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Abstract. The two-component Lotka-Volterra competition-diffusion system

is well accepted as a model describing the invasion of a superior species into a
new habitat. Under a bistable condition, we deal with the system in a domain

of half-lines with a single junction and investigate the condition for the invasion

from some of the half-lines beyond the junction or blocking the propagation of
the superior species. We first give a sufficient condition for the invasion in the

whole domain by a subsolution. Then, making use of sub- and supersolutions,
we construct a standing front solution blocking the propagation if the number

of half-lines occupied by the inferior species is sufficiently larger than that

occupied by the superior species.

1. Introduction. Lotka-Volterra(LV) competition equations are widely accepted
as a model describing the competitive exclusion principle in population dynamics.
The dynamics of the system demonstrate that one of two competing species prevails
over the other except in a weak competitive case. More precisely, parameter regimes
distinguish three cases: Case (i) the stronger species always prevails over the weaker
one, Case (ii) the two species compete strongly and the winner depends on the initial
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condition, and Case (iii) the competition is mild so that the two species coexist.
We mathematically describe these cases for the following Lotka-Volterra equations:

U̇ = U(1− U − k1V ),

V̇ = rV (1− V − k2U),
(1)

where k1, k2 and r are positive parameters. The variables U and V stand for the
density of the competing species. We note that the system is normalized so that
the U equation with k1 = 0 (resp. the V equation with k2 = 0) has the stable
equilibrium U = 1 (resp. V = 1). When k1 < 1 < k2 (resp. k2 < 1 < k1),
there is no positive equilibrium, while non-negative equilibrium E1 := (1, 0) (resp.
E2 := (0, 1)) is asymptotically stable. This implies that the stronger species always
prevails over the weaker one (Case (i)). If k1, k2 > 1, then the system has an
unstable equilibrium

E3 :=

(
k1 − 1

k1k2 − 1
,

k2 − 1

k1k2 − 1

)
,

and E1 and E2 are both asymptotically stable. Thus, in this case, the initial
condition determines to which equilibrium the solution converges (Case (ii)). As
for the case k1, k2 < 1, E3 becomes asymptotically stable and corresponds to the
coexistence of the two species (Case (iii)).

It is also interesting and important to study how a new species invades a habitat
occupied by a native species, and the LV competition system with diffusion has
been employed as a model describing the invasion of the new species. With (1), the
competition-diffusion system reads

∂tU = ∂2
xU + U(1− U − k1V ),

∂tV = d∂2
xV + rV (1− V − k2U),

−∞ < x <∞, t > 0, (2)

where d is a positive constant. Since 0 ≤ U(x, t), V (x, t) ≤ 1 for initial data
0 ≤ U0(x), V0(x) ≤ 1, we consider solutions of (2) in this region.

By using (2), the invasion phenomenon can be discussed by the existence of
traveling front solutions connecting the two equilibria E1 and E2, namely, solutions
of the form (U, V ) = (Φ(x+ ct),Ψ(x+ ct)), where (Φ(z),Ψ(z)) and c satisfy

Φ′′ − cΦ′ + Φ(1− Φ− k1Ψ) = 0,

dΨ′′ − cΨ′ + rΨ(1− k2Φ−Ψ) = 0,
−∞ < z = x+ ct <∞,

(Φ(−∞),Ψ(−∞)) = (0, 1), (Φ(∞),Ψ(∞)) = (1, 0),

(3)

and the prime stands for the derivative with respect to z. The existence of the
traveling front solutions of (2) has been extensively studied by [1], [5], [9], [10], [17],
[19], [20] and references therein (see also related works [2] and [21]).

We note that if the speed c is positive, then U eventually prevails, while V
prevails if c is negative. In other words, the sign of the speed indicates the success
of the invasion. As a matter of fact, in Case (i), the speed is always positive or
negative corresponding to the condition k1 < 1 < k2 or k2 < 1 < k1. On the other
hand, for Case (ii), it is not so simple to identify the sign. Fortunately, the recent
works [4], [13], and [14] provided several parameter regimes in which the speed c is
positive. Throughout the present paper, we engaged stick with Case (ii).

Although the results showing the sign of the speed c are crucial, the circum-
stance of the invasion is idealized, i.e., the domain is the homogenous straight line.
For instance, [16, 11] showed that the LV competition-diffusion system allows a
stable nonconstant equilibrium solution in a multi-dimensional nonconvex bounded
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domain, though the nonexistence of stable nonconstant equilibria in a bounded con-
vex domain is known ([12]). That is, the geometry of the domain could affect the
propagation of the front wave. On the other hand, in the domain of multi-half
lines with a junction, called an unbounded star-graph, the front propagation for the
scalar bistable reaction-diffusion equation was recently investigated in [6] and [7].
Specifically, these works show that, under a suitable condition, blocking takes place
by the emergence of a standing front solution.

In this paper, motivated by [6] and [7], we deal with the system (2) in the
unbounded star-graph defined by

Ω =

(
m⋃
n=1

Ωn

)
∪ {O}, m ≥ 3, (4)

where {Ωn : n = 1, 2, . . . ,m} are a family of disjoint half-lines and these endpoints
are joined at the origin O, that is,

Ωi ∩ Ωj = ∅ (i 6= j), cl(Ωn) \ Ωn = {O} (n = 1, . . . ,m).

In order to handle a function defined in Ω, we use the local coordinate xn in each
Ωn as follows:

Ωn =

{
{−∞ < xn < 0} (1 ≤ n ≤ `),
{0 < xn <∞} (`+ 1 ≤ n ≤ m).

(5)

We distinguish Ωi (1 ≤ i ≤ `) and the remaining half-lines Ωj (` + 1 ≤ j ≤ m) by
setting the condition that in each Ωj (` + 1 ≤ j ≤ m) the front wave comes from
xj ≈ ∞ toward the junction.

For a given function u(x) (x ∈ Ω), we denote the restriction of u on Ωn as

un(xn) = u|Ωn
(xn).

Then Equation (2) on Ω is expressed by m equations on Ωn (1 ≤ n ≤ m) glued at
the junction O as follows:

∂tUn = ∂2
xn
Un + f1(Un, Vn),

∂tVn = d∂2
xn
Vn + f2(Un, Vn),

(xn ∈ Ωn, t > 0), n = 1, . . . ,m, (6)

with

(U1(0, t), V1(0, t)) = (Un(0, t), Vn(0, t)), n = 2, . . . ,m,∑̀
i=1

(∂xi
Ui(−0, t), ∂xi

Vi(−0, t)) =

m∑
j=`+1

(∂xj
Uj(+0, t), ∂xj

Vj(+0, t)),
(7)

where we put

f1(U, V ) := U(1− U − k1V ), f2(U, V ) := rV (1− k2U − V ). (8)

We note that the second condition of (7) implies the conservation of the total
flux at the junction.

Under the condition that (2) has the traveling front solution (U, V ) = (Φ(x +
ct),Ψ(x+ ct)) with speed c > 0, we investigate how the front propagation could be
blocked by the presence of the junction. We briefly state a biological motivation of
our study using Figure 1.

We set a weaker species Vn in Ωn for each n ∈ {1, 2, 3, 4}. The stronger species U
invades in Ω4 from x4 ≈ ∞ and it is expected that (U4, V4) approximately behaves
as (Φ(x + ct),Ψ(x + ct)) (up to phase-shift) as long as the front of (U4, V4) is
sufficiently far from the junction. If U were strong enough, it could invade other
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habitats Ωn (n = 1, 2, 3) of V , and eventually, it would occupy the whole domain
Ω. On the other hand, if the reinforcement of V from Ωn (n = 1, 2, 3) were strong
enough against the invasion of U , the propagation of the front of (U4, V4) would be
blocked.

⌦1
<latexit sha1_base64="7GOKQqdHOVXKOhgvQrjUPgmbh9o="></latexit>

⌦2
<latexit sha1_base64="GCLjCElt84A90Syn+gas/dQ0Z/c="></latexit>

⌦3
<latexit sha1_base64="2YUAkAefRMEn2JkrPgmdranbz4E="></latexit>

⌦4
<latexit sha1_base64="n11ZZdeVLB8DrPeCEn29Q2JZMjM="></latexit>

V2
<latexit sha1_base64="9ZRvd590vPov8aCj4MJXPobGKOw="></latexit>

V3
<latexit sha1_base64="uRf792jzd5NjhRe2LpmhDEgocoo="></latexit>

V4
<latexit sha1_base64="9Z8BCEJtXY5voYCjT3zzu63Zk1w="></latexit>

V1
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1
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<latexit sha1_base64="a+VpO6t2nfFDexEg1PPtgMbx9fE="></latexit>

Figure 1. Occupation of the species U and V in the domain Ω
with m = 4, ` = 3. The vertical line indicates the values of U and
V in the domain.

For the purpose of our study, we first establish the parameter regime for the
existence of the traveling front solutions to (2) with c > 0 in Theorem 2.2 in §2.

Next, we observe that the function (Φ̃(x, t), Ψ̃(x, t)) (x ∈ Ω) defined by

(Φ̃n(xn, t), Ψ̃n(xn, t)) := (Φ(xn + ct),Ψ(xn + ct)) (xn ∈ cl(Ωn)), n = 1, . . . ,m

gives a subsolution to (6)-(7) if ` ≤ m/2. Then, arbitrarily given p, the solution
(U(x, t), V (x, t)) to (6)-(7) satisfying

(Un(xn, 0), Vn(xn, 0)) = (Φ(xn + p),Ψ(xn + p)) (xn ∈ cl(Ωn)), n = 1, . . . ,m

converges to the steady state (U, V ) = (1, 0) uniformly in Ωj (j = `+ 1, . . . ,m) and
locally uniformly in Ωi (i = 1, . . . , `) as t→∞ if ` ≤ m/2.

This implies the success of the invasion of superior species U . Even if ` > m/2,
it is shown in Theorem 3.1 in §3 that this invasion takes place by appropriate k1

and k2. On the other hand, there is a chance to block the invasion by tuning ` and
m for the fixed other parameters. We let µ, µ̃ > 0 be numbers such that

0 < lim
z→−∞

e−µzΦ(z) <∞, 0 < lim
z→−∞

e−µ̃z(1−Ψ(z)) <∞ (9)

hold for the solution (Φ(z),Ψ(z)) of (3) with c > 0.

Theorem 1.1. In addition to the parameter conditions for the existence of the
traveling solution (Φ(x+ ct),Ψ(x+ ct)) with c > 0, assume (d− 1)µ2 + k1 − 1 > 0,
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where µ is as in (9). Then there is ρ∗∈ (0, 1) such that (6)-(7) have a positive
stationary solution (U∗(x), V ∗(x)) (x ∈ Ω) satisfying

lim
xi→−∞

(U∗i (xi), V
∗
i (xi)) = (0, 1), lim

xj→∞
(U∗j (xj), V

∗
i (xj)) = (1, 0),

if (m− `)/` ≤ ρ∗ holds.

The proof of the theorem is carried out in §4 by employing an appropriate time-
independent subsolution and supersolution. The idea found in [11] was very useful
for the construction of the subsolution.

Regarding the result of Theorem 1.1, although the existence of standing front
solutions to the scalar reaction-diffusion equation in Ω is shown in [6] and [7], their
argument does not work in the LV system. Indeed, as for the scalar case, since the
stationary problem has a 2-dimensional Hamiltonian structure, the authors used
a phase-plane analysis effectively in finding the stationary solution. On the other
hand, we needed to construct the sub- and supersolutions based on the maximal
principle. As a consequence, the condition to guarantee the existence of the solution
is not as simple as the one in [6] or [7].

We can also expect the existence of a front-like entire solution as in [6] and [7],
which behaves as the profile (Φ,Ψ) in Ωj (`+1 ≤ j ≤ m) as t ≈ −∞. However, there
are difficulties involved in constructing a suitable subsolution, and this therefore
remains for future study.

We organize the rest of the paper as follows: in the next section, Theorem 2.2
gives a sufficient condition for the positive speed, c > 0, of the traveling front
solution to (2). In §3, we discuss the condition under which fronts can pass through
the junction. In addition to the case in which the number, `, of the branches
occupied by the inferior species is smaller than or equal to m/2, we show for any
` > m/2 that the superior species can penetrate the junction by adapting the
parameter k1 close 1 in Theorem 3.1. In the final section, we show the existence
of a standing front. Using suitable sub- and supersolutions, we obtain a standing
front solution if ` is large enough. The main result is stated in Theorem 4.7.

2. Speed of traveling front solutions. In this section we give a sufficient condi-
tion under that the traveling wave solution (Φ(x+ ct),Ψ(x+ ct)) of (2) has positive
speed c. Although several such conditions have been obtained in [4, 13, 14], we take
a different approach here for our later purpose.

By introducing the new variables u = U, v = 1−V , the system (2) is transformed
into the cooperative system

∂tu = ∂2
xu+ f(u, v),

∂tv = d∂2
xv + g(u, v),

−∞ < x <∞, t > 0, (10)

where we put

f(u, v) := u(1− u− k1(1− v)), g(u, v) := r(1− v)(k2u− v). (11)

This system has the monotone traveling wave solution (u, v) = (φ(x + ct), ψ(x +
ct)), z = x+ ct, enjoying

φ′′ − cφ′ + f(φ, ψ) = 0,

dψ′′ − cψ′ + g(φ, ψ) = 0,
−∞ < z <∞, (12)

with
(φ(−∞), ψ(−∞)) = (0, 0), (φ(∞), ψ(∞)) = (1, 1), (13)
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where the prime stands for the derivative with respect to z.
Let

X = {h ∈ C2(R) | h′(z) > 0 (z ∈ R), h(−∞) = 0, h(∞) = 1}.
For a pair (φ, ψ) ∈ X ×X, we define

I[φ, ψ](z) :=
φ′′(z) + f(φ(z), ψ(z))

φ′(z)
, (14)

J [φ, ψ](z) :=
dψ′′(z) + g(φ(z), ψ(z))

ψ′(z)
, (15)

where f and g are as in (11).

Lemma 2.1. If there exists a pair (φ, ψ) ∈ X ×X satisfying

s1 := inf
z∈R

I[φ, ψ](z) > 0, s2 := inf
z∈R

J [φ, ψ](z) > 0, (16)

then the monotone solution (φ(z), ψ(z)) of (12) with (13) has c > 0.

Proof. Set c = min{s1, s2} > 0. Then, (φ, ψ) satisfies

φ′′ − cφ′ + f(φ, ψ) ≥ 0, dψ′′ − cψ′ + g(φ, ψ) ≥ 0.

Hence, (φ(x + ct), ψ(x + ct)) is a subsolution of (10) with a monotone increasing
profile connecting (0, 0) and (1, 1). Applying a comparison argument ([13, Theorem
3.2]), we obtain c ≥ c > 0.

Using the above lemma, we give a sufficient condition for c > 0.

Theorem 2.2. The speed c is positive if

1 < k1 < 2, k2 > max

{
5

3
, 2− 2d

r
, 1 +

4d

r
(k1 − 1)

}
. (17)

Proof. By Lemma 2.1 it suffices to find (φ, ψ) ∈ X ×X satisfying s1, s2 > 0 under
(17), where s1 and s2 are the constants defined in (16).

Let ς(z) = (1 + e−az)−1 be a sigmoid function with parameter a > 0. Then, we
easily verify

ς ∈ X and ς ′ = aς(1− ς).
We take (φ, ψ) = (ς, 2ς − ς2) ∈ X ×X. By simple calculation we have

I[φ, ψ](z) = a(1− 2ς(z)) +
1

a
(1− k1 + k1ς(z)) =: F (ς(z)),

J [φ, ψ](z) = da(1− 3ς(z)) +
r

2a
(k2 − 2 + ς(z)) =: G(ς(z)).

Since F and G are linear in ς,

s1 = min{F (0), F (1)} = min

{
a− 1

a
(k1 − 1),−a+

1

a

}
,

s2 = min{G(0), G(1)} = min
{
da+

r

2a
(k2 − 2),−2da+

r

2a
(k2 − 1)

}
.

Since
4d

r
(k1 − 1) < k2 − 1, 2− k2 <

2d

r
,

by (17), we can take a > 0 such that

max
{
k1 − 1,

r

2d
(2− k2)

}
< a2 < min

{
1,

r

4d
(k2 − 1)

}
.
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Thus, in view of

1

a
(k1 − 1) < a <

1

a
,

r

2a
(2− k2) < da <

r

4a
(k2 − 1),

we obtain s1 > 0 and s2 > 0.

Remark 1. We compare our condition (17) with the one found in the previous
work [13]. Condition (17) is equivalent to

1 < k1 < 2, k2 >
5

3
,

2− k2

2
<
d

r
<

k2 − 1

4(k1 − 1)
. (18)

Applying the formula (see (6.6) in [13])

c(d, r, k1, k2) = −
√
drc(1/d, 1/r, k2, k1), (19)

for the speed c = c(d, r, k1, k2) in (3) (or equivalently (12)) to (18) yields that the
speed c is negative if

k1 >
5

3
, 1 < k2 < 2,

2− k1

2
<
r

d
<

k1 − 1

4(k2 − 1)
. (20)

Since (2−k1)/2 < (k1− 1)/4 for k1 > 5/3, (20) improves the condition for negative
wave speed in [13, Theorem 4.4].

Remark 2. As for a symmetric competition case where k1 = k2(=: k > 1) and
r = 1, the readers can refer to a nice survey [3] on the sign of the wave speed. In
view of (20), we see that ck,d := c(d, 1, k, k) is negative if

5

3
< k < 2, 4 < d <

2

2− k
. (21)

This extends the known result stated in [3] and enlarges the shaded areas of Figure
2 therein.

Remark 3. If both I[φ, ψ] and J [φ, ψ] are independent of z and if s1 = s2, then
(φ(x + ct), ψ(x + ct)) with c = s1 becomes a monotone traveling wave solution of
(10). For example, under the condition (17), if

k1 =
r

3d
> 1, k2 =

5

3
+

2

r
− 1

3d
>

5

3
, (22)

then we can take a =
√
k1/2 such that (φ(x+ct), ψ(x+ct)) with (φ, ψ) = (ς, 2ς−ς2)

is the monotone traveling wave solution of (10) with speed

c =
2− k1√

2k1

.

Therefore, the original competition-diffusion system (2) has a traveling wave solu-
tion (Φ(x+ ct),Ψ(x+ ct)) with Φ = φ, Ψ = 1−ψ. This traveling wave is essentially
the same as one of the exact solutions obtained by Rodrigo and Mimura [20]. The
above argument gives an alternative proof for the existence of such an exact solution.
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3. Conditions for passing through the junction. In this section we give some
sufficient conditions for successful invasion of the superior species beyond the junc-
tion O. Roughly speaking, if `, the number of branches occupied by the inferior
species, is not so large, the superior species can pass through the junction and
eventually occupy the whole domain Ω.

We deal with Equation (10) on Ω defined by (5) as

∂tun = ∂2
xn
un + f(un, vn),

∂tvn = d∂2
xn
vn + g(un, vn),

on Ωn × (t0, t1), n = 1, 2, . . . ,m, (23)

with

(u1(0, t), v1(0, t)) = (un(0, t), vn(0, t)) (n = 2, 3, . . .m),∑̀
i=1

(∂xi
ui(−0, t), ∂xi

vi(−0, t)) =

m∑
j=`+1

(∂xj
uj(+0, t), ∂xj

vj(+0, t)).
(24)

If (u(x, t), v(x, t))) in Ω satisfies

∂tun ≤ ∂2
xn
un + f(un, vn),

∂tvn ≤ d∂2
xn
vn + g(un, vn),

on Ωn × (t0, t1), n = 1, 2, . . . ,m, (25)

with

(u1(0, t), v1(0, t)) = (un(0, t), vn(0, t)) (n = 2, 3, . . . ,m),∑̀
i=1

(∂xi
ui(−0, t), ∂xi

vi(−0, t)) ≤
m∑

j=`+1

(∂xj
uj(+0, t), ∂xj

vj(+0, t)),
(26)

for t ∈ (t0, t1), then (u(x, t), v(x, t)) is a subsolution of (23) with (24) in Ω× (t0, t1).
On the other hand, if the inequalities in (25) and (26) are reverse, then it is a
supersolution.

Suppose the condition (17) in Theorem 2.2 and let (φ(x+ ct), ψ(x+ ct)) be the
monotone traveling wave solution of (10) connecting (0, 0) and (1, 1) with positive
speed c. In order to show that the superior species can pass through the junction
O, we will construct a subsolution (u(x, t), v(x, t)) in Ω× R satisfying

lim
t→−∞

(u(x, t), v(x, t)) = (0, 0), lim
t→∞

(u(x, t), v(x, t)) = (1, 1)

and

lim
xi→−∞

(ui(xi, t), vi(xi, t)) = (0, 0), i = 1, . . . , `,

lim
xj→∞

(uj(xj , t), vj(xj , t)) = (1, 1), j = `+ 1, . . . ,m.

This subsolution serves to sweep out the inferior species as t→∞.
First we consider the case where ` ≤ m− `, namely, ` ≤ m/2. We define

(un(x, t), vn(x, t)) = (φ(x+ ct), ψ(x+ ct)) on Ωn × R, n = 1, 2, . . . ,m.

Then we easily see that (u(x, t), v(x, t)) = (un(x, t), vn(x, t)) on Ωn × R (n =
1, . . . ,m) becomes a subsolution of (23)-(24) in Ω × R. Since c > 0, (u, v) passes
through the junction O with constant speed c. This means that when ` ≤ m/2, the
superior species U can invade the branches occupied by the inferior one V (= 1−v)
beyond the junction and that the inferior species will be swept out.
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Next we consider the case where ` > m/2. In other words, the inferior species
initially occupies more branches than that the superior species does. Set

α :=
m− `
`
∈ (0, 1). (27)

As in the proof of Therorem 2.2, (φ, ψ) = (ς, 2ς − ς2) with ς(z) = (1 + e−az)−1

satisfies
φ′′ − s1φ

′ + f(φ, ψ) ≥ 0,

dψ′′ − s2ψ
′ + g(φ, ψ) ≥ 0,

φ′ > 0, ψ′ > 0,

−∞ < z <∞, (28)

and
(φ(−∞), ψ(−∞)) = (0, 0), (φ(∞), ψ(∞)) = (1, 1), (29)

with

s1 = min

{
a− 1

a
(k1 − 1),−a+

1

a

}
,

s2 = min
{
da+

r

2a
(k2 − 2),−2da+

r

2a
(k2 − 1)

}
.

Under the condition (17), we can find a > 0 such that c := min{s1, s2} is positive.
Assume (27) and define a pair of functions (un, vn) on Ωn×R (n = 1, . . . ,m) by

(un(x, t), vn(x, t)) =

{
(φ(αx+ st), ψ(αx+ st)), n = 1, 2, . . . , `,

(φ(x+ st), ψ(x+ st)), n = `+ 1, . . . ,m.
(30)

Then (un, vn) (n = 1, . . . ,m) satisfy (26). The following proposition gives a suffi-
cient condition for penetration of the front through the junction O.

Proposition 1. If

sup
−∞<z<∞

φ′′(z)

φ′(z)
<

s1

1− α2
, sup
−∞<z<∞

ψ′′(z)

ψ′(z)
<

s2

d(1− α2)
, (31)

then there exists some s ∈ (0, c) such that (u(x, t), v(x, t)) = (un(x, t), vn(x, t)) on
Ωn × R (n = 1, . . . ,m) becomes a subsolution of (23)-(24).

Proof. If s < c, then (25) with (t0, t1) = (−∞,∞) holds for n = ` + 1, . . . ,m. For
n = 1 . . . , `, we set

In := ∂tun − ∂2
xn
un − f(un, vn), Jn := ∂tvn − d∂2

xn
vn − g(un, vn).

By (28),

In = sφ′(z)− α2φ′′(z)− f(φ(z), ψ(z))

≤ (1− α2)φ′′(z)− (s1 − s)φ′(z) = φ′(z)
{

(1− α2)φ′′(z)/φ′(z)− (s1 − s)
}
,

where z = αx+ st. Therefore, if

b1 := (1− α2) sup
−∞<z<∞

φ′′(z)

φ′(z)
< s1,

then In < 0 for s ∈ (0, s1 − b1). Similarly, if

(1− α2) sup
−∞<z<∞

dψ′′(z)

ψ′(z)
< s2,

then Jn < 0 for some s ∈ (0, c). Thus (u, v) satisfies (25) and (26) with (t0, t1) =
(−∞,∞).
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The above proposition yields that if (31) is satisfied, then the propagation of the
subsolution (u, v) of the form (30) cannot be blocked by the junction O and once
the fronts pass through the junction, the propagation speed will recover.

In the rest of this section we seek for a condition that allows a subsolution (u, v)
of the form (30), where (φ, ψ) satisfies (31) in addition to (28) and (29). Suppose
that the condition (17) in Theorem 2.2 is fulfilled. Assume further

k2 ≥ max

{
2− 2d

r
(k1 − 1), 1 +

d

r
(k1 + 2)

}
, (32)

then taking a =
√
k1/2, we obtain s1 = (2− k1)/

√
2k1 ≤ s2/d. In view of

φ′′/φ′ = a(1− 2ς), ψ′′/ψ′ = a(1− 3ς),

the condition (31) is fulfilled if

1− α2 < min
{s1

a
,
s2

da

}
=
s1

a
=

2− k1

k1
, i.e., k1 <

2

2− α2
.

This condition is met by (17).
In summary, we obtain the following:

Theorem 3.1. Suppose ` > m/2 and set α = (m− `)/` ∈ (0, 1). Then, if

1 < k1 < 2, k2 ≥ max

{
2− 2d

r
(k1 − 1), 1 +

d

r
(k1 + 2)

}
, (33)

and √
2(k1 − 1)

k1
< α < 1, (34)

then there exists some s > 0 such that with

(φ, ψ) = (ς, 2ς − ς2), ς(z) = (1 + e−az)−1, a =
√
k1/2,

(u, v) = (un, vn) on Ωn×R (n = 1, . . . ,m) defined by (30) is a subsolution of (23)-
(24) and the solution (u(x, t), v(x, t)) enjoying (u(·, t0), v(·, t0)) ≥ (u(·, t0), v(·, t0))
for given t0 converges to (1, 1) uniformly in Ωj (`+1 ≤ j ≤ m) and locally uniformly
in Ωi (1 ≤ i ≤ `).

Proof. It suffices to show that (33) implies the condition (17). It is obvious that

2− 2d

r
(k1 − 1) > 2− 2d

r
, 1 +

d

r
(k1 + 2) > 1 +

4d

r
(k1 − 1)

hold for 1 < k1 < 2. Furthermore, for 1 < k1 < 2, we have

2− 2d

r
(k1 − 1) >

5

3
if
d

r
<

1

6
,

max

{
2− 2d

r
(k1 − 1), 1 +

d

r
(k1 + 2)

}
≥ 4

3
+

2d

r
≥ 5

3
if
d

r
≥ 1

6
.

Thus (17) holds if (33) is fulfilled.

Remark 4. As in Remark 3, if (22) is satisfied, then the traveling wave solution
(φ(x+ ct), ψ(x+ ct)) of (10) is written in the following form:

(φ, ψ) = (ς, 2ς − ς2), ς = (1 + e−az)−1, a =

√
k1

2
, c =

2− k1√
2k1

.
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Note that (φ, ψ) satisfies (28) with s1 = s2 = c. In view of

φ′′/φ′ = a(1− 2ς), ψ′′/ψ′ = a(1− 3ς),

the condition (31) is fulfilled if

1− α2 < min
{ c
a
,
c

da

}
= min

{
1,

1

d

}
2− k1

k1
,

namely,

1 < k1 <
2

1 + (1− α2) max{1, d}
.

However, this condition is included in (34) and does not hold for large d > 1.

4. Blocking of the propagation. As seen in the previous section, if ` is small
enough, the superior species U (= u) eventually occupies the whole domain while
V (= 1 − v) be swept out. However, if the inferior species V occupies in a larger
number of the branches of Ω i.e., ` � m − `, it would have a chance to survive.
In order to verify it, we investigate the condition for the existence of the standing
front of (23)-(24) in Ω.

We aim to prove the existence of a positive solution to the following stationary
problem of (23)-(24):

∂2
xn
un + f(un, vn) = 0,

d∂2
xn
vn + g(un, vn) = 0,

on Ωn, n = 1, 2, . . . ,m, (35)

with
(u1(0), v1(0)) = (un(0), vn(0)) (n = 2, 3, . . .m),∑̀
i=1

(∂xi
ui(−0), ∂xi

vi(−0)) =

m∑
j=`+1

(∂xj
uj(+0), ∂xj

vj(+0)).
(36)

We let (u∗, v∗) be the unstable constant equilibrium of the system, namely,

(u∗, v∗) =

(
k1 − 1

k1k2 − 1
,
k2(k1 − 1)

k1k2 − 1

)
, (37)

satisfying
f(u∗, v∗) = g(u∗, v∗) = 0.

Consider the problem{
F1(u, v) := uxx + f(u, v) = 0,

F2(u, v) := dvxx + g(u, v) = 0,
−∞ < x < 0, (38)

with

(u(−∞), v(−∞)) = (0, 0),

(u(0), v(0)) = (uδ, vδ) :=

(
k1 − 1− δ

k1(k2 + δ)− 1
,

(k2 + δ)(k1 − 1− δ)
k1(k2 + δ)− 1

)
,

(39)

where

k1 − 1 > δ > 0 (40)

is assumed. We note that
uδ < u∗, vδ < v∗.

We define
(Y 1(x), Z1(x)) := (uδ, vδ)e

µsx (41)
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for µs > 0. Then we have

Lemma 4.1. As for (Y 1(x), Z1(x)) defined in (41),

F1(Y 1, Z1) < 0, F2(Y 1, Z1) < 0 (−∞ < x < 0)

hold if

µs ≤ min

{
1,

(
r(1− vδ)
d(k2 + δ)

)1/2
}
δ1/2.

Proof. We compute

F1(Y 1, Z1) = uδe
µsx[µ2

s − (k1 − 1) + (k1vδ − uδ)eµsx]

= uδe
µsx[µ2

s − (k1 − 1) + (k1 − 1− δ)eµsx]

< uδe
µsx(µ2

s − δ) ≤ 0 (−∞ < x < 0),

if µs ≤ δ1/2. On the other hand,

F2(Y 1, Z1) = eµsx[dvδµ
2
s + r(1− vδeµsx)(k2uδ − vδ)]

= eµsx[dvδµ
2
s − rδuδ(1− vδeµsx)]

< eµsx[dµ2
svδ − rδuδ(1− vδ)] ≤ 0 (−∞ < x < 0),

if

µs ≤
(
rδuδ(1− vδ)

dvδ

)1/2

=

(
rδ(1− vδ)
d(k2 + δ)

)1/2

,

where we used vδ = (k2 + δ)uδ. This leads to the assertion of the lemma.

Next consider the problem{
F1(u, v) = uxx + f(u, v) = 0,

F2(u, v) = dvxx + g(u, v) = 0,
0 < x <∞, (42)

with

(u(0), v(0)) = (uδ, vδ), (u(∞), v(∞)) = (1, 1). (43)

We define

(Y 2(x), Z2(x)) := (1− (1− uδ)e−λsx, 1− (1− vδ)e−λsx), (44)

for λs > 0. Then we have the following lemma:

Lemma 4.2. As for (Y 2(x), Z2(x)), defined in (44),

F1(Y 2, Z2) < 0, F2(Y 2, Z2) < 0 (0 < x <∞),

for λs ≥
√
r(k2 − 1)/d.

Proof. By simple calculation, we obtain

F1(Y 2, Z2) = e−λsx
[
−λ2

s(1− uδ) + {1− (1− uδ)e−λsx}{1− uδ − k1(1− vδ)}
]

= e−λsx
[
−λ2

s(1− uδ)− δ{1− (1− uδ)e−λsx}
]
,

F2(Y 2, Z2) = e−λsx(1− vδ)
[
−dλ2

s + r(k2 − 1)− r{k2(1− uδ)− (1− vδ)}e−λsx
]

= e−λsx(1− vδ)
[
−dλ2

s + r(k2 − 1)− r(k2 − 1 + δuδ)e
−λsx

]
< e−λsx(1− vδ)

[
−dλ2

s + r(k2 − 1)
]

(0 < x <∞).

Hence, F1(Y 2, Z2) < 0 and F2(Y 2, Z2) < 0 for x > 0 if λs ≥
√
r(k2 − 1)/d.
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We let

µs = min

{
1,

(
r(1− vδ)
d(k2 + δ)

)1/2
}
δ1/2, λs =

(
r(k2 − 1)

d

)1/2

, (45)

for δ ∈ (0, k1 − 1). In view of

(Y 1
′
(0), Z1

′
(0)) = µs(uδ, vδ),

(Y 2
′
(0), Z2

′
(0)) = λs(1− uδ, 1− vδ),

we see that (u, v) defined by

(ui, vi) := (Y 1, Z1) in Ωi (1 ≤ i ≤ `),
(uj , vj) := (Y 2, Z2) in Ωj (`+ 1 ≤ j ≤ m)

(46)

provides a supersolution to (35) with (36) if

`µsuδ ≥ (m− `)λs(1− uδ), `µsvδ ≥ (m− `)λs(1− vδ). (47)

The latter inequality reads

`µsuδ ≥ (m− `)λs(1/(k2 + δ)− uδ).

Hence, the conditions of (47) reduce to

m− `
`
≤ µs
λs

(
uδ

1− uδ

)
. (48)

We can fix the value of the right-hand side of (48), for instance, by taking δ =
(k1 − 1)/3. In the consequence we have

Lemma 4.3. Define (uδ, vδ) as in (37). Let µs and λs be the numbers defined in
(45). Set δ = (k1 − 1)/3. Then there is a constant ρ∗ ∈ (0, 1) such that if the
positive integers m and ` satisfy α = (m− `)/` ≤ ρ∗, then (u, v) defined by (46) is
a supersolution to (35) with (36).

We remark that the condition α ≤ ρ∗ can be realized as follows: Put ` = m−n1

and fix n1. Then α = n1/(m − n1) implies that sufficiently large m, namely `,
enjoys the condition.

Before discussing the existence of a subsolution, we state some properties of the
monotone traveling solution (φ(x + ct), ψ(x + ct)) satisfying (12)-(13). See [18,
Lemma 2.2] for details.

Lemma 4.4. Let µ and λ be positive solutions of µ2 − cµ − (k1 − 1) = 0 and
dλ2 − cλ− r = 0, respectively.

(i) If µ > λ, then for some A1, A2 > 0,(
φ(z)
φ′(z)

)
= A1e

µz(1 + o(1))

(
1
µ

)
,

(
ψ(z)
ψ′(z)

)
= A2e

λz(1 + o(1))

(
1
λ

)
hold as z → −∞.

(ii) If µ < λ, then for some A > 0,(
φ(z)
φ′(z)

)
= Aeµz(1 + o(1))

(
1
µ

)
,

(
ψ(z)
ψ′(z)

)
= −Aseµz(1 + o(1))

(
1
µ

)
hold as z → −∞, where s = rk2/(dµ

2 − cµ− r) < 0.
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(iii) If µ = λ, then for some A > 0,(
φ(z)
φ′(z)

)
= Aτeµz(1 + o(1))

(
1
µ

)
,

(
ψ(z)
ψ′(z)

)
= −Azeµz(1 + o(1))

(
1
µ

)
hold as z → −∞, where τ = (2dµ− c)/(rk2) > 0.

By Lemma 4.4, there exist positive constants M0 and z0 satisfying

φ(z)

φ′(z)
,
ψ(z)

ψ′(z)
≤M0 (z ≤ −z0). (49)

Set

η :=
√

2M0/c. (50)

Then we can take M1, z1 > 0 such that

φ(z + η)

φ(z)
≤M1 (z ≤ −z1). (51)

For later purpose, we investigate the behavior of 1 − k2φ(z)/ψ(z) as z → −∞. If
µ ≥ λ, then Lemma 4.4 (i) and (iii) imply that

1− k2
φ(z)

ψ(z)
→ 1 (z → −∞).

On the other hand, if µ < λ, then by Lemma 4.4 (ii),

1− k2
φ(z)

ψ(z)
→ 1 +

k2

s
=
µ(dµ− c)

r
(z → −∞).

Therefore, if we further assume dµ > c, or equivalently,

(d− 1)µ2 + k1 − 1 > 0, (52)

the above limit is positive. Consequently, under the assumption (52), we have

1− k2φ(z)/ψ(z) > 0 (z ≤ −z2), (53)

for some z2 > 0. We remark that (52) is true for d ≥ 1.
Define

Y (x) :=

{
φ(x+ p) (η ≤ x <∞),

φ(x+ p)− b(x/η)φ(p) (0 ≤ x ≤ η),

Z(x) :=

{
ψ(x+ p) (η ≤ x <∞),

ψ(x+ p)− b(x/η)ψ(p) (0 ≤ x ≤ η),

(54)

where

b(y) := (y − 1)2, (55)

η > 0 is defined in (50) and p < 0 are taken later so that (Y (x), Z(x)) becomes
a subsolution. We easily verify that Y (x) and Z(x) are positive, increasing and of
class C1 in x ∈ (0,∞), in addition, continuous on [0,∞) with Y (0) = Z(0) = 0.

Lemma 4.5. Let (φ, ψ) be the traveling front solution stated in §2. Assume (52)
and set η as in (50). Then, there is a constant pm < 0 such that Y (x) and Z(x) of
(54) with p ≤ pm satisfy

F1(Y , Z) > 0, F2(Y , Z) > 0 (x > 0, x 6= η).
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Proof. We easily see from (54) that

F1(Y , Z)(x) = cφ′(x+ p) > 0, F2(Y , Z)(x) = cψ′(x+ p) > 0 (η ≤ x <∞).

We will verify the inequalities for 0 < x < η. We abbreviate to write b instead
of b(x/η) below if there is no confusion. Let 0 < x < η. We compute

F1(Y , Z)(x)

= φ′′(x+ p)− (2/η2)φ(p) + f(φ(x+ p)− bφ(p), ψ(x+ p)− bψ(p))

= cφ′(x+ p)− (2/η2)φ(p)− f(φ(x+ p), ψ(x+ p))

+ f(φ(x+ p)− bφ(p), ψ(x+ p)− bψ(p))

= cφ′(x+ p)− (2/η2)φ(p) + (k1 − 1)bφ(p) + 2φ(x+ p)bφ(p)

− k1ψ(x+ p)bφ(p)− k1φ(x+ p)bψ(p)− b2(φ(p))2 + k1b
2φ(p)ψ(p)

> φ′(x+ p)[c− (2/η2)φ(x+ p)/φ′(x+ p)]

+ bφ(p)[k1 − 1− k1ψ(x+ p)− k1φ(x+ p)ψ(p)/φ(p)− bφ(p)].

Take p1 < 0 so that

η + p1 < −z0, p1 < −z1, k1{ψ(η + p1) +M1ψ(p1)}+ bφ(p1) < k1 − 1

hold, where z0 and z1, M1 are as in (49) and (51), respectively. Then for p ≤ p1 we
have

F1(Y , Z)(x) > 0 (0 ≤ x ≤ η).

Next we compute F2(Y , Z) as follows:

F2(Y , Z)(x)

= dψ′′(x+ p)− (2/η2)ψ(p) + g(φ(x+ p)− bφ(p), ψ(x+ p)− bψ(p))

= cψ′(x+ p)− (2/η2)ψ(p)− g(φ(x+ p), ψ(x+ p))

+ g(φ(x+ p)− bφ(p), ψ(x+ p)− bψ(p))

= cψ′(x+ p)− (2/η2)ψ(p)− rk2bφ(p) + rbψ(p) + rk2ψ(x+ p)bφ(p)

+ rk2φ(x+ p)bψ(p)− 2rψ(x+ p)bψ(p)− rk2b
2φ(p)ψ(p) + rb2(ψ(p))2

> ψ′(x+ p)[c− (2/η2)ψ(x+ p)/ψ′(x+ p)]

+ rbψ(p)[1− k2φ(p)/ψ(p)− 2ψ(x+ p)− k2bφ(p)].

In view of (53), we can take p2 ≤ p1 such that

1− k2
φ(p2)

ψ(p2)
− 2ψ(η + p2)− k2φ(p2) > 0. (56)

Then for p ≤ p2

F2(Y , Z)(x) > 0 (0 < x < η)

holds.
Consequently, taking pm = p2, we obtain the desired assertion of the lemma.

Define (u, v) on Ω by

(ui, vi) := (0, 0) in Ωi (1 ≤ i ≤ `),
(uj , vj) := (Y , Z) in Ωj (`+ 1 ≤ j ≤ m).

(57)

The following lemma is a corollary to Lemma 4.5:
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Lemma 4.6. Assume (52). Then (u, v) defined by (57) is a subsolution to (35)
with (36).

Proof. It is obvious that (u, v) is continuous in Ω and

F1(un, vn) ≥ 0, F2(un, vn) ≥ 0 on Ωn (n = 1, . . . ,m).

Furthermore, considering

Y ′(+0) = φ′(p) +
2

η
φ(p) > 0, Z ′(+0) = ψ′(p) +

2

η
ψ(p) > 0,

we find that∑̀
i=1

(∂xi
ui(−0), ∂xi

vi(−0)) = 0 <

m∑
j=`+1

(∂xj
uj(+0), ∂xj

vj(+0)).

This completes the proof of Lemma 4.6.

Combining Lemmas 4.3 and 4.6, we obtain

Theorem 4.7. Suppose the same assumptions in Lemmas 4.3 and 4.6. Then there
is a positive solution (ũ(x), ṽ(x)) to (35) with (36) satisfying

(ũ(−∞), ṽ(−∞)) = (0, 0) and (ũ(∞), ṽ(∞)) = (1, 1).

Proof. In terms of the super and subsolutions obtained in Lemmas 4.3 and 4.6 we
apply the standard maximum principle for the order-preserving flow to obtain the
assertion. The details is left to the readers (see [15]).

Proof of Theorem 1.1. The assertion immediately follows from Theorem 4.7 for
(U∗(x), V ∗(x)) := (ũ(x), 1− ṽ(x)).
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REFERENCES

[1] C. Conley and R. Gardner, An application of the generalized Morse index to travelling wave

solutions of a competitive reaction-diffusion model, Indiana Univ. Math. J., 33 (1984), 319–
343.

[2] R. Gardner, Existence and stability of travelling wave solutions of competition models: A

degree theoretic approach, J. Differential Equations, 44 (1982), 343–364.

[3] L. Girardin, The effect of random dispersal on competitive exclusion - A review, Math. Biosci.,
318 (2019), 108271.

[4] J.-S. Guo and Y.-C. Lin, The sign of the wave speed for the Lotka-Volterra competition-
diffusion system, Commun. Pure Appl. Anal., 12 (2013), 2083–2090.

[5] Y. Hosono, Singular perturbation analysis of travelling waves for diffusive Lotka-Volterra

competition models, Numerical and Applied Mathematics Part II, Baltzer, Montréal, (1989),
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