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Abstract 

Pioglitazone is one of the thiazolidinediones (TZDs) and an insulin-sensitive drug for 

type 2 diabetes. In our previous study, a combination of pioglitazone and fish oil rich in 

n-3 polyunsaturated fatty acids (PUFAs) was shown to inhibit pioglitazone-induced side 

effects, such as accumulation of subcutaneous fat and body weight gain. However, the 

effects of the discontinuation of fish oil after combination treatment with TZD and fish 

oil are not clear. In this study, discontinuation of fish oil for 4 weeks showed several 

unfavorable effects: 1) return of plasma adiponectin level; 2) reversal of the inhibition 

of lipogenesis and activation of fatty acid β-oxidation in liver; 3) increase in 

hypertrophic adipocytes in epidydimal white adipose tissue (WAT); and 4) accumulation 

of lipids in brown adipose tissue (BAT). However, insulin resistance was ameliorated by 

pioglitazone with or without fish oil treatment and the discontinuation of fish oil. These 

findings indicate that discontinuation of n-3 PUFA after combination therapy with TZDs 

adversely affects lipid metabolism and energy homeostasis in liver, epididymal WAT, 

and BAT. 

 



3 

 

1. Introduction 

Thiazolidinediones (TZDs) are ligands of peroxisome proliferator-activated receptor-γ 

(PPARγ). These are insulin-sensitive drugs that have been clinically used for the 

treatment of type 2 diabetes. PPARγ is critical for adipocyte differentiation and  

maintenance of mature adipocytes. In addition, PPARγ regulates a variety of target 

genes involved in lipid and glucose metabolism, such as lipoprotein lipase, fatty acid 

transporter CD36, phosphoenolpyruvate carboxykinase (PEPCK), and adiponectin [1]. 

Previous studies have shown that TZDs induce the differentiation of preadipocytes into 

mature adipocytes and apoptosis of hypertrophic adipocytes [2, 3]. The former effect 

contributes to increased levels of plasma adiponectin, an adipokine that improves 

insulin sensitivity in skeletal muscle and suppresses hepatic gluconeogenesis [4-6]. The 

latter decreases the production of proinflammatory adipokines, such as tumor necrosis 

factor-α and monocyte chemoattractant protein-1, which lowers fasting glucose level by 

a mechanism independent of insulin secretion [7]. Thus, TZDs are associated with a low 

risk of hypoglycemia and pancreatic exhaustion. TZDs were also shown to protect 

against pancreatic β-cell dysfunction by reducing the generation of reactive oxygen 

species and ameliorating endoplasmic reticulum (ER) stress associated with over 

production of insulin [8, 9]. However, TZD therapy is associated with several adverse 



4 

 

effects such as heart failure, fluid retention, increase in body weight, bone fracture, and 

bladder cancer [10-14]. Furthermore, higher doses of TZDs are associated with a greater 

risk of adverse events [14-16]. Therefore, the identification of strategies to reduce 

dosage of TZDs is a key imperative. 

In an attempt to enhance the safety and benefits of TZDs treatment, Majima et al. 

demonstrated that low-dose TZDs (7.5 mg/day) moderated body weight gain in patients 

with type 2 diabetes compared to the standard-dose (15 mg/day), while still showing a 

clinically significant hypoglycemic effect [17]. However, in another clinical study, 7.5 

mg/day TZD moderated body weight gain, but failed to improve glucose tolerance [15]. 

Several in vivo animal studies and clinical studies have suggested that the combination 

of low-dose TZDs plus another antidiabetic drug, such as metformin or a dipeptidyl 

peptidase IV inhibitor, can achieve similar antidiabetic efficacy while preventing 

adverse events [18, 19]. In our previous study, a combination of TZD and fish oil rich in 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was shown to prevent 

TZD-induced body weight gain by suppressing the accumulation of subcutaneous fat; in 

addition, it showed a protective effect against pancreatic β-cell dysfunction by reducing 

ER stress in diabetic KK mice [9, 20]. The KK mouse is an animal model of type 2 

diabetes and considered to have the polymorphisms on leptin receptor gene, which 
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results in a part of cause for obesity and diabetic conditions [21]. The mice present 

many striking diabetic changes in pancreas, such as the hypertrophy and hyperplasia of 

the islets, the hypertrophy and degranulation of β-cells [22]. In another study, we found 

that the antidiabetic efficacy of a combination of low-dose TZD and fish oil was similar 

to that of high-dose TZD without concomitant body weight gain in aged diabetic KK 

mice [23].  

Although pharmacological treatment is the cornerstone of treatment of many diseases, 

the discontinuation of medication is recommended after the occurrence of adverse 

effects or negative effects [24, 25]. A systematic review also found that a 

discontinuation regimen is feasible in clinical settings [26]. On the other hand, several 

studies have shown that drug discontinuation aggravates the disorder and increases the 

risk of mortality [27, 28]. However, the effect of discontinuation of combination therapy 

with TZDs and n-3 polyunsaturated fatty acids (PUFAs) (such as EPA and DHA) is not 

well characterized. 

The present study aimed to examine the influence of discontinuation of n-3 PUFAs 

after the treatment of type 2 diabetes with a combination of TZD and n-3 PUFAs. For 

this purpose, we evaluated the combination of pioglitazone (a TZD drug) and fish oil as 

a source of EPA and DHA in male KK mice of type 2 diabetes. 
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2. Methods 

2.1 Animal and diets 

This study was performed in accordance with the “Fundamental Guidelines for Proper 

Conduct of Animal Experiment and Related Activities in Academic Research 

Institutions” (Ministry of Education, Culture, Sports, Science and Technology, Japan, 

Notice No. 71, dated June 1, 2006) and approved by the Institutional Animal Care and 

Use Committee of Josai University. Six-week-old male KK/Ta mice were purchased 

from Tokyo Laboratory Animals Science Co. (Tokyo, Japan) and fed a standard 

commercial diet (CE-2, Crea Japan, Inc.) for 1 week to acclimatize them to their new 

environment. All mice were maintained in a controlled environment [temperature, 22°C 

± 2°C; humidity, 55% ± 10%; 12:12-h light-dark cycle (lights on: 7:00 AM–7:00 PM)] 

at Josai University Life Science Center and allowed ad libitum access to food and water. 

At 7 weeks of age, the mice (the body weight: 23.3～27.6g) were divided into four 

weight-matched groups (5 animals per group). The experimental diets were designed to 

achieve total fat energy level at 20 energy% (en%) (Supplementary Table 1). The 

control (Con) group was administered a control diet, which included 20 en% safflower 

oil (Benibana Foods Co. Ltd., Tokyo, Japan). The pioglitazone (P) group and the 

pioglitazone plus fish oil (PF) group received a control diet or a fish oil diet including 
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10 en% safflower oil and 10 en% fish oil (NOF Co., Tokyo, Japan), supplemented with 

0.012 weight% (wt%) pioglitazone hydrochloride (Wako Pure Chemical Industries Ltd., 

Osaka, Japan), respectively. Mice in these three groups were fed their respective diets 

throughout the experimental period. The PF/P group was administered the pioglitazone 

plus fish oil diet (PF) during the first 8 weeks, and the pioglitazone plus control diet (P) 

during the last 4 weeks. The detailed experimental design is shown in Supplementary 

Fig. 1. 

 

2.2 Computed tomography 

At the end of the experiment, fasting mice were intraperitoneally injected with 

pentobarbital sodium (Kyoritsu Seiyaku Co., Tokyo, Japan) for anesthesia and 

underwent computed tomography (CT) scans at 2-mm intervals between the second and 

fourth lumbar vertebrae using a La Theta LCT100 scanner (Hitachi Aloka Medical Ltd., 

Tokyo, Japan). Abdominal visceral and subcutaneous fat content was estimated using 

the La Theta software (version 2.10). The scanned images were represented by pink 

(visceral fat) and yellow regions (subcutaneous fat), respectively. 

 

2.3 Sample collection 
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After CT scanning, blood samples were obtained from the tail vein and glucose 

concentration and measured using a blood glucose monitor (One Touch Ultra; Johnson 

& Johnson, New Brunswick, NJ). Subsequently, the mice were weighed and blood 

samples removed from the inferior vena cava for biochemical assays. The liver, 

epididymal white adipose tissue (WAT), and interscapular brown adipose tissue (BAT) 

were removed. Tissue samples were immediately frozen using liquid nitrogen and 

stored at −80°C until further processing. All the samples were obtained from the fasting 

state. 

 

2.4 Morphological analysis 

For histopathological and morphometric analyses, portions of WAT were fixed in 10% 

neutral buffered formalin (Wako Pure Chemical Industries), embedded in paraffin, and 

stained with hematoxylin and eosin by Kotobiken Medical Laboratories Inc. (Tokyo, 

Japan). The mean adipocyte size in 7–11 randomly chosen fields of epididymal WAT 

specimens was evaluated for each group. The adipocyte areas were measured from more 

than 1000 cells per group using Image J software (Wayne Rasband, NIH). 

 

2.5 Biochemical parameters 
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The collected blood samples were centrifuged at 900 × g for 15 min. Plasma levels of 

insulin, adiponectin, and fibroblast growth factor (FGF) 21 were measured using 

commercially-available enzyme linked immunosorbent assay (ELISA) kits according to 

the manufacturers’ protocol (Insulin ELISA kit from Morinaga Institute of Biological 

Science, Tokyo, Japan; Mouse/rat adiponectin ELISA kit from Otsuka Pharmaceutical, 

Tokyo, Japan; FGF21 ELISA kit from R&D Systems Inc., Minneapolis, MN). Briefly, 

plasma samples were applied into the specific antibody-precoated microplate and 

subsequently reacted with the second antibody. The enzyme reaction yielded a color 

product and its colormetric intensity was measured using a microplate reader. The 

homeostasis model assessment of insulin resistance (HOMA-IR) index was calculated 

using the following formula: fasting blood glucose (mg/dL) × fasting plasma insulin 

(mU/mL)/405. Hepatic total lipid was estimated using the method described by Folch et 

al. [29]. Triacylglycerol (TG) level in liver was measured using a commercial kit (Wako 

E-Test kit; Wako Pure Chemical Industries Ltd.).  

 

2.6 Western blotting 

Approximately 50 mg of liver tissues were homogenized by lysis buffer with a protease 

inhibitor cocktail (cOmplete
TM

 Mini; Roche, Mannheim, Germany). The homogenate 
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was centrifuged at 18000 × g for 30 min. The supernatant protein was obtained and 

determined by Bradford method using a Protein Assay Dye Regent Concentrate 

(Bio-Rad, Hercules, CA) with a commercial protein standard (bovine gamma globulin; 

Bio-Rad). The samples were separated by SDS-PAGE and transferred on to a 

polyvinylidene fluoride (PVDF) membrane (Trans-Blot
®
 Turbo

TM
 Transfer Pack and 

Sequi-Blot
TM

 PVDF Membrane; Bio-Rad). After blockade with 5% skimmed milk for 1 

h at room temperature, the membrane was incubated overnight with primary antibodies 

against AMP-activated protein kinase (AMPK) and phosphorylated-AMPK (p-AMPK) 

(Cell Signaling Technology Inc., Beverly, MA), fatty acid synthase (FAS) (Novus 

biologicals LLC, Littleton, CO), stearoyl-CoA desaturase (SCD)-1 (Santa Cruz 

Biotechnology Inc., Dallas, TX), acyl-CoA oxidase (AOX) (Proteintech Group Inc., 

Rosemont, IL), medium chain acyl-CoA dehydrogenase (MCAD) (Proteintech Group 

Inc.), and β-actin (Cell Signaling Technology, Inc.). The detail for primary antibody is 

described in Supplementary Table 2. Subsequently, the blotted membrane was washed 

and incubated with horseradish peroxidase-conjugated anti-goat IgG (Santa Cruz 

Biotechnology Inc.), or anti-rabbit IgG (Cell Signaling Technology, Inc.) by 

recommended dilutions (1:2000). The detection of target protein was performed with 

chemiluminescence reagent (Clarity
TM

 Western ECL Substrate; Bio-Rad).  
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2.7 Real-time polymerase chain reaction 

Total RNA was isolated from liver, WAT, and BAT using TRIzol® reagent (Thermo 

Fisher Scientific Inc., Carlsbad, CA) according to the manufacturer's protocol. The RNA 

concentration was determined using a NanoDrop 2000c spectrophotometer (Thermo 

Fisher). The RNA samples were diluted to 1 µg/μL and quantified using a real-time 

polymerase chain reaction (PCR) system (ABI PRISM 7500 Sequence Detection 

System; Applied Biosystems, Foster City, CA). Amplification was performed in a 

reacting solution containing 1 µg of RNA and specific primers with a QuantiTect SYBR 

Green Real-time PCR kit (Qiagen, Hilden, Germany). The primer sequences are listed 

in Supplementary Table 3. Thermal cycling conditions were as follows: 1 cycle of 

reverse transcription at 50°C for 30 min, initial activation at 95°C for 15 min, then 40 

cycles of denaturation at 94°C for 15 s, annealing at 55°C for 30 s and extension at 

72°C for 1 min. The expression levels were normalized to those of β-actin or 18s rRNA 

and analyzed using comparative CT method. The gene expression levels are presented as 

ratio of experimental groups to Con group. 

 

2.8 Statistical analysis 
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Data are presented as mean ± standard error. A significant difference (P < 0.05) between 

groups was assessed using one-way analysis of variance followed by Tukey Kramer 

post hoc tests for pair-wise comparisons. Values or groups sharing different letters are 

significantly different. All statistical analyses were performed using the Ekuseru-Toukei 

2015 (Social Survey Research Information Co., Ltd., Tokyo, Japan). 

 

3. Results 

3.1 The suppressive effect of fish oil on accumulation of subcutaneous fat was 

maintained after the discontinuation of fish oil 

First, we discontinued the coadministration of fish oil with pioglitazone for 4 weeks and 

examined the effect on body weight, tissue weight, and abdominal fat mass in KK mice. 

Body weight and subcutaneous fat mass were significantly increased in P group 

compared to Con group (Table 1 and Fig. 1B). In fact, an obvious increase in body 

weight was observed from the 6
th

 week of pioglitazone treatment to the end of 

experimental period in P group (Fig. 2). However, these changes were significantly 

diminished by combination treatment with fish oil, which was maintained for 4 weeks 

after discontinuation of fish oil (Table 1 and Fig. 1B, 2). No significant between-group 

differences were observed with respect to epididymal WAT weight and visceral fat mass 
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(Table 1 and Fig. 1C). BAT weight was increased in pioglitazone-treated P, PF, and PF/P 

groups compared to Con group; however, the gain was significantly smaller in PF group 

among these groups (Table 1). 

 

3.2 Discontinuation of fish oil did not affect the therapeutic efficacy of pioglitazone, but 

exhibited negative effects on adipocyte size and plasma adiponectin. 

We performed biochemical assays, hepatic immunoblot and gene expression analyses, 

and morphological analysis of epididymal WAT to evaluate the effect of the 

discontinuation of fish oil after combination treatment with pioglitazone and fish oil. 

There were no significant differences in blood glucose levels among all groups. Plasma 

insulin level and HOMA-IR index significantly decreased in P group compared to Con 

group, and those in PF and PF/P groups were significantly lower to the same extent as in 

the P group (Table 2). The plasma adiponectin level in the P group was 2.56 times 

higher than that in the Con group, even the difference did not reach statistical 

significance (Table 2). The PF group showed significantly a higher plasma adiponectin 

level compared to Con and P groups; however, no significant increase in plasma 

adiponectin level was observed between the P and PF/P groups (Table 2). Adiponectin 

regulates insulin sensitivity in liver and skeletal muscle; it is secreted by small 
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adipocytes rather than hypertrophic adipocytes [30, 31]. Adipocyte size distribution 

revealed more frequent distribution of large adipocytes (6400–19600 µm
2
) in Con group 

than in P group (Fig. 3A, 3B). Small adipocytes (0–900 µm
2
) were more frequent in the 

P and PF groups compared to PF/P group, and the adipocytes (1600–4900 µm
2
) in the 

PF and PF/P groups were more frequent than the P group (Fig. 3A, 3B). The mean 

adipocyte area in the P group was significantly smaller than that in the Con group. 

Furthermore, in the PF group, the mean adipocyte area was significantly smaller than 

that in the P group; however, there was no significant difference between the P and PF/P 

groups (Fig. 3A, 3C). 

 

3.3 Pioglitazone and fish oil did not activate thermogenesis and energy expenditure, and 

pioglitazone dominates uptake of glucose than fatty acid in BAT 

The uncoupling protein-1 (UCP1), one of the mitochondrial uncoupling proteins, is 

specific for BAT, and plays a key role in consumption of energy as heat [32]. The 

UCP1-mediated BAT thermogenesis contributes to whole-body energy expenditure; 

therefore, the activation of BAT regulates the body fat mass and has a protective effect 

against obesity and metabolic disorders [33]. Therefore, we focused on energy 

expenditure in BAT as a mechanism by which the discontinuation of fish oil after 
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combination treatment with pioglitazone and fish oil maintained the suppressive effect 

of fish oil on the accumulation of subcutaneous fat. In this study, we observed no 

significant between-group differences with respect to the mRNA levels of UCP1 and 

carnitine palmitoyltransferase-1 (CPT1), mitochondrial proteins involved in fatty acid 

β-oxidation (Fig. 3D). Glucose transporter (GLUT) 4 mRNA level tended to increase in 

P group (p = 0.0618) and was significantly higher in PF/P group than Con group. 

Conversely, gene expressions of CD36, a long-chain fatty acid transporter, were 

significantly decreased in P and PF/P groups compared with Con group. However, no 

significant differences were observed between the Con and PF groups with respect to 

levels of both GLUT4 and CD36 mRNA (Fig. 3D). 

 

3.4 Pioglitazone treatment upregulated the expression of genes related to thermogenesis 

in WAT with or without fish oil; however, these changes subsided after the 

discontinuation of fish oil regardless of continuation of pioglitazone monotherapy 

Next, we examined the effect of discontinuation of fish oil on other type of UCP1 

expressing adipose tissue, including “beige adipocyte”, which is a potential target for 

anti-obesity interventions owing to its ability to metabolize glucose and oxidize lipids 

[34]. Induction of beige adipocytes in WAT is referred to as “WAT browning”, a process 
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which is promoted by PPARγ agonist and fish oil treatment [35, 36]. Interestingly, 

UCP1 mRNA level in WAT tended to increase in the PF group (p = 0.0789); in addition, 

its expression level in PF/P group was significantly higher than that in the Con group 

(Fig. 3E). Gene expressions of thermoregulatory markers [such as CIDEA, a CIDE 

(cell-death-inducing DNA-fragmentation-factor-45-like effector) family protein, and 

cytochrome c oxidase subunit 7a1 (Cox7a1)] in PF group were higher than those in the 

Con group (p = 0.0697 and 0.0689, respectively) (Fig. 3E). CPT1 mRNA level in the P 

and PF groups (p = 0.0569 and 0.0676) were higher than that in the Con group; however, 

no significant difference in this respect was observed between the Con and PF/P groups 

(Fig. 3E). We measured plasma and mRNA levels of FGF21, which is a hormonal factor 

that upregulates UCP1 expression in WAT and BAT. PF group showed the highest 

plasma levels and hepatic mRNA levels of FGF21 among all groups; however, the 

difference from the corresponding levels in the Con group was not statistically 

significant (Table 2 and Fig. 4D). There was also no significant the difference between 

the groups with respect to the change in FGF21 mRNA levels in WAT (Fig. 3E). 

 

3.5 The activated β-oxidation and suppressed lipogenesis in liver by pioglitazone with 

fish oil disappeared after the discontinuation of fish oil 
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AMPK plays a critical role in the regulation of fatty acid and energy metabolism [37]. 

Moreover, the activation of hepatic AMPK helps improve type 2 diabetes via the 

downregulation of expressions of gluconeogenesis-related genes, such as glucose 

6-phosphatase (G6pase) and PEPCK [38]. G6Pase catalyzes the hydrolysis of 

glucose-6-phosphate to glucose in the last step of glycogenolysis and gluconeogenesis 

[39]. PEPCK also plays an important role in glucose formation via conversion of 

oxaloacetate to phosphoenolpyruvate [40]. There were no significant between-group 

differences with respect to changes in protein expressions of p-AMPK, total AMPK 

(t-AMPK), and ratio of p-AMPK to t-AMPK in liver (Fig. 4A, 4B). Similarly, the 

hepatic gene expressions of G6pase and PEPCK remained unchanged among all groups 

(Fig. 4D). 

Next, we investigated the mechanisms by which the suppressive effect on body weight 

gain and accumulation of subcutaneous fat was maintained after discontinuation of fish 

oil. In our previous study, the combination of pioglitazone and fish oil was found to 

stimulate fatty acid β-oxidation and inhibit de novo lipogenesis in liver [23]. Thus, we 

measured the hepatic expressions of AOX and MCAD as markers of peroxisomal and 

mitochondrial fatty acid β-oxidation, respectively. Protein expressions of AOX and 

MCAD were significantly elevated in PF group compared to Con group; however, there 
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were no significant differences in this respect between the Con, P, and PF/P groups (Fig. 

4A, 4C). Although AOX mRNA level showed the same tendency as observed for AOX 

protein level, MCAD mRNA level in the PF and PF/P groups was significantly higher 

than that in the Con group (Fig. 4D). And, we evaluated hepatic de novo 

lipogenesis-related markers, such as FAS and SCD1. The protein expression of SCD1 in 

the P group was significantly higher than that in the Con group, while that in the PF 

group was significantly lower than that in the Con group; no significant difference in 

this respect was observed between Con and PF/P groups (Fig. 4A, 4C). Similarly, the 

protein expression of FAS tended to increase in P group (p = 0.0948) compared to Con 

group; however, there were no significant differences in this respect between Con, PF, 

and PF/P groups (Fig. 4A, 4C). And, no significant between-group differences were 

observed with respect to the gene expressions of FAS and SCD1 (Fig. 4D). 

 

4. Discussion 

Over 20 years ago, TZDs were shown to promote the differentiation of preadipocytes 

into mature adipocytes in subcutaneous fat, but not in visceral fat [41]. Several studies 

have shown that TZD-induced weight gain is associated with an increase in 

subcutaneous adipose tissue [42, 43]. In our recent study, combination therapy with 
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pioglitazone and fish oil for 8 weeks was found to ameliorate pioglitazone-induced 

subcutaneous fat accumulation and body weight gain via the suppression of lipogenesis 

and the activation of fatty acid β-oxidation in liver of young and aged KK mice [20, 23]. 

In agreement with our previous study, the present study confirmed the suppressive 

effect of fish oil on the pioglitazone-induced accumulation of subcutaneous fat and body 

weight gain. Importantly, these effects persisted for 4 weeks after discontinuation of fish 

oil along with an improvement in insulin resistance; however, the discontinuation of fish  

oil caused negative effects on lipid metabolism. 

Our previous studies also found that the above-mentioned suppressive effect of fish oil 

was related to the inhibition of pioglitazone-induced fatty acid synthesis in liver [20, 23]. 

Although hepatic FAS and SCD1 gene expressions did not significantly change in 

pioglitazone and/or fish oil-treated mice, these protein expressions were increased in 

mice treated with pioglitazone monotherapy. Our results showed that fish oil treatment 

suppressed pioglitazone-induced upregulation of hepatic FAS and SCD1 protein levels, 

an effect that was abolished after the discontinuation of fish oil for 4 weeks. 

Several researchers have reported an anti-obesity effect of n-3 PUFA that is mediated 

via activation of PPARα and increased fatty acid β-oxidation in liver [44-46]. Moreover, 

PPARα agonist was shown to prevent adipocyte hypertrophy in epididymal WAT and an 
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increased subcutaneous fat weight by PPARγ agonist [47]. In this study, combination 

therapy with fish oil and pioglitazone markedly upregulated hepatic PPARα-related 

gene and protein expressions, such as AOX and MCAD; this was associated with an 

increased plasma adiponectin level and a decrease in the size of adipocytes in 

epididymal WAT. Adiponectin secretion is due to the direct effect of PPARγ ligands and 

n-3 PUFA on the upregulation of mRNA level in adipocytes; in addition, small 

adipocytes are more active secretors of adiponectin than hypertrophic adipocytes [30, 

48]. Therefore, the combination of pioglitazone and fish oil activated PPARα-mediated 

hepatic fatty acid β-oxidation and inhibited adipocyte hypertrophy, which contributed to 

the secretion of adiponectin, in addition to PPARγ-mediated effects on epididymal WAT. 

Since the discontinuation of fish oil for 4 weeks attenuated the activation of PPARα in 

liver and partially attenuated PPARγ in WAT, the antihypertrophic effect on adipocytes 

and adiponectin secretion were also canceled. This also means that the 

pioglitazone-induced accumulation of subcutaneous fat and body weight gain could be 

observed after more than 4 weeks of fish oil discontinuation. 

On the other hand, an edema is more frequently seen as a side effect in patients treated 

with TZDs [49]. The body weight gain without an accumulation of visceral and 

subcutaneous fats was observed by discontinuation of fish oil, which suggested that the 
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water retention was related to the pioglitazone-induced body weight gain and 

suppressed, at least in part, by the combination of pioglitazone and fish oil. 

One of the effects of adiponectin on liver and skeletal muscle is an improvement in 

insulin sensitivity and lipid metabolism by the activation of AMPK and PPARα through 

specific receptors for adiponectin (AdipoR1 and R2, respectively) [50, 51]. We had also 

shown that pioglitazone treatment reduced insulin resistance associated with increased 

plasma adiponectin level of more than 20 µg/mL in male KK mice [20, 23]. Consistent 

with these reports, pioglitazone-treated mice in the present study showed an increase in 

plasma adiponectin level and a decrease in HOMA-IR index. However, changes in the 

gene expressions of gluconeogenic enzyme associated with the activation of AMPK 

were not observed in the liver. Adiponectin was shown to promote glucose uptake and 

fatty acid β-oxidation in skeletal muscle through AdipoR1-mediated AMPK and p38 

mitogen-activated protein kinase (MAPK) pathways [52, 53]. Moreover, PPARα 

transcriptional activity is stimulated by the adiponectin-induced activation of AMPK 

and MAPK [54]. In other studies, adiponectin itself also increases the expressions of 

PPARα and endogenous ligands in skeletal muscle [4, 55], which suggests that 

pioglitazone-induced adiponectin may potentially help improve glucose and fatty acid 

metabolism in skeletal muscle than liver. The effect of pioglitazone and fish oil on 
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skeletal muscle is not clear; therefore, further studies might be needed. 

 In addition to the direct activation of hepatic PPARα by fish oil, we focused on 

FGF21, a hormonal factor that is abundantly expressed in liver, but to a lesser extent in 

WAT and skeletal muscle [56]. FGF21 increases hepatic fatty acid β-oxidation via the 

induction of PPAR γ coactivator protein-1α and acts in an autocrine/paracrine manner to 

activate thermogenic pathways and induce browning of WAT [57]. In a recent study, 

PPARα agonist was shown to enhance hepatic FGF21 production and FGF21-WAT 

browning pathway [58]; and, Yang et al reported that 20 wt% fish oil feeding 

upregulated hepatic FGF21 mRNA level, but failed to increase serum FGF21 level and 

its protein expression in C57BL/6J mice [59]. In this study, 10 wt% fish oil-treated mice 

did not show any significant impact on plasma FGF21 level and its gene expressions in 

liver, which suggests that further doses of fish oil may be required to induce hepatic 

secretion of FGF21. 

PPARγ agonists have been shown to induce WAT browning in primary adipocytes and 

animal models [60, 61]. As expected, pioglitazone and fish oil-treated mice showed 

increased expressions of UCP1 and thermoregulatory genes in epididymal WAT. Despite 

continuation of pioglitazone treatment, the discontinuation of fish oil markedly 

attenuated pioglitazone-induced upregulation of thermoregulatory genes up to the level 
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in the Con group, but not that of UCP1. These observations suggested that the 

disappearance of thermogenesis was in part a negative effect of discontinuation of fish 

oil. 

Consistent with the previous study that used 3T3-L1 adipocyte with PPARγ ligand [62], 

pioglitazone monotherapy increased GLUT4 mRNA level in BAT. Although fish oil 

feeding upregulated PPARγ and GLUT4 expressions in BAT [63], pioglitazone-induced 

upregulation of GLUT4 mRNA was completely canceled in fish oil-treated mice in our 

study. On the other hand, pioglitazone treatment decreased CD36 mRNA level in BAT, 

and its downregulation was also attenuated in the presence of fish oil. The underlying 

mechanisms are yet to be elucidated; however, the phenomenon of brown-to-white 

conversion in adipose tissue (“BAT whitening”) is a potential explanation [64]. BAT 

mass was increased by lipid accumulation in obesity condition, which creates WAT-like 

phenotype and declines typical BAT function, such as thermogenesis, lipolysis, glucose, 

and fatty acid uptake [65]. In the present study, BAT mass was greater in mice treated 

with pioglitazone without fish oil and it acquired WAT-like color (own observation), 

which confirms that this was related to lipid accumulation in BAT. These observations 

were normalized in fish oil-treated mice, which suggest that fish oil cotreatment 

improved pioglitazone-induced BAT whitening and had an effect on some gene 
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expressions. PPARγ agonist-induced BAT whitening in KK mice is still a matter of 

debate. Future trials should focus on BAT dysfunction as a therapeutic strategy for type 

2 diabetes using pioglitazone and fish oil. 

In conclusion, in the present study, the suppressive effect of fish oil on 

pioglitazone-induced accumulation of subcutaneous fat and body weight gain was 

maintained in spite of discontinuation of fish oil cotreatment for 4 weeks in KK mice. 

However, the discontinuation of fish oil showed several negative effects: 1) return of 

plasma adiponectin level; 2) abolition of inhibition of lipogenesis and activation of fatty 

acid β-oxidation in liver; 3) increase in hypertrophic adipocytes in epididymal WAT; 

and 4) accumulation of lipids in BAT. Insulin resistance was improved by pioglitazone 

with or without fish oil treatment. These findings indicate that continued treatment of 

TZDs and n-3 PUFA produces the desired therapeutic effect, and n-3 PUFA interruption 

for at least 4 weeks causes adverse effects on lipid metabolism and energy homeostasis. 
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Legends for figures 

Supplementary Figure 1 Experimental design 

 

Figure 1 Impact of discontinuation of fish oil after pioglitazone-fish oil combination 

treatment on abdominal fats. 

 CT images (A), subcutaneous fat mass (B), and visceral fat mass (C). Colored regions 

represent subcutaneous fat (yellow) and visceral fat (pink). The data are expressed as 

mean ± SE (n = 4-5), and analyzed by one-way ANOVA followed by the Tukey Kramer 

post hoc tests. Groups sharing different letters are significantly different at P < 0.05. 

Figure 2 Impact of discontinuation of fish oil after pioglitazone-fish oil combination 

treatment on body weight. 

 Body weight was measured weekly. Measurement of body weight in 12 weeks was 

only performed under 12 h-fasted condition for dissection. Data are presented as 

mean ± SE (n = 5), and analyzed by one-way ANOVA followed by the Tukey Kramer 

post hoc tests. *Significant difference between Con and P groups at P < 0.05; ** 

Significant difference between P and PF groups at P < 0.05; # Significant difference 

between P and PF/P groups at P < 0.05; ## Significant difference between Con and PF/P 

groups at P < 0.05. 
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Figure 3 Impact of discontinuation of fish oil after pioglitazone-fish oil combination 

treatment on adipocyte size of WAT and gene expressions in BAT and WAT. 

Sections of WAT stained with hematoxylin-eosin(A), adipocyte distribution of WAT (B), 

mean adipocyte area of WAT (C), mRNA expression levels in BAT (D) and WAT (E). 

The results of gene expression are represented as ratio of experimental groups to Con 

group after normalization by the 18s rRNA (BAT) or β-actin (WAT). The data are 

expressed as mean ± SE (n = 4-5), and analyzed by one-way ANOVA followed by the 

Tukey Kramer post hoc tests. Groups sharing different letters are significantly different 

at P < 0.05. Abbreviations: Ucp1, uncoupling protein 1; Glut4, glucose transporter 4; 

Cd36, fatty acid transporter CD36; Cpt1, carnitine palmitoyl transferase 1; Cidea, 

cell-death-inducing DNA-fragmentation-factor-45-like effector; Cox7a1, cytochrome c 

oxidase subunit 7a1; Fgf21, fibroblast growth factor 21. 

 

Figure 4 Impact of discontinuation of fish oil after pioglitazone-fish oil combination 

treatment on hepatic protein and gene expressions.  

 Western blot analysis of hepatic protein expressions (A), Quantitative values of protein 

levels in liver (B), (C), and mRNA expression levels in liver (D). The results are 

represented as ratio of experimental groups to Con group after normalization by the 
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β-actin. The data are expressed as mean ± SE (n = 4-5), and analyzed by one-way 

ANOVA followed by the Tukey Kramer post hoc tests. Groups sharing different letters 

are significantly different at P < 0.05. Abbreviations: Fas, fatty acid synthase; Scd1, 

stearoyl-CoA desaturase 1; Aox, acyl-CoA oxidase; Mcad, medium-chain acyl-CoA 

dehydrogenase; Fgf21, fibroblast growth factor 21; G6pase, glucose 6-phosphatase; 

PEPCK, phosphoenolpyruvate carboxykinase. 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

 

 

 



40 

 

 

 



41 

 

 

 

 

 



42 

 

 

 

 



43 

 

 

 



44 

 

 


