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ABSTRACT 

 

Galactoseβ1-4Fucose (GalFuc) is a unique disaccharide found in invertebrates including 

nematodes. A fungal galectin CGL2 suppresses nematode development by recognizing the 

galactoseβ1-4fucose epitope. The Caenorhabditis elegans galectin LEC-6 recognizes it as an 

endogenous ligand and the Glu67 residue of LEC-6 is responsible for this interaction. We 

found that mammalian galectin-2 (Gal-2) also has a comparable glutamate residue, Glu52. In 

the present study, we investigated the potential nematode-suppressing activity of Gal-2 using 

C. elegans as a model and focusing on Gal-2 binding to the GalFuc epitope. Gal-2 suppressed 

C. elegans development whereas its E52D mutant (Glu52 substituted by Asp), galectin-1, and 

galectin-3 had little effect on C. elegans growth. Lectin-staining using fluorescently-labeled 

Gal-2 revealed that, like CGL2, it specifically binds to the C. elegans intestine. Natural C. 

elegans glycoconjugates were specifically bound by immobilized Gal-2. Western blotting 

with anti-GalFuc antibody showed that the bound glycoconjugates had the GalFuc epitope. 

Frontal affinity chromatography with pyridylamine-labeled C. elegans N-glycans disclosed 

that Gal-2 (but not its E52D mutant) recognizes the GalFuc epitope. Gal-2 also binds to the 

GalFuc-bearing glycoconjugates of Ascaris and the GalFuc epitope is present in the parasitic 

nematodes Nippostrongylus brasiliensis and Brugia pahangi. These results indicate that Gal-

2 suppresses C. elegans development by binding to its GalFuc epitope. The findings also 
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imply that Gal-2 may prevent infestations of various parasitic nematodes bearing the GalFuc 

epitope.  
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INTRODUCTION 

 

Neglected tropical diseases (NTDs) are a group of infectious diseases and their occurrence is 

associated with tropical and subtropical poverty. Lymphatic filariasis and soil-transmitted 

helminthiases are caused by parasitic nematodes and are considered NTDs. The disability-

adjusted life-years of these infestations are 2,780,000 and 5,190,000, respectively (Molyneux 

et al. 2017). Therefore, additional NTD control tools, such as drugs, vaccines, diagnostics, 

and vector control agents are required (Lustigman et al. 2016; Molyneux et al. 2017). To 

develop these tools, however, a deeper understanding of host-pathogen interactions is 

required, especially from a glycobiological perspective. 

Glycan structure varies substantially among species. Even simple organisms such as 

nematodes have complex signature glycans (Cummings 2009; Schiller et al. 2012). The 

glycans may have important roles in host-parasitic nematode interactions (Hokke and van 

Diepen 2017; Prasanphanich et al. 2013; Rodrigues et al. 2015). The glyco-epitopes of 

various potentially pathogenic species may be recognized by host glycan-binding proteins 

such as Toll-like receptor, C-type lectin receptors, and galectins. 

 Galectins are a family of sugar-binding proteins in numerous animal species. They 

are characterized by an evolutionarily conserved carbohydrate recognition domain 

containing eight conserved amino acid residues necessary for sugar recognition. Galectins 
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bind to endogenous glycans with a β-galactoside structure such as Galβ1-4GlcNAc. They 

participate in development, differentiation, cancer, immunity, and other pathophysiological 

processes (Thiemann and Baum 2016; Yang et al. 2008). It was recently discovered that 

galectins recognize exogenous glycans and are involved in host-pathogen interactions 

(Davicino et al. 2011; Sato et al. 2009; Shi et al. 2018; Vasta et al. 2017). A possible glyco-

epitope bound by galectins is Galactoseβ1-4Fucose (GalFuc) disaccharide. It occurs in 

certain invertebrates and could be recognized by mammalian galectins (Prasanphanich et al. 

2013). 

 GalFuc is attached to the innermost GlcNAc residue of N-glycans. It is a unique 

disaccharide epitope found in invertebrates including the octopus Paroctopus defleini (Zhang 

et al. 1997), the squid Todarodes pacificus (Takahashi et al. 2003), the marine snails 

Megathura crenulata (Wuhrer et al. 2004) and Volvarina rubella (Eckmair et al. 2015), the 

planarians Dugesia japonica (Paschinger et al. 2011) and Schmidtea mediterranea 

(Subramanian et al. 2018), the free-living nematodes Caenorhabditis elegans (Hanneman et 

al. 2006) and Pristionchus pacificus (Yan et al. 2015), and the parasitic nematodes Ascaris 

suum, Oesophagostomum dentatum (Jimenez-Castells et al. 2017; Yan et al. 2012), and 

Haemonchus contortus (Paschinger and Wilson 2015). The physiological role of the GalFuc 

epitope is unknown. The galactosyltransferase gene of C. elegans, galt-1, which is 

responsible for the synthesis of Gal-Fuc epitope has been identified and is expressed in the 
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intestine and coelomocytes, although the C. elegans strain with a mutation in galt-1 showed 

no observable change in phenotype under laboratory conditions (Titz et al. 2009). However, 

the GalFuc epitope is found in parasitic nematodes and the fungal galectin CGL2 suppresses 

nematode development by binding to it. Therefore, the GalFuc epitope is proposed as a novel 

target for anthelminthic agents (Yan et al. 2012). 

GalFuc is reported to function as an endogenous recognition unit of LEC-6, a C. 

elegans galectin (Maduzia et al. 2011; Takeuchi et al. 2008; Takeuchi et al. 2009) and is 

bound by other C. elegans galectins as well (Nemoto-Sasaki et al. 2011; Takeuchi et al. 

2011). On the other hand, the fungal galectin CGL2 recognizes C. elegans GalFuc as an 

exogenous glyco-epitope and suppresses C. elegans development by binding it (Butschi et al. 

2010). CGL2 inhibits the larval development of H. contortus which also expresses the 

GalFuc epitope (Heim et al. 2015; Paschinger and Wilson 2015). Certain mammalian 

galectins can bind to synthetic GalFuc disaccharide derivatives (Takeuchi et al. 2013). Since 

the GalFuc glyco-epitope is found in parasitic nematodes, mammalian galectins may 

recognize GalFuc as an exogenous non-self glyco-epitope (as in the case with CGL2) and 

participate in host defense against parasitic nematode infection. 

X-ray crystallography of LEC-6-GalFuc and binding experiments with mutant LEC-

6 proteins revealed that the Glu67 residue of LEC-6 is important in the specific binding of 

LEC-6 to the GalFuc epitope in natural N-glycans (Makyio et al. 2013) (Supplementary 
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Figure 1). This Glu residue is also found in CGL2 (Butschi et al. 2010). Therefore, the Glu 

residue may be important for recognition of GalFuc epitope in natural N-glycans. However, 

it is not conserved across all galectins (Makyio et al. 2013). Through careful comparison of 

the amino acid sequences of mammalian galectins, we found that this Glu residue is 

conserved among human and mouse Gal-2 (Supplementary Figure 1) and other mammalian 

species (data not shown). Gal-2 is expressed mainly in the digestive tract which is a major 

site of parasitic nematode infection (Nio-Kobayashi 2017). Therefore, we hypothesized that 

Gal-2 may participate in host defense against parasitic nematode by binding to the GalFuc 

epitope. The aforementioned Glu residue is also found in mouse Gal-3. However, this 

galectin has an Asn-Arg-Arg sequence between the Glu residue and Val residue, which is 

also important for GalFuc recognition. For this reason, Gal-3 may not effectively recognize 

GalFuc in natural N-glycans. 

 In the present study, we investigated the potential nematode suppression ability of 

mammalian galectin-2 (Gal-2) using C. elegans and focused on Gal-2 binding to the GalFuc 

glyco-epitope. 

 

RESULTS 

 

Galectin-2 suppresses C. elegans development 
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C. elegans glycoconjugates contain structural motifs found in other nematodes. Therefore, C. 

elegans could serve as a model for other nematodes especially in protein-carbohydrate 

interaction investigations (Jankowska et al. 2018). To clarify the nematode-suppressing 

potential of Gal-2, we prepared recombinant galectin proteins and examined their effects on 

the development of the free-living nematode C. elegans as a model for parasitic nematodes. A 

recombinant protein for CGL2 which has been reported to suppress C. elegans development 

(Butschi et al. 2010) was also prepared and used as a positive control. The L1 larval stage of 

C. elegans was grown in liquid culture in the presence of various galectins. The proportions 

of developmentally arrested worms are shown in Figure 1. Only Gal-2 and CGL2 suppressed 

C. elegans development. In contrast, the mGal-2E52D (Glu52 substituted by Asp) mutant, 

which was presumed to have little affinity for GalFuc, had minimal effect on C. elegans 

development compared with wild type mGal-2. 

 

Gal-2 binds to C. elegans glycoconjugates containing GalFuc epitope in vitro and in vivo 

Since Gal-2 suppressed C. elegans development, we investigated whether it binds to natural 

glycoconjugates with GalFuc epitopes. To localize Gal-2 binding partners in vivo, we fed 

worms with fluorescently labeled Gal-2 and then rinsed them with lactose or maltose. The 

latter served as an osmotic control (Figure 2). The fluorescent signal was observed in C. 
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elegans intestine with the maltose wash but not with lactose. Gal-2 binds to intestinal glyco-

epitope in a β-galactoside-dependent manner as is does with CGL2. 

To identify the Gal-2 binding partners in vitro, we applied a C. elegans extract to an 

immobilized Gal-2 column. After extensive washing, we eluted the bound materials with 

lactose (Figure 3A). SDS-PAGE and Coomassie brilliant blue (CBB) staining revealed 

multiple proteins in the lactose-eluted fractions such as Fr. 10. Western blotting with anti-

Galβ1-4Fuc antibody (Takeuchi et al. 2015) showed C. elegans glycoconjugates with the 

GalFuc epitope are present in the lactose-eluted fractions (Figure 3B). To identify the proteins 

bound by Gal-2, the indicated protein bands were excised from the gel and digested with 

trypsin. The peptide products were subjected to liquid chromatography/tandem mass 

spectrometry (LC-MS/MS) to assign the proteins (Figure 3C). The Gal-2-binding proteins 

were VIT-2, F28B4.3, T25C12.3, VIT-6, menocentin, etc. 

 

Gal-2 recognizes GalFuc epitope in natural C. elegans N-glycans 

It was presumed that Gal-2 has an affinity for the GalFuc epitope. Therefore, we explored 

the ability of Gal-2 to bind GalFuc using frontal affinity chromatography. We used 

commercially available pyridylamine (PA)-labeled sugars containing Galβ1-4GlcNAc 

epitope and PA-labeled natural C. elegans N-glycans containing GalFuc epitope which could 

be bound by the C. elegans galectin LEC-6 (Takeuchi et al. 2008) (Figure 4). WT Gal-2 had 
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affinities for LnNT and NA2-PA which contain one or two Galβ1-4GlcNAc epitopes. It also 

had affinities for D2, D4, E3, and E4-PA, each of which contains one GalFuc epitope. Gal-2 

had little affinity for degalactosylated E4-PA (DeE4-PA). However, the E52D mutant of 

mouse Gal-2 showed weaker affinities for these sugars than the wild type. These results 

suggest that Gal-2 recognizes the GalFuc epitope in the natural N-glycans of C. elegans in a 

galactose-dependent manner. Moreover, the Glu52 of Gal-2 is important for the recognition of 

these sugars as in the case of the C. elegans galectin LEC-6. 

 

Gal-2 binds to Ascaris glycoconjugates with the GalFuc epitope which is also found in other 

parasitic nematodes 

The aforementioned results suggest that Gal-2 affects the free-living nematode C. elegans by 

binding to the GalFuc epitope. Therefore, we investigated whether Gal-2 binds to the GalFuc-

bearing glycoconjugates of the parasitic nematode Ascaris suum. An A. suum extract was 

applied to an immobilized Gal-2 column. After extensive washing, the bound materials were 

eluted with lactose and the collected fractions were subjected to western blotting with the 

anti-Galβ1-4Fuc antibody (Figure 5A). GalFuc-bearing glycoconjugates of A. suum were 

found in the lactose-eluted fractions (Frs. 10, 11). Therefore, Gal-2 can bind to GalFuc 

epitope from parasitic nematodes as well as the free-living nematode C. elegans. Gal-2 may 

also affect parasitic nematodes by binding to the GalFuc epitope. 
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 The presence of GalFuc epitope in parasitic species has only been reported in 

Ascaris suum, Oesophagostomum dentatum, and Haemonchus contortus (Jimenez-Castells et 

al. 2017; Paschinger and Wilson 2015; Takeuchi et al. 2015; Yan et al. 2012). We sought the 

presence of the GalFuc epitope in other well-studied parasitic nematodes Nippostrongylus 

brasiliensis (Nb) and Brugia pahangi (Bp) and the trematode Schistosoma mansoni (Sm) 

using anti-Galβ1-4Fuc antibody. We prepared extracts of various helminth developmental 

stages, and human HeLa cells, which is a negative control for the antibody, and subjected 

them to western blotting (Figure 5B). Only the proteins in the Nb and Bp extracts gave 

positive signals. The band patterns varied with developmental stage. Therefore, these 

parasitic nematodes may have the GalFuc epitope and their development could be affected by 

Gal-2. 

 

DISCUSSION 

 

In the present study, we investigated the effects of Gal-2 on nematodes and found 

that Gal-2 (but not its E52D mutant) suppresses the development of C. elegans, recognizes 

natural C. elegans N-glycans and glycoconjugates containing GalFuc epitope, and binds to 

Ascaris glycoconjugates containing GalFuc epitope which is also found in other parasitic 

nematodes. It has already been reported that the mammalian galectin Gal-11 suppresses the 
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gastrointestinal parasitic nematode H. contortus (Preston et al. 2015). To the best of our 

knowledge, the present study is the first to report that the mammalian galectin Gal-2 

suppresses nematode development by interacting with the invertebrate-specific GalFuc glyco-

epitope. 

 Gal-2 but not its E52D mutant suppressed C. elegans development (Figure 1). 

Therefore, GalFuc epitope recognition is important in Gal-2 suppression of C. elegans 

development. Its binding partners were glycoconjugates with the GalFuc epitope. The E52D 

mutation reduced the affinity of Gal-2 for natural C. elegans N-glycans containing the GalFuc 

epitope. 

The E52D mutation reduced the affinity of Gal-2 by > 90% for E3-PA and E4-PA 

containing the GalFuc epitope (Figure 4). However, this mutation also reduced Gal-2 affinity 

by ~80% for LnNT-PA and NA2-PA which contain Galβ1-4GlcNAc disaccharide unit(s). The 

E52D mutation of Gal-2 affected its affinity for both GalFuc and Galβ1-4GlcNAc. Since the 

Glu52 of Gal-2 is localized in its sugar-binding site, the E52D mutation of Gal-2 may have 

caused a slight conformational change there. The Glu52 of Gal-2 is adjacent to Cys57 which is 

responsible for its oxidative inactivation (Sakakura et al. 2018; Tamura et al. 2016). 

Therefore, the E52D mutant could be more susceptible to oxidative inactivation than its wild 

type counterpart. A certain part of the protein may have been inactivated during the 

experiment. Gal-2 non-classically interacts with lactose (Galβ1-4Glc) and the Glu52 of Gal-2 
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participates in this interaction (Si et al. 2016). For this reason, Glu52 might be important in the 

recognition of both Galβ1-4GlcNAc and GalFuc. However, the reduction in the affinity for 

E3-PA and E4-PA caused by the E52D mutation was greater than that for LnNT-PA and NA2-

PA. Consequently, the Glu52 of Gal-2 is presumed to be important in its recognition of the 

GalFuc epitope. 

The Gal-2 binding partners were highly similar to those of the C. elegans 

endogenous galectin LEC-6 and possibly to those of the fungal galectin CGL2 as well. The 

binding partners of Gal-2 are localized in the intestine (Figure 2) as are the glycoconjugate 

ligands for LEC-6 and CGL2 (Butschi et al. 2010; Maduzia et al. 2011). The gene galt-1, 

which encodes the galactosyltransferase responsible for GalFuc epitope biosynthesis, is also 

expressed in the intestine (Titz et al. 2009). The Gal-2-binding proteins VIT-2, F28B4.3, 

T25C12.3, VIT-6, and menocentin (Figure 3) are binding partners for the C. elegans galectin 

LEC-6 (Hirabayashi et al. 2002; Kaji et al. 2007; Maduzia et al. 2011; Takeuchi et al. 2011). 

Gal-2 specifically binds to the GalFuc epitope of C. elegans N-glycans (Figure 4), as well as 

LEC-6, and CGL2 (Butschi et al. 2010; Takeuchi et al. 2008). 

However, only Gal-2 and CGL2 effectively suppressed C. elegans development 

(Figure 1) possibly because of the differences in the quaternary structures of LEC-6, Gal-2, 

and CGL2. CGL2 forms a tetramer (Walser et al. 2004) whereas LEC-6 and Gal-2 form 

dimers (Lobsanov et al. 1993; Makyio et al. 2013; Si et al. 2016). Nevertheless, their overall 
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dimer structures and subunit orientations differ (Supplementary Figure 2). Therefore, LEC-6 

and Gal-2 may bind to similar ligands but crosslink them differently. For this reason, they 

have different effects on C. elegans. 

Gal-2 binds to glycoconjugates containing the GalFuc epitope in the parasitic 

nematode A. suum as well as that of the free-living nematode C. elegans. Since CGL2 

suppresses C. elegans and H. contortus (Butschi et al. 2010; Heim et al. 2015) which both 

have the GalFuc epitope, Gal-2 may also suppress the development of parasitic nematodes 

such as A. suum with the GalFuc epitope. N. brasiliensis, a model nematode for soil-borne 

helminthiases, and B. pahangi, a model nematode for lymphatic filariasis, both have the 

GalFuc epitope (Figure 5). Therefore, it would be interesting to explore the functions of Gal-

2 on these parasitic nematodes and the diseases they cause. In contrast, the glycoconjugates 

of the parasitic trematode S. mansoni did not react with anti-GalFuc antibody. Glycomic 

analysis of this trematode indicated that it expresses Galβ1-4GlcNAc (LacNAc) and 

GalNAcβ1-4GlcNAc (LacDiNAc) but not GalFuc (Smit et al. 2015). However, S. mansoni 

glycoconjugates are recognizable by the mammalian galectin Gal-3 (van den Berg et al. 

2004). Lectin blotting analysis with Gal-2 disclosed that Gal-2 binds to S. mansoni 

glycoconjugates (data not shown). Consequently, Gal-2 could influence the infectivity of this 

parasitic trematode. 

Suppression of C. elegans by Gal-2 was ~5× weaker than that of CGL2 (data not 
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shown). The concentration of Gal-2 used in the present experiment was much higher than its 

physiological concentration in human serum (≤ ~1 µg/mL) (Barrow et al. 2011; Nio-

Kobayashi 2017). However, galectins are considered to be abundantly expressed in tissues, 

e.g. the concentration of Gal-1 protein is ~40 mg/kg (Ahmed et al. 1996) and Gal-2 is mainly 

expressed in the digestive tract rather than serum (Nio-Kobayashi 2017). In addition, local 

galectin concentrations may be high at infection sites because the galectins are locally 

secreted by cells as they are being destroyed by infection (Sato et al. 2009). Under 

physiological conditions, Gal-2 may collaborate with other proteins such as mucin (Tamura 

et al. 2017) which is important in host defense against parasitic nematodes (Hasnain et al. 

2013). This cooperation could enhance Gal-2 activity against C. elegans. In view of the 

preceding facts and presumptions and the fact that Gal-2 but not Gal-1 or Gal-3 suppressed 

C. elegans (Figure 1), Gal-2 may specifically suppress nematodes. The precise effects of 

Gal-2 on parasitic nematodes is unknown. On the other hand, the results of this study clearly 

indicate that Gal-2 may participate in host defense against infestations by parasitic 

nematodes bearing the GalFuc epitope. To test this hypothesis, the effects of administering 

recombinant Gal-2 protein or Gal-2 knockout on animals infested with parasitic nematodes 

should be investigated. 

 In conclusion, the results of the present study suggest that Gal-2 suppresses C. 

elegans development by interacting with the invertebrate-specific GalFuc glyco-epitope, 
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although this is a model study using the free-living nematode C. elegans as a model for 

parasitic nematodes. However, CGL2, which recognizes GalFuc as in the case of Gal-2, 

suppresses both C. elegans and the parasitic nematode H. contortus. Therefore, Gal-2 may 

also inhibit parasitic nematodes such as N. brasiliensis and B. pahangi which both have the 

GalFuc epitope. This theory merits further investigation and we are planning to test this 

hypothesis. Since the GalFuc epitope is widely distributed in Phylum Nematoda (Takeuchi et 

al. 2016), targeting it with Gal-2 and/or Gal-2-Toxin conjugate as described by Tateno et al. 

(2017) might be suitable in the diagnosis and treatment of NTDs such as lymphatic filariasis 

and soil-borne helminthiases. 

 

MATERIALS AND METHODS 

 

Materials 

The Bristol N2 strain of C. elegans used in the present study was provided by the 

Caenorhabditis Genetics Center of the National Center for Research Resources of the 

National Institutes of Health. For frontal affinity chromatography, the following 

pyridylaminated sugars (PA-sugars) were purchased or prepared: LNnT-PA (PA041; Galβ1-

4GlcNAcβ1-3Galβ1-4Glc-PA), NA2-PA (PA001; Galβ1-4GlcNAcβ1-2Manα1-3 (Galβ1-

4GlcNAcβ1-2Manα1-6) Manβ1-4GlcNAcβ1-4GlcAc-PA), and rhamnose-PA were acquired 
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from TaKaRa Bio (Kusatsu, Shiga, Japan). D2-PA, D4-PA, E3-PA, and E4-PA (PA derivatives 

of natural N-glycans containing the Galβ1-4Fuc unit isolated from C. elegans (Figure 4A)) 

and degalactosylated E4-PA were prepared as reported previously (Takeuchi et al. 2008). 

 

Preparation of recombinant proteins 

Human galectin-2 (hGal-2), mouse galectin-2 (mGal-2), mGal-1C2S, mGal3, and LEC-6 

recombinant proteins were expressed in Escherichia coli and affinity-purified with an 

asialofetuin- or Galβ1-4Fuc-immobilized sepharose column (Takeuchi et al. 2011) basically 

as described previously (Takeuchi et al. 2008; Takeuchi et al. 2009; Takeuchi et al. 2013). 

The E52D mutant of mGal-2 was generated by PCR using the following primers: 5′-

ATCCACCATTGTCTGTAAC-3′ and 5′-TCATCGAAGCGAGGGTTAAAATG-3′. The 

substitution site is underlined. For the CGL2-expressing plasmid, the artificial gene encoding 

CGL2 protein with optimized codon usage was synthesized by Fasmac (Kanagawa, Japan) 

and subcloned into the NdeI and BamI sites of the pET21a vector. The resultant pET-mGal-

2E52D and pET-CGL2 plasmids were used for protein expression as described above. 

 

C. elegans developmental assay 

Mixed-stage C. elegans was treated with bleach (aqueous sodium hypochlorite) to isolate the 

eggs which were then incubated in M9 buffer for 1 d. The hatched L1 worms were used for 
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the developmental assay. Approximately 20 L1 worms/10 µL of M9 buffer, 10 µL OP50-WT 

(OD600 = 20), 20 µL of 5 mg/mL recombinant galectin protein in PBS (8.1 mM Na2HPO4, 

1.47 mM KH2PO4, 137 mM NaCl, and 2.68 mM KCl; pH 7.4), and 60 µL M9 buffer were 

added to each well of a 96-well flat plate. After 63-69 h incubation at 20°C, the % of animals 

developing to L4 was scored. Data are expressed as means ± SD. The recombinant protein 

used was presterilized by filtration 0.22 µm syringe filter. 

 

C. elegans lectin staining 

Alexa488-labeled mGal-2 was prepared with an Alexa Fluor™ 488 protein labeling kit 

(Thermo Fisher Scientific, Waltham, MA, USA) essentially according to the manufacturer’s 

instructions. Mixed-stage C. elegans were harvested from the nematode growth medium 

(NGM) plate with M9 buffer. For lectin staining, 50 µL C. elegans in M9 buffer, 40 µL PBS, 

and 10 µL of 1.27 mg/mL Alexa488-labeled mGal-2 were mixed and incubated for 2 h at 

20°C. To confirm β-galactoside-dependent staining, stained worms were washed 2 times with 

PBS containing either 0.1 M lactose or 0.1 M maltose (control) and fluorescence images were 

taken with a FLoidTM Cell Imaging Station (Life Technologies, Carlsbad, CA, USA) using a 

20× objective. 

 

Isolation of C. elegans and Ascaris glycoproteins interacting with mouse galectin-2 
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Mixed-stage C. elegans strain N2 were grown under standard laboratory conditions and 

harvested in M9 buffer. C. elegans ≤ 200 mg was dissolved by sonication in PBS containing 

1 mM EDTA. After centrifugation, the C. elegans extract was applied to an immobilized 

mGal-2 column (bed volume 1 mL; 15.8 mg protein/mL gel) prepared as described above. 

The column was washed extensively with PBS containing 1 mM EDTA and the adsorbed 

materials were eluted with PBS containing 0.1 M lactose and 1 mM EDTA. The operating 

temperature was 4°C. The fraction volume was ~1 mL throughout the experiment. Each 

fraction was subjected to trichloroacetic acid (TCA) precipitation as described previously 

(Takeuchi et al. 2011). The precipitated materials were resuspended in a sodium dodecyl 

sulfate (SDS)-sample buffer (50 mM Tris-HCl, pH 6.8; 1% SDS; 8% glycerol; 0.01% 

bromophenol blue; and 2% of 2-mercaptoethanol) then subjected to SDS-PAGE and western 

blotting. 

 To isolate mGal-2-binding glycoproteins from Ascaris, lyophilized protein powder 

derived from Ascaris suum crude extract was obtained from Cosmo Bio (Tokyo, Japan) and 

dissolved in 1.6 mL ultrapure water according to the manufacturer’s recommendation. The 

Ascaris extract was applied to an immobilized mGal-2 column and mGal-2-binding 

glycoproteins were isolated as described above. 

 To identify the mGal-2-binding glycoproteins, the portion of the gel indicated in 

Figure 3C was excised and the proteins therein were identified via a contract analytical 
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service of Tokushima University. In brief, the proteins in the excised gel were digested with 

trypsin and the resultant peptide mixture was subjected to nanoLC-MS/MS. The LC-MS 

consisted of a nanoLC system (UltiMate 3000 RSLCnano; Thermo Fisher Scientific, 

Waltham, MA, USA) and an ESI-IT MS system (Orbitrap Elite; Thermo Fisher Scientific, 

Waltham, MA, USA). The MS/MS spectra were searched against the C. elegans protein 

database downloaded from the National Center for Biotechnology Information (NCBI; 

Bethesda, MD, USA) website (http://www.ncbi.nlm.nih.gov/). 

 

Frontal affinity chromatography 

Immobilization of recombinant WT mGal-2 or its E52D mutant on HiTrap NHS-activated 

sepharose (GE Healthcare, St. Giles, UK) and frontal affinity chromatography were 

performed basically as described previously (Takeuchi et al. 2008). In brief, each PA-sugar at 

5 nM concentration was applied to an immobilized galectin column at a flow rate of 0.25 

mL/min and at 20 °C. The elution profile was monitored by a fluorescence detector. Kd for 

the interaction between galectin and PA-sugar was determined according to the following 

basic frontal affinity chromatography equation: 

 

Kd = Bt/(V – V0) – [A]0        (1) 
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where Bt is the effective ligand content, V is the elution front volume, V0 is V for rhamnose-

PA not bound by galectins, and [A]0 is the initial PA-sugar concentration. If [A]0 is negligibly 

smaller than Kd, then the equation can be simplified as Kd = Bt/(Vf – V0). In the present study, 

Bt for the immobilized mGal-2 E52D column was calculated from the data obtained from 

concentration-dependent analysis using various concentrations of Galβ1-4Fuc and PA-Galβ1-

4Fuc (Nishiyama et al. 2010) (data not shown). The Bt for the mGal-2 WT column was 

calculated from the Kd value reported for the interaction between mGal-2 and PA-Galβ1-4Fuc 

(Takeuchi et al. 2013) (data not shown). Ka were calculated on the basis of the following 

equation: 

 

Ka = 1/Kd         (2) 

 

Preparation of HeLa cell and parasite extracts 

The human HeLa cell line was obtained from the RIKEN Cell Bank (Tsukuba, Japan) and 

maintained in Dulbecco's modified Eagle’s medium (DMEM; Wako Pure Chemical Industries 

Ltd., Osaka, Japan) containing 10% heat-inactivated fetal bovine serum (FBS; Thermo Fisher 

Scientific, Waltham, MA, USA) and 1× penicillin/streptomycin (Wako Pure Chemical 

Industries Ltd., Osaka, Japan) under a humidified 5% CO2 atmosphere at 37°C. The HeLa 

extracts were prepared by lysing the cells by sonication and boiling in SDS-PAGE sample 
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buffer. 

 To prepare Nippostrongylus brasiliensis (Nb), mice were infected with Nb by 

subcutaneous injection with third-stage larvae. After 2 d, L4 larvae were collected from the 

lungs. After 4 d, L5 larvae were collected from the small intestines. After 6 d, adult Nb were 

collected from the small intestines according to the description by Haley (1962). The life 

cycle of Brugia pahangi (Bp) was maintained by serial passage through mosquitoes (Aedes 

aegypti) and jirds (Meriones unguiculatus) in the animal facilities of Nagasaki University, 

Japan. To prepare Bp, mosquitoes were allowed to ingest the blood of jirds positive for 

circulating microfilariae. Approximately 2 wk after this feeding, L3 larvae were collected 

from infected mosquitoes. A Puerto Rican strain of Schistosoma mansoni (Sm) was 

maintained in the animal facilities of Nagasaki University by passage through Biomphalaria 

glabrata snails and ICR mice. To prepare the Sm, mice were percutaneously infected with 

cercariae. Approximately 9 wk after infection, adult worms were collected from the portal 

veins near the livers and the eggs were collected from the livers. The parasites and eggs were 

lysed by sonication and boiling in SDS-PAGE sample buffer. All animal experiments were 

approved by the Institutional Animal Care and Use Committee of the Jikei University (The 

Jikei IACUC; No. 2016-100) or the Institutional Animal Research Committee of Nagasaki 

University (No. 1612081349) and performed according to Japanese law for the Humane 

Treatment and Management of Animals (No. 105; dated October 19, 1973 and amended June 
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2, 2006). 

 

Western blotting using anti-Galactoseβ1-4Fucose polyclonal antibody 

Protein samples dissolved in SDS-sample buffer were subjected to SDS-PAGE. The separated 

proteins were transferred onto nitrocellulose membranes with an iBlot2 Gel Transfer Device 

(Life Technologies, Carlsbad, CA, USA). Immunoblotting was performed on an iBind 

Western Device (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s 

instruction with anti-Galactoseβ1-4Fucose rabbit polyclonal antibody (Takeuchi et al. 2015). 

The blots were visualized with Luminata Crescendo (Merck Millipore, Burlington, MA, 

USA) and the signals were detected with ChemiDoc XRS+ (Bio-Rad Laboratories, Hercules, 

CA, USA). 
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ABBREVIATIONS 

Bp, Brugia pahangi 

CBB, Coomassie brilliant blue 

DMEM, Dulbecco’s modified Eagle’s medium 

EDTA, ethylenediaminetetraacetic acid 

FBS, fetal bovine serum 

Gal-1, galectin-1 

Gal-2, galectin-2 

Gal-3, galectin-3 

GalFuc, Galactoseβ1-4Fucose 

ICR, Institute of Cancer Research 

LC-MS/MS, liquid chromatography-tandem mass spectrometry 

Nb, Nippostrongylus brasiliensis 

NGM, nematode growth medium 

NTD, neglected tropical diseases 

PA, pyridylamine 

PBS, phosphate-buffered saline 

SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis 
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Sm, Schistosoma mansoni 

TCA, trichloroacetic acid 

WT, wild type 
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FIGURE LEGENDS  

 

Figure 1. Galectin-2 suppresses C. elegans development 

Effects of various galectins on the development of Caenorhabditis elegans. L1 larval stage of 

C. elegans was seeded and grown in liquid medium with various galectins for 63-69 h at 

20 °C. The percentages of animals developing to the L4 stage were scored. Data are 

expressed as means ± SD. N.D. = not detected. 

 

Figure 2. Gal-2 binds to C. elegans intestinal glycoconjugates in vivo in a lactose-dependent 

manner 

Mixed-stage C. elegans were stained with Alexa488-labeled Gal-2 and washed with 0.1 M 

maltose (osmotic control) or lactose. Bright-field images and fluorescent images of larval 

worms (possibly L2 or L3 stage) were taken. Their merged images are also presented. 

 

Figure 3. Gal-2 binds to C. elegans glycoconjugates with GalFuc epitope in vitro 

An extract of mixed-stage C. elegans was applied to an immobilized Gal-2 column. 

Following extensive washing, the bound materials were eluted with 0.1 M lactose. Successive 

fractions were collected and subjected to SDS-PAGE followed by Coomassie brilliant blue 

(CBB) staining (A) or immunoblotting analysis with anti-GalFuc antibody (B). The indicated 
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bands of Gal-2 binding glycoconjugates were subjected to protein identification by LC-

MS/MS (C). 

 

Figure 4. Gal-2 recognizes GalFuc epitope in natural C. elegans N-glycans 

(A) Structures of the PA-sugars used in frontal affinity chromatography. The symbols used 

comply with the standard nomenclature for graphical representations of glycans (Varki et al. 

2015). ‘Me’ = methyl group. The hexose residue in the trimannosyl core structure of C. 

elegans glycans may be bisecting galactose (Yan et al. 2015). 

(B) Bar graph of Ka for the interaction between mouse Gal-2 and PA-sugars. Ka were 

calculated as described in the Materials and Methods section. 

 

Figure 5. Gal-2 binds to Ascaris glycoconjugates with GalFuc epitope which is found in 

other parasitic nematodes 

(A) A commercially available Ascaris extract was applied to an immobilized Gal-2 column. 

Following extensive washing, the bound materials were eluted with 0.1 M lactose. Successive 

fractions were collected and subjected to western blotting with anti-GalFuc antibody. 

(B) Extracts of human HeLa cells, the parasitic nematodes N. brasiliensis (Nb) (L4 and L5 

stages) and B. pahangi (L3 stage), and the parasitic trematode S. mansoni (Sm) (egg and 

adult) were prepared and subjected to western blotting with anti-GalFuc antibody. 

https://academic.oup.com/glycob/article/29/6/504/5381599
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Figure 2. Takeuchi et al.
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Figure 3. Takeuchi et al.
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Figure 4. Takeuchi et al.
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Figure 5. Takeuchi et al.
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