
as is observed in lipodystrophy of humans and mice, results in insulin resistance 
[8,9]. In contrast, hypertrophic adipocytes produce other kinds of adipokines, 
such as monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-
α (TNF-α), which lead to the adhesion and infiltration of macrophages into 
muscle and adipose tissues and increased production of inflammatory mediators. 
Increased visceral adiposity induces lipolysis in adipose tissues and releases 
free fatty acids (FFAs) into the systemic circulation via the portal vein [6]. It has 
been well documented that toxic lipid metabolites such as long-chain fatty acyl 
CoAs, diacylglycerol and ceramides play an important role in the pathogenesis of 
insulin resistance in skeletal muscle and liver [10,11]. In particular, saturated fatty 
acids, induce toll-like receptor 4 (TLR4)-mediated inflammatory responses in 
macrophages, which then express and secret pro-inflammatory cytokines, 
including interleukin-1B (IL-1B), interleukin-6 (IL-6), TNF-α, and MCP-1 through 
transcription factor-mediated signaling pathways including the IkkB/NF-κB and 
JNK/AP-1 pathways [12-14]. These inflammatory mediators activate a number of 
kinases, which phosphorylate the serine residues of insulin receptor substrate-1 
(IRS-1), leading to the inhibition of insulin signaling and thereby causing insulin 
resistance (Fig. 1) [10]. 
 
In addition, excessive mitochondrial production of reactive oxygen species (ROS) 
accounts for another mechanism underlying the dysregulation of signaling and 
insulin resistance [15]. In particular, superoxide anion formed by leaked electrons 
and oxygen following excessive nutrient intake rapidly reacts with NO, and 
reduces the bioavailability of NO due to the formation of a potent oxidant, 
peroxynitrite. The ROS emitted in the mitochondria of insulin-targeted cells [15] 
disrupts the delicate redox balance that is normally regulated by the 
phosphorylation/dephosphorylation of molecules in the insulin signaling cascade, 
including insulin receptor (IRS1/2), leading to insulin resistance [16,17] (Fig.1). 
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Fig. 1. The insulin signaling pathway 
Insulin signaling starts with insulin binding to its receptor. The activation of 

the insulin receptor results in tyrosine phosphorylation of IRS and Shc, 
followed by the activation of two parallel pathways, the PI3K-Akt pathway, 
and the Ras/Raf/MAP kinase pathway. The PI3K-Akt pathway is intricately 
regulated by the redox balance and its disruption easily leads to insulin 
resistance and endothelial dysfunction (NO availability). However, the 

Ras/Raf/MAP kinase pathway is generally preserved even in the presence 
of insulin resistance, and subsequently produces ET-1 and exerts 

mitogenic effects leading to endothelial dysfunction 
ROS: reactive oxygen species, FFAs: free fatty acids, IRS-1: insulin receptor substrate-1, 
PI3 kinase: phosphatidylinositol 3 kinase, NO: nitric oxide, eNOS: endothelial nitric oxide 
synthase. GLUT4: glucose transporter 4: MAP-kinase: mitogen-activated protein kinase, 

PTP1B: protein tyrosine phosphatase 1B, ET-1: endothelin 1 
 

3. IMPAIRED NO BIOAVAILABILITY UNDER CONDITIONS OF 
OBESITY AND INSULIN RESISTANCE 

 

The bioavailability of NO is diminished by reduced nitric oxide synthase (NOS) 
expression, impaired NOS enzymatic activity and NO quenching by reactions 
with reactive species (e.g., superoxide). The recent reports regarding cause-and-
effect relationship between impaired NO bioavailability and diabetic states are 
listed in Table 1. Pro-inflammatory cytokines such as TNF-α downregulate the 
expression of endothelial NOS (eNOS) [18-20] by decreasing the stability of 
eNOS mRNA [21]. Valerio et al. demonstrated that TNF-α reduces the eNOS 
expression in the adipose tissues and skeletal muscles of obese rodents, and 
also showed that genetic deletion of TNF receptor 1 in this obese model restores 
the eNOS expression. These animals exhibit less body weight gain than the wild 
type control [22]. eNOS knockout animal models exhibit a number of features of 
insulin resistance and hypertension even in the absence of obesity [23-27]. 
Recent evidence also suggests that polymorphisms in the eNOS gene are 
associated with the susceptibility to insulin resistance and metabolic syndrome in 
humans [28-31]. Cook reported that mice with partial eNOS deficiency (eNOS+/-) 
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exhibit insulin resistance and hypertension only when challenged with a high-fat 
diet [32], suggesting a causative role for genetic variations in the eNOS gene in 
the development of insulin resistance in animal models and humans [27]. 
 
The details of the cause-and-effect relationship between impaired NO availability 
and insulin resistance are also well described in several review articles 
[16,43,48,55,110,111]. 
 
The enzymatic activity of eNOS is post-translationally regulated [33]. The insulin 
signal is transmitted downstream in the phosphatidylinositol 3-kinase (PI3K)-Akt-
eNOS pathway, and activates eNOS through the phosphorylation of serine 1177 
(S1177). Besides insulin, eNOS S1177 is also phosphorylated by Akt and AMP 
kinases activated by multiple mediators including shear stress, vascular 
endothelial growth factor, estrogen, statins, leptin, and adiponectin. Therefore, 
eNOS phosphorylation at S1177 is a crucial step in regulating eNOS activity and 
glucose uptake [34]. The interaction of eNOS with heat shock protein 90 (HSP 
90) and its localization in the caveolae are also important for eNOS 
phosphorylation and activation. High-fat diets and obesity decrease eNOS 
activity by downregulating caveolin-1 [35] and disrupting the interaction of the 
eNOS-Akt complex with HSP 90 [36], thus impairing the assembly of the eNOS 
phosphorylation complex. In obese individuals, FFAs induce TLR4-mediated 
production of inflammatory cytokines and ROS, which inhibit the insulin-
stimulated PI3K-Akt-eNOS pathway and eNOS phosphorylation [37], resulting in 
decreased NO bioavailability and insulin resistance [38-43]. Other mechanisms 
of insulin resistance associated with the phosphorylation of eNOS or IRS1/2 in 
diabetic states have also been reported [6,44,45].  
 
The activity of NOS is also dependent on its proper dimerization (coupling). In 
particular, a reducing cofactor, tetrahydrobiopterin (BH4), is critical for its activity 
[46]. In the case of obesity and diabetic states, the excessive oxidative stress 
leads to a decrease in the level of BH4 and an increase in the level of its oxidized 
form (BH2), which lead to eNOS uncoupling, resulting in the production of more 
superoxide rather than NO [47,48]. Superoxide rapidly reacts with NO to produce 
more potent oxidant peroxynitrite leading to endothelial dysfunction and 
atherosclerosis by oxidizing membrane lipids and low density lipoprotein 
cholesterol (LDL).  
 
Another intriguing system post-translationally regulating eNOS activity is the 
dimethyl arginine dimethyl aminohydrolase (DDAH)/ asymmetric dimethyl 
arginine (ADMA)/NOS pathway [49]. ADMA is an endogenous NOS inhibitor, 
which is causally associated with insulin resistance [50]. Razny et al. 
demonstrated that the transgenic mice overexpressing DDAH, which degrades 
ADMA, increased NO bioavailability and attenuated high-fat diet-induced 
metabolic alterations including insulin resistance [27].  
 
As shown in the Table 1, decreased NO bioavailability leads to a number of 
features of the diabetic state and might be an important molecular mechanism 
underlying the development of insulin resistance [51, 52].   
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Table 1. The cause-and-effect relationship between impaired NO availability and insulin resistance 
 
Subjects/animals Cause Effects References 

Mice eNOS/nNOS knockout increased insulin resistance  [23] 
Mice eNOS knockout insulin resistance, hyperlipidemia, hypertension [24] 
Humans insulin resistance increased expression of endogenous NOS inhibitor (ADMA) [50] 
Mice diabetic mice decreased BH4 and endothelial dysfunction [47] 
Mice eNOS knockout increased cardiovascular risk, mimicking metabolic syndrome [25] 
Humans eNOS polymorphism increased insulin resistance, type 2 diabetes [29] 
Mice partial gene deletion of eNOS insulin resistance and hypertension when challenged with a high-fat 

diet 
[32] 

Humans eNOS polymorphism susceptible to metabolic syndrome [28] 
Humans type 2 DM impaired NOS activity [37] 
Rodent obese rodent model enhanced TNF-α downregulates eNOS expression [22] 
Humans insulin resistance/type 2 DM decreased nNOS protein expression in skeletal muscle [95] 
Mice diet-induce obesity reduced NO availability in isolated heart [105] 
Humans eNOS polymorphism increased susceptibility to metabolic syndrome  [31] 
Humans eNOS polymorphism increased susceptibility to metabolic syndrome  [30] 
Humans obesity in juveniles reduced NO availability [106] 
Mice high fat diet-induced obesity insulin resistance and reduced NO production [60] 
Mice high fat diet-induced obesity reduced NO-cGMP signaling, vascular inflammation and insulin 

resistance  
[65] 

Human obesity/type 2 DM reduced eNOS expression and insulin resistance [107] 
Mice high-fat diet and transgenic mice 

(DDAH overexpressing) 
increased insulin resistance, DDAH (degrades ADMA) increased 
NO availability and decreased insulin resistance  

[26] 

mice high-fat diet/eNOS transgenic mice decreased diet-induced obesity  [61] 
humans obese/decreased insulin sensitivity  reduced eNOS expression in skeletal muscle [108] 
humans insulin resistance decreased NO production [109] 
mice iNOS knockout increased insulin resistance and improved with nitrite 

supplementation  
[104] 
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4. NO PROTECTS AGAINST INSULIN RESISTANCE  
 
As mentioned above, the insulin receptor, which regulates the glucose 
homeostasis of insulin-responsive cells in the liver, muscle and adipose tissue, is 
associated with signaling pathways linked to the activation of eNOS [43,53-57] 
(Fig. 1). This might be a mechanism regulating the postprandial blood flow and 
nutrient disposition to peripheral tissues. Because insulin contributes to the 
coupling of metabolic (glucose uptake) and hemodynamic (endothelial function) 
homeostasis in normal subjects (as shown in Fig. 1), impairments upstream in 
the insulin signaling pathway are always accompanied by metabolic and 
endothelial dysfunction, consequently leading to insulin resistance, hypertension 
and atherosclerosis [43]. Biasucci et al. reported that endothelial dysfunction was 
found to occur in morbidly obese humans only when insulin resistance is present 
[58]. Assar et al. also showed that, unless insulin resistance is present, the 
vascular endothelial function can be preserved [59]. These lines of evidence 
suggest that a reciprocal relationship exists between insulin resistance and 
endothelial dysfunction [55,60]. Therefore, enhancing the bioavailability of NO 
should be a promising treatment strategy for the patients with insulin resistance 
[61]. 
 
Recent evidence suggests that NO plays suppressive roles in the development of 
insulin resistance at various levels, including effects on insulin secretion 
[27,62,63], mitochondrial function [64], modulation of inflammation [65], insulin 
signaling [66], and glucose uptake [27,67]. For example, insulin-stimulated NO 
production has physiological consequences resulting in capillary recruitment and 
increased blood flow in skeletal muscle for efficient glucose disposal [57]. NO 
suppresses the TLR4-mediated inflammation and ROS production by inactivating 
IkB kinase- /nuclear factor- B (IκκB/NF-κβ) [68,69]. Because NF- B is an 

important trigger for the subsequent induction of a number of proinflammatory 
cytokines such as TNF-  and IL-1 , the suppression of this transcription factor 

could reduce metabolic disorders and the complications occurring in diabetics 
[70]. NO has been also shown to inhibit mitochondrial ROS overproduction by the 
S-nitrosation of mitochondrial respiratory chain complex 1 enzyme and to 

improve the efficiency of oxidative phosphorylation in mitochondria [5].  
 
Accumulating evidence has suggested that the defect responsible for insulin 
resistance lies mostly at the post-receptor level of insulin signaling [71] (Fig. 1). 
Many kinases and phosphatases associated with the insulin signaling pathways 
are intricately regulated and balanced by protein phosphorylation/ 
dephosphorylation and nitrosation [17]. Increased adiposity causes an oxidative 
shift in the intracellular redox environment [69], and impairs the early steps of the 
insulin signaling pathway [72]. Wang et al recently indicated that NO mediates S-
nitrosation of protein-tyrosine phosphatase 1B (PTPB1) and enhances the effects 
of insulin [57]. Because PTPB1 dephosphorylates the insulin receptor and its 
substrates, attenuating the effects of insulin, its phosphatase activity tends to be 
suppressed by eNOS-mediated S-nitrosation. In contrast, once the vascular 

eNOS activity is impaired, PTPB1 suppresses the downstream signaling to 
PI3K/Akt, leading to insulin resistance (Fig. 1). Therefore, NO might act as a 
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regulatory factor for the downstream signaling molecules linking GLUT4 
translocation and glucose uptake [66,73]. In addition, Jiang recently reported that 
the NO-dependent nitrosation of GLUT4 facilitates GLUT4 translocation to the 
membrane for glucose uptake and improves insulin resistance [27,74]. 
 

5. EXERCISE ENHANCES THE BIOAVAILABILITY OF NO  
 
Among the three isoforms of NOS, skeletal muscle expresses nNOSμ, an 
alternatively spliced isozyme of nNOS. eNOS is also expressed in skeletal 
muscle, but is mainly associated with the vascular endothelium. iNOS is not 
expressed in healthy skeletal muscle [75]. Many studies using animal models 
and studies in humans have demonstrated that exercise increases the 
expression of both the nNOS and eNOS proteins in skeletal muscle [76-79], but 
nNOS was the primary source of NO in skeletal muscle during contraction in a 
mouse model [80]. Muscle contraction increases the intracellular Ca

2+
 released 

from the sarcoplasmic reticulum and induces nNOS activation by causing the 
post-translational phosphorylation of the nNOS protein and producing NO in 
skeletal muscle during acute exercise [33,81]. In addition, shear stress on the 
vascular endothelium is an important stimulus that regulates the eNOS mRNA 
and protein expression levels in vitro [82-84] and in vivo [85,86].  
 
Exercise training usually increases the heart rate, and enhances the blood flow 
and vascular shear stress [87]. Animal studies have demonstrated that exercise 
training increases the eNOS gene expression and improves the NO-mediated 
endothelial functions (flow-mediated dilatation study) [88,89]. During exercise as 
well as resting, the vascular endothelium senses mechanical stimulation from 
pulsatile and laminar blood flow, which is followed by signal transduction 
involving c-Src-tyrosine kinase and the subsequent activation of NF-κB, which 
then increases eNOS transcription and leads to the long-term stabilization of 
eNOS mRNA [90].  
 
While the exercise-induced up-regulation of constitutive NOS expression is 
favorable for increasing the blood flow and energy efficiency during acute 
exercise in healthy subjects, it is also useful for allowing skeletal muscle to 
increase the bioavailability of NO in obese and insulin resistant subjects. Gomes 
et al. reported that while human subjects with metabolic syndrome exhibited 
lower plasma levels of nitrite and cGMP and increased ROS production 
compared with healthy subjects, a three-month exercise training program 
increased the plasma levels of nitrite and cGMP, and decreased the ROS 
production and plasma levels of an endogenous NOS inhibitor, ADMA [91].  
 
Because skeletal muscle is an important target organ for the activities of insulin, 
enhanced NOS activity might play an important role in improving the glucose 
metabolism [92,93]. Kingwell reported that intra-arterial administration of L-
NMMA, a NOS inhibitor, to type 2 DM and control groups significantly reduced 
the glucose uptake during exercise in both groups, but the type 2 DM groups 
exhibited a greater reliance on NO for glucose uptake during exercise than the 
control group [94].  
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In contrast, Bradley et al. examined the nNOS protein level in the vastus lateralis 
muscles of patients with impaired glucose homeostasis and low levels of muscle 
nNOS, and found that physical exercise improved the insulin sensitivity without 
influencing the nNOS protein levels in the muscle. They proposed that a 
reduction of upstream inflammatory mediators, including iNOS, following exercise 
might be responsible for improving insulin sensitivity in obese and type 2 diabetic 
patients [76,95]. Eghbalzadeh et al. have recently published a review article 
regarding the beneficial effects of physical exercise on the altered NO 
metabolism in the skeletal muscle of obese diabetic patients [76]. Because there 
have been few studies to date that have dealt with the effects of physical 
exercise on NOS-mediated NO metabolism in the skeletal muscle of subjects in 
diabetic states, further studies will be necessary to determine the detailed 
mechanism underlying the impact of exercise on these disorders.  
 

6. NITRATE/NITRITE-RICH DIETS IMPROVE INSULIN RESISTANCE 
BY ENHANCING THE BIOAVAILABILITY OF NO  

 
In addition to the NO produced by NOS, NO and NO-like activities can be also 
endogenously produced through the NOS-independent nitrate-nitrite-NO pathway. 
The mechanism by which nitrate/nitrite is reduced to NO is simple protonation, 
and this is enhanced during hypoxia and acidosis. There are a number of 
catalytic factors in blood and tissues which reduce nitrate/nitrite to NO, but a 
detailed discussion of these is beyond the scope of this review [96]. Contrary to 
the NOS-dependent mechanism, which requires oxygen and substrate arginine, 
the nitrate-nitrite-NO pathway serves as a back-up system to produce NO when 
the NOS function is impaired, as occurs in atherosclerosis with vascular 
endothelial dysfunction [97].  
 
Nitrite and nitrate are rich in green leafy vegetables such as lettuce, spinach and 
beetroot [98]. Vegetables account for 60-80% of the daily nitrate intake in a 
Western diet [99]. One serving of such a vegetable contains more nitrate than 
what is endogenously generated by all three NOS isoforms during a 24-hour 
period in humans [56]. The ingested nitrate is absorbed in the upper 
gastrointestinal tract, and approximately 25% of the absorbed nitrate is 
concentrated in the salivary gland and secreted in saliva, followed by the 
reduction to nitrite by commensal anaerobic bacteria on the tongue [96]. In the 
acidic gastric milieu of stomach, part of this swallowed nitrite is immediately 
protonated to nitrous acid (NO2

-
 +H

+
 →HNO2), then decomposed to form a 

variety of nitrogen oxides such as NO, nitrogen dioxides (NO2), dinitrogen trioxide 
(N2O3) (2HNO2→N2O3+H2O, N2O3→NO+NO2) and S-nitrosothiols (e.g. S-

nitrosoglutathione and S-nitrosocysteine) [96]. Substantial elevations in plasma 
nitrite and the S-nitrosothiols can occur by increasing the dietary nitrate intake 
[100, 101], and can serve as a substrate or a source for NO generation in muscle 
and adipose tissue.  
 
The therapeutic potential of dietary nitrate/nitrite has been supported by recent 
studies describing the improvements in insulin resistance and metabolic 
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syndrome in human and animal experiments by enhancing the NO bioavailability 
in plasma and tissues [51,74,102-104].  
 

7. CONCLUSION  
 
In conclusion, endogenous NO defects underlie the development of insulin 
resistance. Life-style changes, including changes in diet and physical activity, 
might improve the features of insulin resistance and provide an inexpensive and 
easily practicable method to enhance the bioavailability of NO for patients.  
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