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CONTROLLED SURGERY THEORY

MASAYUKI YAMASAKI

INTRODUCTION

Although algebraic topology is a very powerful tool for studying global properties
of spaces, it has some limitations:

1. Topological conditions are difficult to handle, compared with homotopical
conditions, that is, the condition that a given map is a homeomorphism is
much stronger than the condition that it is a homotopy equivalence, but it is
difficult to reflect this in algebraic form (for example, topological invariance
of Whitehead torsion, topological invariance of rational Pontryagin classes,
etc.).

2. Local conditions or geometric properties of spaces are difficult to handle.

‘Following Chapman and Ferry, Quinn started a project to overcome these difficulties
in [20] and subsequent papers. This is what is called the “controlled topology” or
the “Chapman-Ferry-Quinn theory”.

Regarding the basis elements of free modules to be points on a space with a
control map to some metric space, Quinn introduced the notion of size for homo-
morphisms between them. Controlled topology works well when objects of small
sizes split into pieces lying over small subsets of the space. If this is the case, each
piece may reflect the local data. Also, if the space has a good local property, the
split pieces can usually be deformed to even smaller objects. Such an operation is
called “squeezing”.

In this article, I describe some aspects of “controlled surgery theory”. We ac-
tually need some knowledge on “controlled K-theory”, but this will complicate
the exposition too much; so we only consider cases in which we can disregard K-
theoretic problems.

The plan is as follows. We review the classical surgery theory in Section 1. In
Section 2, we describe the “spacification” of surgery theory due to Casson-Sullivan-
Quinn-Ranicki. In Section 3, we introduce control into surgery theory. Quinn used
such a theory in [21] to study the resolution problem of homology manifolds. Here
we follow the version of controlled surgery theory given by Ferry and Pedersen
([12], [13], and [2]). We will assume that the control map p: K — X to a metric
space X is UV!. This roughly means that the point inverses p~!(x) are simply-
connected. Under this assumption, the local Whitehead and Kj groups vanish, and
the controlled L-groups are homology groups. In general, controlled L-groups are
not homology, but L{(~*)-groups are known to be homology groups ([33]). Section
4 describes a result of Bryant-Ferry-Mio-Weinberger [2] on resolutions of homology

This article originally appeared in Jap&nese in Stgaku 50 (3) (1998), 282-292.
2000 Mathematics Subject’ Classification. Primary 57R67, 57P10.
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manifolds as an application. As other applications, we mention results on the
Novikov Conjecture and the finiteness theorem of Grove-Petersen-Wu.

Controlled topology has made, and is still making, a lot of progress through the
efforts of many people. There are now various kinds of control methods besides
the original € control. There is also a sheaf-theoretic approach as in {18]. But I
could not include them in this article. Please refer to the original papers that are
referred to in Section 5. It will be necessary to make even further modifications to
use control topolgy in different applications.

1. CLASSICAL SURGERY THEORY

We review the classical surgery theory (in the topological category). Suppose a

topological space K is given. Let us consider the following questions.

(Q1) Does K have the homotopy type of a closed topological manifold?

(Q2) Suppose the answer to the above question is “yes”. How many different closed
topological manifolds are there that are homotopy equivalent to K7

To simplify the argument, we assume that K is a finite CW complex and we consider

only oriented closed topological manifolds.

Let K be a covering space of K with the group of covering translations . Let us
denote the group ring Z[r] by A, and the integral coefficient cellular chain complex
C,(K) of K by C,(K;A). It is a A-module chain complex via the (left) action
of m on K (the simplices of K form a natural basis as a A-module). The dual
Homa (C,(K), A) as a A-module chain complex is denoted by C*(K;A). Here the
action of A from the left is given by:

(Cneg))@) = f(@)(Tneg™)  (Lngg €A, f € CT(K;A), 3 € Cr(K;A)).
Also, for an integer n, the n-dual C™ *(K;A) is defined by:

(C*"(K;A))r = C" (K, A),
dr = (=1)"(do.(re,n))* : CPT(K;A) — CPTHEGA)

The homology group H,(C™ *(K;A)) of this chain complex coincides with the
compact-support integral cohomology group Ho" (I? ) of K.

If K is homotopy equivalent to a topological manifold, then Poincaré duality
must hold for K just as for manifolds. So we assume that K is a Poincaré complex

in the following sense:

Definition 1.1. A finite CW complex K is an n-dimensional Poincaré complex if
there exists an n-cycle £ € Cpp(K) such that the following is a chain equivalence:

EN=-: C" (K Z[ry(K))) — Cu(K; Zlmy(K))) -

Here £ denotes the possibly infinite transfer of ¢ in C¥(K). If the Whitehead torsion
of this map (€ Wh(m)) is trivial, the Poincaré complex is said to be simple.

One of the differences between Poincaré complexes and topological manifolds
appears in the bundle theory. The bundles for topological manifolds are the topo-
logical fiber bundles (or simply Top bundles); for a locally-flat embedding of a topo-
logical manifold M in a Euclidean space, there is a normal Top bundle, denoted
vpr, which is stably unique with respect to connected sums with trivial bundles.

On the other hand, for Poincaré complexes embedded in Euclidean spaces, we have
the following: :
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Theorem 1.2. (Spivak) Suppose an n-dimensional Poincaré complez K is embed-
ded in a sufficiently high-dimensional Euclidean space EY. Then the retraction to
K of a regular neighborhood of K defines a spherical fibration with homotopy fiber
SN=™ when restricted to the boundary. Furthermore, this fibration is stably unique
with respect to taking a fiberwise join with trivial spherical fibrations, i.e., taking a
fiberwise suspension.

Such a stable spherical fibration is called the Spivak normal fibration of K and is
denoted by vk

The classifying space for stable spherical fibrations is denoted by BG. The i-th
homotopy group of BG is the stable homotopy group limg—,eo Titk—1(S¥) of the
spheres. The classifying space for the stable Top bundles is denoted by BTop, and
the homotopy fiber of the natural map J : BTop — BG is denoted by G/Top. If
an n-dimensional Poincaré complex K is an n-dimensional closed manifold, then its
Spivak normal fibration vk has a reduction to a Top bundle, that is, the classifying
map for vi has a lift to BTop.

So let us assume that vg has a Top reduction. Then the set of all homotopy
classes of the lifts to BTop can be identified with [K : G/Top], and there is a
one-to-one correspondence between [K : G/Top] and the set of all normal bordism

classes of degree 1 normal maps from closed manifolds to K. (See the definition
below.)

Definition 1.3. (1) A normal map (f,b) M — K from an n-dimensional manifold
M to an n-dimensional Poincaré complex K is a pair consistingofamap f : M — K
and a stable bundle map b : vpr — 7 covering f from the stable normal bundle
vy : M — BTop of M to some Top bundle n : K — BTop over K.

(2) Two normal maps (f: M — K, b:vy —n)and (f: M — K, b:vpy — 1)
are normally bordant if there exist a bordism F { W1 — K x [0, 1] between f and
f', a Top bundle H over K x [0, 1], and a stable bundle map B : vy — H covering
F whose restrictions to the two ends are b and b'.

Surgery is a method to deform a degree 1 normal map; the new normal map
is normally bordant to the original map and, conversely, normally bordant normal
maps can be deformed by surgery to each other.

‘We can answer Q1 if we have a method to detect whether a given normal map is
normally bordant to-one whose underlying map is a homotopy equivalence. Such an
obstruction is defined in the L-group (surgery obstruction group). The decoration
h stands for homotopy equivalence. In general, for a ring A with involution contain-
ing 1, abelian groups L?(A) (n > 0) are defined. The surgery obstruction o(f, b) of
a degree 1 normal map (f,b) : M™ — K is defined in the L"-group L (Z[m (K)])
of the group ring Z[m; (K], and the following holds:

Theorem 1.4. ([31], [15]) Let (f,b) : M — K be a normal map, and suppose
n > 4. If n = 4, further suppose that m1(K) is good in the sense of Freedman-
Quinn. Then (f,b) is normally bordant to a homotopy equivalence if and only if
the surgery obstruction o(f,b) vanishes.

To answer Q2, we first need to fix the classification scheme. Let us consider
the classification up to h-cobordisms. For this it suffices to verify that the surgery
obstruction for a normal map from a manifold with boundary to K x I which



116 MASAYUKI YAMASAKI

restricts to a homotopy equivalence of boundary can be defined in L2, (Z[r;(K)))
and that a similar result holds as above.

Definition 1.5. The homotopy structure set S*(K) of an n-dimensional Poincaré
complex K is defined by:

S*K)={f:M — K | M : an n-manifold, f : a homotopy equivalence} / ~ ,

where two homotopy equivalences f : M — K and f': M’ — K are equivalent if
there exist an h-cobordism W between M and M’ and an‘extension F : W — K
of f and f'.

Theorem 1.6. (Surgery Exact Sequence) Suppose n > 5 and K 1is a connected
n-dimensional Poincaré complez. If v has a Top bundle reduction, then there is
an ezact sequence of sets:

Lt (Z[m (K)]) == SM(K) - [K : G/Top] = LE(Z[m (K))) -

Remark. The map ¢ sends a normal map to its surgery obstruction. The map
n sends a homotopy equivalence f : M — K to the induced normal map (f,b :
vp — (f71)*var). The exactness at [K : G/Top] is in the previous theorem (i.e.,
im(n) = ¢7(0)). One can introduce an abelian group structure in [K : G/Top],
but ¢ may not be a homomorphism. In fact, 0 € LA(Z[r(K)]) is in the image
of o if and only if S*(K) is nonempty (i.e., K has the homotopy type of a closed
n-dimensional manifold). Assuming S*(K) is nonempty, w represents an action
of L (Z[r1(K)]) on S™(K), and the exactness at S"(K) means that the inverse
image of an element by 7 coincides with some orbit of the action w.

If we deal with simple homotopy equivalence instead of homotopy equivalence,
similar objects S*(-) and L{(Z[-]) can be defined analogously, and a similar exact
sequence holds. For example, S°*(K™) can be defined using simple homotopy equiv-
alence and s-cobordism. Note that, if n > 5, the s-cobordism theorem implies that
two simple homotopy equivalences f; : M — K (i = 1,2) are equivalent if and only
if there exists a homeomorphism h : M7 — M, satisfying f; >~ fo o h.

Since these two theories are quite parallel to each other, we omit the decorations
for S and L from now on. If the Whitehead group Wh(m;(K')) vanishes, that is,
w1 (K) is trivial, or isomorphic to Z", then there is no difference between them
anyway. :

Both L-groups have periodicity of period 4. For example, the L-groups of A =
Z[{1}] = Z are given by:

Theorem 1.7.
Z 1= 0 mod 4,

Li(Z) = { Z/2 i=2mod 4 (i>0),
0 1 odd.
This coincides with the homotopy group m;(G/Top) of G/Top for i > 0:
Theorem 1.8. G/Top is connected, and 7;(G/Top,*) & L;(Z) ( > 0).

When K is a closed topological manifold, we can define the relative structure
set S*(K x I*,d) using homotopy equivalence (W, 8) — (K x I, 8) that restrict to
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homeomorphisms on the boundary, and we can extend the surgery exact sequence
to the left:

o S(K x I',8) — [K x I, 0 : G/Top, *] = Ln+i(Z[m1(K)))
- S(KxI'1,8) — ...

2. SPECTRA AND HOMOLOGY

A collection E = {Eg, €x | k¥ € Z} of based spaces Ex and based homotopy
equivalences ¢; : Ex — 2Eg41 to the loop spaces is called an Q-spectrum. In the
following we actually consider a A-set [30] satisfying the Kan condition instead of
spaces, but we pretend that these are ordinary spaces.

The homotopy groups of an Q-spectrum E are defined to be 7, (E) = mpx(Ex)
(n,k € Z,n+ k > 0). When m;(E) =0 for all ¢ < ¢, E is said to be g-connective.

The surgery obstruction groups L% (Z[r;(K)]) (n > 0) are the homotopy groups
of a certain O-connective 2-spectrum. In fact, there is a functor L(0)(-) that sends
a path-connected space K to an Q-spectrum L(0)(K) satisfying

Ln(Z[m(K)]) n20,
0 n<0.

m(LO)K) = {
This Q-spectrum is called the 0-connective periodic L-spectrum. Quinn constructed
this spectrum using a geometric method ([19], [31, 17A], [32, Chapter 3]). Since
surgery obstruction groups can be identified with the set of cobordism classes of
certain chain complexes with duality structures ([25], [26]) and there are notions
of n-ads (pairs, triads, 4-ads, ... ) of such chain complexes, one can algebraically
construct a similar functor that sends a ring R to a spectrum L(R). Or one can
algebraically construct “L(K)” using geometric modules on K (cf. [27], [33]). Geo-
metric modules will be introduced in the next section.
By imposing some restriction on the chain complexes used in the construction
above, one can kill the homotopy group mo(L{0)(K)) and construct the I-connective
L-spectrum L(1)(K) that satisfies

(LK) = { é;n(Z[’fl(K ) n>1,

n<l.
There is a map of spectra L{1){(K) — L(0)(K) that induces isomorphisms on 7,
(n>0).
When K = {*} or K is simply-connected, we use the following notation:

L) = LO)({*}), L) = LO){*}).

There are homotopy equivalences L(0)g ~ Z x G/Top , L(1)g =~ G/Top (Casson,
Sullivan).

(Co)homology groups of a pair (K, L) with the coefficient an Q-spectrum E are
defined by:

Hu(K,L;E) = lim mosn(K/LAEy),  H™(K,LiE) = [K/L,*: En,+]
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(If L = @, then K/§ = K U {*}.) These are the homotopy groups of certain
Q-spectra: Hp(K,L;E) = m,(H. (K, L;E)) , H*(K, L;E) = m,(H* (K, L; E)) .

For each functor E that associates an §l-spectrum to a space, Quinu defined the
“assembly map” between spectra:

A H (K;E({*})) — E(K).

The induced homomorphism A : H.(K;E({*})) — m.(E(K)) is also called the
assembly map.

Let ¢ = 0, 1. (There are analogous results for any ¢ € Z.) For a polyhedron
K, Ranicki defined the algebraic structure spectrum S(g)(K) in the g-connective
L-theory as the relative term of the assembly map for the g-connective L-spectrum,
and obtained a fibration of spectra ([25]):

H. (K;L{g)) 2 L{g)(K) = S{g)(K) .

Its homotopy exact sequence

= Sn1{@) (K) = Ha(K;L(g)) 2 La(ZIm (K)]) 2 Sula)(K)
— Hopoy (K;L(g)) — ...

is called the g-connective algebraic surgery ezact sequence for K. Here S,(g)(K)
denotes the homotopy group 7, (S(g)(K)) and is called the algebraic structure group
in the g-connective L-theory.

Theorem 2.1. (Ranicki, [25], [26], [27]) Let K be an n-dimensional closed mani-
fold, and let n > 5. For each i > 0, there are isomorphisms

S(K x I',0) = Spyigr(1)(K),
(K x I',8: G/Top, ] = [K x I',8 : L{1)o, ¥ = H™(K; (1)) & Hpys(K;1L(1)),

and the surgery ezact sequence for K coincides with the I-connective algebraic
surgery ezact sequence under these identifications.

As the last topic of this section, we mention the total surgery obstruction of
Ranicki. Let K be an n-dimensional Poincaré complex. In the previous section,
the question Q1 had two-step obstructions: (1) Does vx have a Top bundle reduc-
tion? (2) Is there a degree 1 normal map to K with trivial surgery obstruction?
Ranicki unified these and defined a single obstruction s(K), called the total surgery
abstruction, for K to have the homotopy type of a closed topological manifold as
an element of S,(1)(K), where n > 5. The image of s(K) in S,(0)(K) is denoted
5(K), and is called the 0-connective total surgery obstruction. In the algebraic
surgery exact sequence,

e the image ¢(K) € Hp1(K;L(1)) (resp. {(K) € Ho—1(K;L(0)) ) of s(K) €
Sa(1)(K) (resp. 3(K) € So(0)(K) ) is the obstruction for v to have a lift
to BTop(k) ( resp. BTop ), and

e if ¢(K) = 0 (resp. ¢(K) = 0 ), & maps the surgery obstruction o(f,b) €
Ln(Z[r (K)]) of any degree 1 normal map (f,b) : M — K to s(K) (resp.
5(K)),

where B’ﬁ)_{)(k) —+ BG(k) is the pull-back of BTop — BG via the obvious map
BG(k) — BG.
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3. CONTROLLED TOPOLOGY

Let X be a metric space, M and K topological spaces, and ¢ a positive number.
Suppose that a continuous map p: K — X is given.

Definition 3.1. A homotopy H : M x [0,1] — K is said to be a p~1(e) homotopy
if the diameter of po H(a X [0, 1]) is less than or equal to € for each a € M.

Definition 3.2. A continuous map f: M — K is a p~1(¢) homotopy equivalence
if there exist a continuous map g : K — M and homotopies h : go f =~ 1,
k: fog =1k such that both f o h and k are p~!(e) homotopies.

Now we consider the e version of surgery theory. Let K be an n-dimensional
. Poincaré complex and p: K — X a map from K to a metric space (X,d). When
does there exist a p~*(e) homotopy equivalence from an n-dimensional topological
manifold? Obviously vx must have a Top bundle reduction, and therefore there
must exist a degree 1 normal map (f,b) from a topological manifold. To define
an obstruction in the “controlled surgery obstruction group”, we need more as-
sumptions. The difference between the Poincaré duality of manifolds (or homology
manifolds) and that of Poincaré complexes is that the former is something assem-
bled from local dualities. Note that the definition of manifolds 4s local. Suppose
there is a p~*(¢) homotopy equivalence with small e. Since the Poincaré duality for
a manifold is “small”, the Poincaré duality for K must also be “small”.

To clarify the meaning of the previous sentence, we introduce the notion of
geometric modules ([4], [20], [22], [28]). To simplify the definition we assume that
p: K — X is a UV'-map; i.e., p is proper and onto, and for any ¢ > 0, any
map « : P2 — X from a 2-complex P, and any lift ag : Py — K of « defined
on a subcomplex Py of P, there exists an extension & : P — K of ag such that

d(po&(s),a(s)) < e (for all s € P). For example, the identity map 1: X — X is a
UVi-map.

Definition 3.3. (1) Let S be a set. The pair (Z[5], ¢) of the free module Z[S]
generated by S and a map ¢ : S — K is called a geometric module on K.

(2) A morphism f : (Z[S],¢ : S — K) — (Z[T), : T — K) between two
geometric modules on K is a formal sum ), ., na(sa,ta) of pairs (s,t) € S x T
with integral coefficients such that, for each s € S, there are only finitely many A's
with s) = s and that, for each ¢t € T, there are only finitely many A's with ¢ty =t. A
morphism obtained by reduction of like terms is regarded to be a different morphism
from the original.

(3) A morphism [ : (Z[S),¢) — (Z[T),) has radius p~*(e) if the coefficient ny
in f of a pair (sy,ty) satisfying d(p o ¢(sx),po¥(ts)) > €is 0.

(4) The dual (Z[S], ¢)* of (Z[S], ¢) is defined to be (Z[S), ¢) itself; thus Z[S]
can be regarded as a submodule of Homg(Z[S],Z). The dual f* : (Z[T],¥)* —
(Z[S],#)* of a morphism f : (Z[S],¢) — (Z[T),%) with f = > 4 na(sa,ta) is
defined by f* =3, .4 nata, s2). If f has radius p~'(e), then so does f*.

(5) By ~. we denote the equivalence relation on the set of morphisms f :
(Z[S), ¢) — (Z[T),) with radius € generated by reductions of like terms satisfying
d(po ¢(sr),pow(ty)) < € together with the inverse operations.

Remarks on definition. (1) If X is bounded and the sets S, T are finite, then the
set of the equivalence classes with respect to ~, of the morphisms of radius p~!(e)
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from (Z[S], ) to (Z[T), %) can be identified with Homgz(Z[S], Z[T]) for sufficiently
large e.

. (2) Let (Z[S],¢ : S — K) be a geometric module and let S — S be the pull-back
of the universal cover K — K of K via ¢. Then the free module Z[S] generated by §
has an action of 7 (K) and can be regarded as a free Z[r; (K)]-module. In general, a
morphism f : (Z]5], ¢) — (Z[T),v) does not necessarily define a Z[m; (K)]-module
homomorphism Z[S] — Z[T). But, if K and X are.finite polyhedra and f has
radius p~!(e) for sufficiently small ¢, then it defines a unique Z[r;(K)]-module
homomorphism Z[S] — Z[T] since p is UVL. (Note that non-contractible loops in
K have images in X of diameter bounded below by some positive number.)

(3) For the definition of morphisms for a more general map p, please refer to
[28].

Suppose that K is a finite polyhedron and that a UV'-map p: K — X to a
polyhedral metric space X is given. The simplicial chain complex C,(K) of K
can be regarded as a “chain complex” of geometric modules. Pick a representative
point (e.g., the barycenter) from each simplex and think of it as a basis element.
For any € > 0, we may assume that the boundary morphisms of C,(K) have radius
p~1(e) and that the compositions of consecutive boundary morphisms are p~(e)
homotopic to 0 (the empty morphism) by taking a sufficiently fine triangulation.
As we noted above, we can construct C,(K) from C,(K) by taking the pull-back
of the universal cover K — K.

Definition 3.4. K above is an n-dimensional p~*(¢) Poincaré complez with re-
spect to p if there exists a cycle £ € Crn(X) for which

EN-: C"M(K) = C.(X)

is a p~1(e) chain homotopy equivalence for some sufficiently fine subdivision of K.
Here a “p~!(¢) chain homotopy equivalence” is defined by throwing in appropriate
~1(e)’s in the ordinary definition and using ~’s in place of the equalities ([28]).

Remark. Although one can consider the controlled torsion of p~*(¢) chain homotopy
equivalences, such a torsion is known to vanish for sufficiently small ¢ when the
control map p is UV, So we do not define p~*(¢) simple Poincaré complexes here.

Theorem 3.5. (S. C. Ferry and E. K. Pedersen, [13], [2, § 2]) Let X be a finite
polyhedron and n > 5. Then there exist g > 0 and T > 1 satisfying the following:
For any € (¢g > € > 0), any n-dimensional p~t(¢) Poincaré complezp: K — X,
and any degree 1 normal map (f,b) : M™ — K, there is defined a well-defined ob-
struction class o°(f,b) in H,(X;L(0)), and (f,b) is normally bordant to a p~*(Te)
homotopy equivalence if and only if o°(f,b) vanishes.

The data on K seems to be missing from the obstruction class, but this is due to
the assumption that the fiber of p is approximately simply-connected. The image
of o¢(f,b) by the assembly map A : H,(X;L(0)) — L,(Z[r1(K)]) coincides with
the ordinary surgery obstruction o(f,b). : '

To state the epsilon surgery exact sequence of Ferry-Pedersen, we need to define
a p~!(e) homotopy structure set S¢(p: K — X). This will be done in Theorem 3.7
below. We first introduce the unstable structure set as a preparation:



CONTROLLED SURGERY THEORY 121

Definition 3.6. Let p: K — X be a UV'-map. Define S/(p: K — X) by
{f:M — K | M : n-manifold, f : a p~*(¢) homotopy equivalence } / ~ ,

where two maps f: M — K, f': M’ — K are equivalent if there exists a homeo-
morphism h : M — M’ such that f and f’ o h are p~(e) homotopic. (Note that,
for n > 5, a controlled h-cobordism is a controlled product in this situation. [20])

Theorem 3.7. (S. C. Ferry and E. K. Pedersen, [13), [2, § 2]) Let X be a finite
polyhedron and n > 5. Then there ezist g > 0 and T 2 1 satisfying the following:
If K is an n-dimensional closed topological manifold and p: K — X is UV, then
for any € (g > € > 0) there is a functorial surgery ezact sequence

oo = Hn 1 (X51(0) = Se(p: N — X)) — Ho(N;L(1)) = Ho(X;1L(0))
where Se(p) = im (SH(p) — Sk(p)) and Se(p) = Sy ().

Remark. When K is only a p~'(¢) Poincaré complex, there is an exact sequence
up to terms that make sense, but the maps may not be homomorphisms just as in
the classical case. .

Note that, for sufficiently small ¢, the controlled surgery obstruction groups are
independent of the value of . This sort of phenomenon happens often in controlled
topology: we can squeeze sufficiently small objects to get objects as small as we
like. The key idea is to split objects into pieces and to use induction ([29]). See
also the remark on the size of the images of non-contractible loops above.

4. HoMoLOGY MANIFOLDS

In this section, we describe the work of Bryant-Ferry-Mio-Weinberger [2] on
homology manifolds. The ANR (absolute neighborhood retract) X is a homology
n-manifold if H;(X, X — {z}) & H;(R™,R™ — {O}) holds for each z € X. An n-
dimensional closed topological manifold is a homology n-manifold, and the following
gives a partial converse:

Theorem 4.1. (Edwards, [5]) Let n > 5 and let X be a homology n-manifold
satisfying DDP. Then any resolution f : M — X can be approzimated by a home-
omorphism.

We say that X satisfies DDP (Disjoint Disks Property) if any two continuous
maps from a 2-disk to X can be approximated so that they have disjoint images,
and f: M — X is a resolution if M is an n-dimensional topological manifold and f
is a proper cell-like surjection. (A map is cell-like if every inverse image of a point
is contractible in any neighborhood. If a map is an € homotopy equivalence for any
€ > 0 with respect to the identity map of the target, then it is cell-like.)

In [21], [23], Quinn found the obstruction for a connected homology n-manifold
X (n 2 5) to have a resolution:

Theorem 4.2. (Quinn) There is an integer-valued invariant I(X) of connected
homology n-manifolds X (n > 5 ) satisfying:

(1) I{X)=1(mod 8 );

(2) if U C X is a connected open subset, then I(X) = I(U);

(3) (X xY)=I(X)x I(Y);

(4) X has a resolution if and only if I(X) = 1.
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Define an integer i(X) by ¢(X) = (I(X) — 1)/8. This integer has the following
interpretation: There is a degree 1 normal map to the homology manifold X ([12,
Theorem 16.6)). Since X is ¢ Poincaré with respect to the identity control map
1x : X — X for every € > 0, one can associate an e surgery obstruction class
o%(f,b) € Hn(X;L{0)) & [X : Z x G/Top| to any degree 1 normal map (f,b) :
M — X. The [X : Z] = Z component of o°(f,b) is the integer 1(X).

The existence of resolution can be derived from the vanishing ¢(X) = 0 in the
following way. For simplicity we assume that X is a polyhedron. By changing
[f,b] € [X : G/Top] if necessary, we may assume that ¢°(f,b) = 0 € [X : Z x
G/Top). Therefore S(1x : X — X) 5 @ for every e > 0. In the exact sequence

Hpp (X3H4<1>) et n+1(X§L<0>) - Se(lX) - Hn(X§L(1>) - Hn<X;L<O)) )

the first map is an isomorphism and the last map is an injection, because H;(X;Z) =
0 for i > n. Therefore there exist a closed topological manifold M™ and a sequence
of maps f; : M — X such that (1) f; is a 1/i? homotopy equivalence, and (2) f;
and f;y1 are 1/i% homotopic. The limit is the desired resolution of X.

Let X be a homology n-manifold and pick a degree 1 normal map f: M — X.
As above, f determines o¢¢(f,b) € H,(X;L(0)). From A(c¢(f,b)) = o(f,b) and
(a(f, b)) = 3(X), we can deduce 3(X) = 0 € S,{0)(X). The following is the main
result in [2]. ~

Theorem 4.3. (Bryant-Ferry-Mio-Weinberger) Let X be an n-dimensional
Poincaré complez and n > 6. X has the homotopy type of an n-dimensional topo-
logical manifold if and only if 3(X) =0 € Sp(0)(X). If 5(X) =0, then there exists
a covariantly functorial 4-periodic ezact sequence of abelian groups:

s Hpp1 (X3 1(0)) = Lnga (Zmy (X)) — ST (X) — Ha(X;L(0)) — La(Zlm (X)) .

Remarks. (1) SH(X) is defined by replacing “manifolds” with “homology mani-
folds” in the definition of S(X).

(2) When X is a homology n-manifold, there is an isomorphism S (X) =
Sr+1(0)(X) that sends a homotopy equivalence f : Z — X from another homology
manifold Z to its relative total surgery obstruction of the mapping cylinder of f. Via
this isomorphism, the above exact sequence can be identified with the 0-connective
algebraic surgery exact sequence (Ranicki [27]). '

Example. Take the n-dimensional sphere S™ (n > 6) as X. In the surgery exact
sequence for homology manifolds, we have

Hoy1 (S™L(0)) = Ho(S™, Lus1(2)) & Ha(S™ L(2)) = Lnsa(Z)

and we can deduce that S¥(S™) & Ly(Z) = Z. Here the equivalence class of a ho-
mology manifold Z that is homotopy equivalent to S™ corresponds to its resolution
obstruction i(Z). Therefore it implies the existence of such homology manifolds

that do not admit resolutions. Similar results also hold for simply-connected man-
ifolds other than S™.
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5. OTHER APPLICATIONS

Let I' be an infinite discrete group, and let BT be the classifying space for I". The
Novikov Conjecture on higher signatures can be rephrased in the following way:

Novikov Conjecture. The assembly map A : H,(BT;L(0)) — L.(Z[T]) is split
injective when tensored with Q.

For torsion-free groups, there is a stronger conjecture:

Integral Novikov Conjecture. If I' is torsion-free, the assembly map A :
H,.(BT;L(0)) — L.(Z[T}) is an isomorphism.

If T is the fundamental group of an aspherical manifold M™ (n > 5) (i.e., M =~
BT, the Integral Novikov Conjecture is true for I', and Wh(T') = 0, then the Borel
Conjecture below holds true. It is conjectured that Wh(I') = 0 for torsion-free
groups I'.

Borel Conjecture. If a closed manifold M is K(T, 1), then any homotopy equiv-
alence f + N — M from a closed manifold is homotopic to a homeomorphism.

Farrell and Hsiang were the first to attack the Novikov Conjecture and the
Borel Conjecture using controlled topology ([6], 7], [8], ... ). They showed the
topological rigidity for flat and almost-flat manifolds using geometric methods,
Dress induction, etc. Then Farrell and Jones introduced the notion of foliated
control [9], and showed the rigidity for compact non-positively curved manifolds,
etc. ([10]); a lot of improvements have been (and are still being) made by them since
then. On the other hand, bounded control [11] and continuous control [1] have been
playing an important and central role in controlled topology. For example, Carlsson
and Pedersen verified the Novikov Conjecture for a class of groups containing word-
hyperbolic groups [3].

There are other topics, such as C*-algebra and its relation to controlled topology
[17] and so on; see [14] for these and for more details on the Novikov Conjecture.

Another application is the finiteness theorem of Grove-Petersen-Wu:

Theorem 5.1. ([16]) 9322 (n) denote the set of all the n-dimensional Riemannian
manifolds with sectional curvature > k, diameter < D, volume > v. For n # 3,
there are only finitely many topological types of manifolds in 922 (n). Forn # 3,4,

kev

there are only finitely many diffeomorphism types .of such manifolds.
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1 Introduction

The subject of this paper is a new coordinate system, so-called multiplier cooridi-
nates, introduced into the moduli space, My, of the polynomial maps Poly, (C) from
the Riemann sphere, @, to itself, with degree n.

In study of its geometry and topology from a viewpoint of complex dynamical
systems, we make use of this system in order to express singular part, and dynamical
loci as algebraic curves or surfaces. And to exhibit the moduli space with a higher
degree under this system deserves particular attention: for example, a problem of
characterization of exceptinal part, £&,(= C*! \ M,) . This problem is our main
subject. 4

The initiator of the use of multiplier cooridinates is J. Milnor ([Mil93]), to the case -
of the quadratic rational maps. 5 .

First, we investigate the moduli space M), consisting of all holomorphic (affine)
conjugacy classes of Poly, (C). A polynomial map p of degree n is monic and centered
if it has the form p(z) = 2™ + ¢,—22""2 + -+ + c12 + ¢o. Every polynomial map
from C to itself is conjugate under an affine change of variable to a monic centered
one, and this is uniquely determined up to conjugacy under the action of the group
G(n — 1) of (n — 1)-st roots of unity. Hence the affine space Pi(n) of all monic
centered polynomials of degree n with coordinate (cg,c1,- - ,cn—2) is regarded as an
(n — 1)-sheeted covering space of M, Thus we can use P1(n) as a coordinate space



for the moduli space M, though it remains the ambiguity up to the group G(n — 1).
This coordinate space has the advantages of being easy to be treated.

However, it would be also worthwhile to introduce another coordinate system hav-
ing any merit different from P;(n)’s. In fact, Milnor successfully introduced coordi-
nates in the moduli space of the space of all quadratic rational maps using the ele-
mentary symmetric functions of the multipliers at the fixed points of a map ([Mil93]).
In the case of Poly,,(C), we try to explore an analogy to this in section 2.

2 Polynomials of degree n

2.1 Moduli space of polynomial maps

Let C be the Riemann sphere, and Poly, (C) be the space of all polynomial maps
of degree n from C to itself: p(2) = ap2™ + an_12"" 1 +---+a12+ag (a, #0). The
group 2A(C) of all affine transformations acts on Poly,, (C) by conjugation:

gopog™t €Poly,(C) for ge2(C), pe Poly,(C).

Two maps p1,ps € Poly,(C) are holomorphically conjugate if and only if there
exists g € A(C) with gop; 0 7! = p,. Under the conjugacy of the action of 2(C), it
can be assumed that any map in Poly, (C) is “monic” and “centered”, i.e.,

3

p(z) = 2" + cn92™ ? + ca32™ %+ 0o,

This p is determined up to the action of the group G(n—1) of (n—1)-st roots of unity,
where each n € G(n—1) acts on p € Poly,,(C) by the transformation p(z) — p(nz)/n.
For example, in the case of n = 4 the following three monic and centered polynomials
belong to the same conjugacy class:

2A4a2+bz+c
2+ awz? + bz + cw?
24+ aw?2? + bz + cw

where w is a third root of unity. )

The quotient space of Poly, (C) under this action will be denoted by M, and
called the moduli space of holomorphic conjugacy classes (p) of polynomial maps
p of degree n. Let Pi(n) be the affine space of all monic centered polynomials of
degree n with coordinate (co, ¢, -+ ,ch—2). Then we have an (n— 1)-to-one canonical
projection ® from Pi(n) onto M,. Thus we can use Pi(n) as coordinate space for
M,, though there remains the ambiguity up to the group G(n — 1).



2.2 Multiplier coordinates

Now we intend to explore another coordinate space for M,. For each p(z) €
Poly, (C), let z1, -+, 2zn, znt+1(= 00) be the fixed points of p and p; the multipliers
of zi; pi = P'(2) (1 <4 < n), and ppy1 = 0. Consider the elementary symmetric
functions of the n multipliers,

Jn’l :ul+".+l’l’n?
On2 = Hiple + -+ fn_1fin = Z::f Hei Z;;i His

Onn = U142 *** Un,
Onn+1 = 0.

Note that these are well defined on the moduli space M, since u;’s are invariant by
affine conjugacy.

2.2.1 The holomorphic index fixed point formula

For an isolated fixed point f(zo) = zo, =g 7# 00 we define the holomorphic index
of f at = to be the residue

o(f, zo) = 2—71;;%;—_——17(—2—)@

For the point at infinity, we define the residue of f at co to be equal to the residue of
¢ o fo ¢ at origin, where ¢(z) = %. The Fatou index theorem (see [?]) is as follows:
For any rational map f : C — C with f(z) not identically equal to z, we have the
relation H2)== t(f, z) = 1. This theorem can be applied to these pi’s; Y i) 1—1;“ +
-~ = 1, provided u; # 1(1 < 4 < n). Arranging this equation for the form of
-0

elementary symmetric functions, we have

Yo + Y10n,1 + Y20n2 4+ + Yn-10ppn-1 =0

n—1 n
fyk=<—-1>kn( . ) / (,g)=<f1)'°(n-—k>.

Note that u; = 1 (1 <4 < n) is allowable here. Then we have the following Linear
Relation : '

where

Theorem 1 Among o, ;’s, there is a linear relation
n—1
> (=1 (n = k)on =0, (1)
k=0

where we put 0,0 = 1.



e For the cubic case (n = 3),we have 3 — 2031 + 032 =10
e For the quartic case (n =4 ), we have 4 — 3041 + 2042 — 043 =10

In view of Theorem , we have the natural map ¥ from M, to C*! corresponding
to ‘I’(p) = (Un,la On2,° "y Onn—-2, Un,n)-

Let 3(n) be the image U(M,)( c C*1).

2.2.2 Characterization of exceptional set

To investigate whether this map ¥ is surjective or not is our main subject: a
problem of characterization of the part of C*~1 \ X(n).

We call this set exceptional set and denote it by £, = C*! \ X(n).

our main subject is as follows:
For a given (s1,82, " ,Sn—2,8n) € C"71, we set s,_1 a solution of TP ;(—1)*(n —
k)sy =0, so = 1. Then for the point (s1,--- , s,) € C*1, we set a polynomial

m(z) = 2"+ 512"+ 52" 2 4 F sy 124 8y

Then w denote the roots of this polynomial by

His B2y 5 Bn—1, Hn,

. Can we obtain a polynomial p(z) € Pi(n) corresponding to (si,---,s,) as
(Ulv"’ ;Un) ?
Namely can we find a polynomial satisfying that for fixed points z;

p(z) =z, (G=1,---,n) with u; =p'(2).

The case n = 3 is nicely solved: ¥ is surjective. (This fact is mentioned in [Mil93]
without any details.) We solved this problem for the case n = 4 : ¥ is no longer
surjective.

As for the cases of general n, we expect analogous results.

We have a following result:

Theorem 2 (M.FUJIMURA)
If a polynomial m(z) has n roots p; # 1 satisfying . 51: = 0b; = 1 — u;, and for any
proper subset S of roots, y ¢ 31: # 0, then there exists a polynomial p(z) € Pi(n)
such that

p(z) ==z, (E=1,---,n) with p;=7p(2).
Examples v
e For a set {1,2 — u, A\, 2 — A}, pw# A, p#1 a corresponding polynomial exits.
e For a set {u,2 — u, 4,2 — p} p # 1, no corresponding polynomial exits.
e For a set {u, i, u, \, A}, p#1, 5—2u—3X =0 a corresponding polynomial exits.
e For a set {u, u, 1,2 — p, %’i}, " 15 1, no corresponding polynomial exits.



2.3 Polynomials of degree 3
2.3.1 Moduli space M;3(C)

Here we abbreviate o3; as o;. These oy 7 = 1,2,3 are defined on Mj3(C), with

the linear relation: 3 — 201 +02 =0

For the cubic case, we can show that the excetional set is empty: namely for any
point (s1, s3) € C?, we can regard it as a point of (g1, 03) € £(3) satisfying the above
relation 3 — 207 + o3 = 0. Therefore, (s1, s3) € C? uniquely determines (p) € M;3(C).

In fact, a map in Poly,(C) is conjugate to a normal form 2% + az + b, whose
parameter (a, b?) is unique to the class (p). (a, b?) relates to (01, 03) as follows: |
Translation Formula for Cubic Polynomials

0y = —3a + 6, )
o3 = 27b? + a(2a — 3)?,

Inverse Formula for Cubic Polynomials

a=(6-01)/3,
b? = (40% — 3607 + 8loy + 2703 — 54)/729.

Proposition 1 (o1, 03) is a coordinate system of M3(C).

2.4 Polynomials of degree 4
2.4.1 Moduli space My(C)

In the case of Poly,(C), we can go on further analysis by using a symbolic and
algebraic computation systems. Here we write 04; = 0; (¢ = 1,--- ,4) for brevity.
Set Poly,(C) 3 p(2) = asz*+asz3+as2?+ayz+ag, P1(4) 3 p(2) = 2 +cez+c12+co,
M4 =) <p> )

22+ e+ a2+ co

3
I

~ 2t b weZ® + 1z + wie
~ 2 wché2 + 1z +weg
(W*=1)

There are natural projections:

® : Py(4) — My three-to-one map
U : My — Z(4) CC™ ! two-to-one in general.



2.4.2 Excetional set

For a polynomial p(z) = a42*+a32%+a02%+a12+ag, we chose 2*+cy2%+ci12+co €<
p > and set $(4) 3 (01, 09,04). For the quartic case, a linear relation is as follows;
4 — 301 + 209 — 03 = 0. We have a following transformation formula:

o1 = —8c¢;+12

oy = 4c3 — 16cocs + 18¢2 — 60c; + 48

o4 = 16coct+ (—4c? + 8cy)ch — 12822 +
(144coc? — 288cocy + 128c)cz —
27ct +108¢3 — 144¢2 + 64c; + 256¢3

We have the following result :

Theorem 3 Exception set isa puncuted curve:

*

2

54:{(4,3,%—2s+4), s#6, seC}

2.4.3 On 54

To a point
2

(03,02,00) = (4,5, — 25+ 4),
we set a polynomial

2

m(z) = 2* — 012 + 092% — 032+ 04

where
4 — 301+ 209 — 03 = 0.

Let roots of this polynomial m(z) be u, u, 2—u, 2—u, and (01, 09,04) = (4, —2(u?—
2u—2), pt —4u +4p ), u# 1. Then we consider that on the excetional set & ,

quadratic polynomials
o la, 1
L

are doubled.
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Spiral traveling wave solutions

of some parabolic equations on annuli

Toshiko OGIWARA* Ken-Ichi NAKAMURA'!
Josai University University of Electro-Communications
Abstract

This paper deals with spiral traveling wave solutions of some parabolic equations on
annuli related to a model of the motion of screw dislocations. We prove the existence,
stability and uniqueness of spiral traveling wave solutions. Next we consider a model
equation for screw dislocations and study the properties of spiral solutions for the equation
of interface motion which is formally derived in the singular limit of the model equation.

1 Introduction

In this paper we shall investigate a semilinear parabolic equation on a two-dimensional
annulus:
{ut=Au+g(u-—9), z€f, t>0, 1)

ur =0, z €N, t>0,

where Q = {z € R? | a < |z] < b}, (r,6) denotes the polar coordinates of z € I and g is
the derivative of a multi-well potential.

Our motivation for studying problem (1) originates from crystallization processes in
material sciences. Screw dislocations are observed on the surface of actual crystals such as
silicon carbide, calcogen, paraffin and polyethylene ([19]). Frank (6], [3] originally proposed
the following mechanism of the formation of screw dislocations: Crystals generally contain
lattice defects. Once a lattice defect reaches the surface of a crystal, the defect creates a
mononuclear layer (or a step) on it. Since the velocity of progress of the step is assumed to
be the same at any point, the angular velocity near the corner of the defect is faster than
that at the edge. Thus, the dislocation proceeds in a spiral shape.

Recently Kobayashi [10] has proposed the following reaction-diffusion equation as a
model of the motion of screw dislocations:

*toshiko@math.josai.ac.jp
takamura@im.uec.ac.jp
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ut=Au+£5f(u—-0;s), ze,t>0 @

up =0, z€0N, t>0,
where the parameter € > 0 is sufficiently small and f(-;€) is the derivative of a multi-well
potential for each ¢. The unknown function u(z,t) represents the normalized height of the
crystal. Some numerical experiments imply that equation (2) has a rotating and growing
solution with a spiral shape. The purpose of the present paper is to show the existence,
uniqueness and stability of such a solution, which we call a spiral traveling wave solution.
More precisely, a solution T(z, t) of (2) or (1) is called a spiral traveling wave solution with
growth speed w if it is written in the form

Uz, t) = p(r,f —wt) +wt, z€,t>0. 3)

Since the reaction term is very large, equation (2) gives rise to sharp internal layers (or
interfaces). As we will see later, the motion of such interfaces is driven by their curvature. -
To be more precise, each interface moves according to the equation

V=c—-k (4)

in the singular limit as € — 0, where V and « denote the normal velocity and the curvature
of the interface respectively, and c is a positive constant determined by the nonlinearity
f. Equation (4) also arises from the kinematic theory in excitable media as Belousov-
Zhabotinskii reagent. For mathematical results in this area we refer to [9], [12] and refer-
ences therein.

Qur paper is organized as follows: In Section 2 we introduce basic notation and state our
main results (Theorem A — on the existence — and Theorem B — on the uniqueness and
the stability —). We prove Theorems A and B in Section 3. In Section 4 we present a formal
derivation of the equation of interface motion corresponding to equation (2). In Section 5 we
study spiral solutions with constant angular speed for the interface equation (Theorem C).
In Appendix we recall monotonicity and convergence results in order-preserving dynamical
systems in the,présence of symmetry obtained by Ogiwara and Matano {16, Propositions
B1 and B2]. These results play a crucial role in the proof of Theorems A and B.

By (3) a spiral traveling wave solution T with growth speed w satisfies

t(z,t + Tp) = u(z,t) + 2m, €N, t>0, (5)

where Tp = 27 /w. Solutions with property (5) have been studied for other equations
such as systems of ordinary differential equations ([11], {7}, [2]) and parabolic equations in
the whole space R ([15]). The methods of these literatures are based on the theory of
dynamical systems and are, in essence, same as that of [16]. For our problem (1), as we
will see in Lemma 5, if a solution T satisfies (5) for some Ty then it is a spiral traveling
wave solution with growth speed 27 /T;.
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2 Main results
Throughout this paper, we assume that the nonlinearity g(v) satisfies the following:
(A1) g is a smooth, 27-periodic function on R;

(A2) g has three zeroes 0 < ¢ < 2w in the interval [0, 27];
2w
(A3) / 9@)dv > 0.
0

It is known that, for any ug € C(02), there exists a solution u(z,t) of (1) with initial data
u(-,0) = ug (see [13]). Here C(f) denotes Banach space of continuous functions on 0
endowed with the norm HUOHC(ﬁ) = sup{|uo(z)| | z € }. For u1, us € C() we write

u; < ug if ui(z) ug(z), z€Q,
up <uz i w(z) Sug(z) and wi(z) Zwa(z), €, (6)
u; < usg if wi(z) <uglz), z€ Q.

Let {®:}¢e[0,00) be the local semiflow on C () generated by (1). In other words, the map
®; on C(R) is defined by

B (ug) = ul-,t) for each t € [0, 0),

where u(z,t) is a solution of (1) with initial data u(,0) = uo. The strong maximum
principle ([17]) shows that @, is strongly order-preserving, that is, u; < us implies ®;(u1) «
®;(uz) for each ¢t > 0. Further the standard parabolic estimate ([13]) shows that &, is a
compact map on C(Q) for each t > 0.

Definition 1

A solution U(z,t) of (1) is called a spiral traveling wave solution if it is written in the form
U(z,t) = p(r,f —wt) +wt, z€N,t>0

for some function y(r, &) and some constant w. We call the constant w the growth speed of
the spiral traveling wave solution T.

Remark 1

Clearly, if T(z,t) = u(r,6,t) is a spiral traveling wave solution of (1), then U(z,t + 7) is
also a spiral traveling wave solution for any constant r. Further, T(r,0 — a,t) + « is also
a spiral traveling wave solution for any constant a.
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It is easily seen that if (r,8 — wt) + wt is a spiral traveling wave solution of (1) then
p(r, £) satisfies

—wpg +w = Ap +g(p - §). (7)

Lemma 2

If a spiral traveling wave solution for (1) exists, then its growth speed is positive.

Proof Let ¢(r,§ — wt) + wt be a spiral traveling wave solution. Then (7) is fulfilled.
Multiplying both sides of (7) by (¢ — 1 and integrating over 2, we have

o [(pe=17ds = [{8p (o= 1)+ alo-0)- (o - D}

b2 _ a2 2w
0

and hence

2
(b - az)/ g(v) dv

W= 4
2 [ (pe - VP do
Q

This proves the lemma. i

Definition 3

A spiral traveling wave solution T of (1) is called stable if for any € > 0 there exists some
d > 0 such that

u(t) =3l Dllg@ <& >0
holds for any solution u of (1) satisfying |ju(-,0) = T(-,0)ll o, < 6.

Concerning the existence, stability and uniqueness of spiral traveling wave solutions,
we obtain the following:

Theorem A

For any b > a > 0, (1) possesses a spiral traveling wave solution.

Theorem B

(i) A spiral traveling wave solution T of (1) is stable and is monotone increasing in t, that
is, Uy(z,t) > 0 for all z € Q, t > 0. Further it is unique up to translation to the
t-direction, namely, if u is a spiral traveling wave solution of (1) then there exists some
7o € R such that u(-,t) = T(-,t +10) for t > 0.

(i) For any solution u of (1), there exists some Ty such that

tl—l-)rgo Hu(, t) —T(,t+ TO)![C(?Z’) = 0. (8)



Josai Mathematical Monographs Vol. 2 (2000) 19

Remark 2 A

From Theorem B, we see that a spiral traveling wave solution T of (1) is stable with
asymptotic phase, namely, it is stable and, for any solution u of (1) with initial data
sufficiently close to ﬁ, there exists some g such that (8) holds.

3 Proof of Theorems A and B

In this section, we prove Theorems A and B. In what follows z € @ will be often
identified with (r,8), the polar coordinates of z.

Lemma 4

Let v(z,t) be a solution of (1) with initial datav(-,0) = 0. Then there exists some constant
M > 0 such that

max{v(z,t) | € O} — min{v(z,t) |z € Q} < M
for allt > 0.

Proof Differentiating (1) by 8, we see that the function w(z,t) = vg(z,t) — 1 satisfies

{wtzAw-*—g’(v——O)w, TEN >0, ©

wy = 0, z€0Q,t>0.

Since w(:,0) = —1 < 0, from the strong maximum principle it follows that w(:,t) < 0,
namely

vg(+,t) <1, t>0.

Hence, using the fact that v(r,0,t) = v(r, 27, t), we have
6 —2m < v(r,8,t) —v(r,0,t) < 6, a<r<b0<6<2mt>0.

Thus

v(r,0,t) —v(a,b,t) — 27 < v(r,0,t) — v(a,0,t) <v(r,b,t) —v(a,b,t) +2r  (10)

holds for a < v < 5,0 < 8§ < 27,¢t > 0. Now fix £ > 0 arbitrarily and take a small
constant ¢ > 0 such that (vg — dve)(-,t0) < 1 and (v + dv:)(-,%0) < 1. Since vg & vy — 1
are also solutions of (9), in the same way as above we gét (ve =% buvg)(-,t) < 1 for ¢t > to.
This implies, for t > tg,

1— vy 1-v
s <v < — ‘.

Multiplying each side of (11) by r € (a,b) and integrating by 8 from 0 to 27, we have

(11)

27h m 2mh
"T < ‘/0 TV db < —6—'
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Since v satisfies (1) for ¢t > to, integration by parts yields

2
=276 C < / (rvp)rdf < 270 C
0

with C = (1/4) +||f (]C(ﬁ). Integrating each side by r, dividing by  and integrating again,

we get

— )2 2 —2\2
209l o [T 0,8) — o(a,0, )} g < T
0

These inequalities and (10) yield

—MC -2 < vu(r,0,t) —v(a,0,t) < b—@—%a—)z(ﬁ' + 2.
Therefore, again by (10), we obtainl

—-b(b—:‘—ﬁC — 47 < v(r,6,t) —v(a,0,t) < 9@—}9-204— dr.
Combining these inequalities and the fact that the set {v(-,t) | 0 <t < to} is a compact
subset of C(Q), we obtain the conclusion. i
Lemma 5

Let (z) € C(Q) satisfy ¢ + 2m = &7, () for some Ty > 0. Then ¢(r,0 — wt) + wt is a
solution of (1), where w = 2m/T%.

We postpone the proof of Lemma 5 until the end of this section.

Proof of Theorem A Denote by v(z,t) a solution of (1) with initial data v(-,0) =0,
in other words v(-,t) = ®;(0). First we show that the orbit {v(-,¢) | ¢ > 0} is not bounded
in C(©). Assuming that {v(-,t) | t > 0} is bounded in C(Q), we will lead a contradiction.

In this case, since a map ®; on C(Q) is compact for each t > 0, the omega-limit set of 0
defined by
w(0) = [{v(>8) s>t} cC@)
>0
is not empty. As is well-known, W(0) is compact and ®;-invariant for each ¢t > 0, namely
®,W(0) = W(0) (see for example [8]). Put

ag = inf{a > 0| w; < gows for any wy,w,; € W(0)},

where gow(z) = gow(r,0) = w(r,0 — @) + a for w(z) € C(f1). Note that the map g, on
C () is commutative with &;, namely, g, o ®; = ®; o gq.

Clearly wy < goowz holds for any wy,w, € W(0). We show that ap = 0. Assume that
ag > 0. If wy < ggowe for any wy,wy € W(0) then wy; K go,w2 for any wy,wy € W(0),
since W(0) is ®;-invariant and since ®; is strong order-preserving for any ¢ > 0. In this case,
compactness of W (0) implies that if we choose § > 0 sufficiently small then wy < ggo—sw2
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for any w;,ws € W(0), which contradicts the definition of ag. Thus there exist some two
elements w;, wy € W(0) such that w; = goowq. Then it holds that

w<w; forall w e W(0) and  wz <wp. (12)

Since the latter inequality implies ®;(w;) <« ®,(w1) for any ¢t > 0, by the definition of
W(0) there exist large t;, t2 > 0 satisfying

®;,(0) < 94,(0).
Therefore, if we choose £ > 0 sufficiently small then

24, (0) K g-¢24,(0),

and hence
@tl-}—g(o) < g—g‘i’z2+s(0)

for s > 0. Take a sequence {s;}; such that ®¢4,,(0) = w; as j = oo. Replacing
{®t,44;(0)}; by its subsequence if necessary, we see that {®,1,,(0)}; also converges to
some w3 € W(0). Then w; < g—.w; holds. This and the former statement of (12) imply
w3 < g—ews and we are lead to a contradiction. Thus we obtain ag = 0, from which for
any wy, wy € W(0) it follows that w; < wg and w; > we, that is, wy = w,. Hence W(0) is
a singleton. As is easily seen, if an omega-limit set is a singleton; then it consists of some
equilibrium solution. This means that (1) possesses a spiral traveling wave solution with
growth speed 0, which contradicts Lemma 2.

Thus we see that the orbit {v(-,t)|t > 0} is not bounded. Hence there exists some
sequence {t;}; such that HU(‘)tj)”c(h“) — 00 as j — oo. We discuss only the case where

max{v(z,t;) | z € 0} — o0, j—= oo (13)

and prove the existence of a spiral traveling wave solution with positive speed. The case
where min{v(z,t;) | € 1} = —oo can be treated similarly. In the latter case there exists
a spiral traveling wave solution with negative growth speed, which contradicts Lemma 2.
We show that there exists some Ty > 0 such that ¢ + 27 = @1, (¢) for some function
@(z) € C(R). Then, by Lemma 5, we see that (1) possesses a spiral traveling wave solution
with growth speed 27/T,. As in Lemma 4, there exists some constant M > 0 such that

max{v(z,t) | z € O} — min{v(z,t) |z € Q} < M, t>0. (14)
We take n(j) € N so that the function v; defined by vj(z) = v(z,t;) — 27n(j) satisfies
vi(z) € [0,M +27], z€q.

Fix s > 0 arbitrarily. Then, replacing {®(v;)}; by its subsequence, we see that {®,(v;)};
converges to some ¢ € C(%).
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Note that (13) and (14) imply 27 < vu(:,T) for some T > 0. Therefore ®,:(27) <
®,44+7(0) holds for all ¢ > 0. Putting t = t; we have ®,4,,(0) + 27 < $,44,;47(0) and
hence ®,44;(0) — 27n(f) + 27 < Doy, 47(0) — 270(j) = B7(®suse;(0) — 271(j)), since
&, (ug) + 27m = &, (ug + 27rm) holds for any ¢t > 0, m € N and ug € C(Q1). Letting j — o0,
we get ¢ + 27 < &r(p). Now set

To = inf{t > 0 ‘ @Y+ 2w < @t(go)}

Clearly 0 < Ty < T and ¢ + 27 < ®1,(p). Suppose that ¢ + 27 < @1,(p). Then, for
any 6 > 0, ®5(p + 27) = ®45(p) + 2 K B1y+5(p). From this, for a sufficiently large jo, it
follows that

B515(vj0) + 27 K Ppas45(v50)-

Therefore, there exists some € € (0,T5) such that

q’é-{-s(vjo) + 27 L ®T0—5+6+8 (’l)jo),

and hence
Potsrt(Vjo) + 2 K Prycrsrsti(v), >0

Adding 27n(jg) — 27n(j) to both sides and putting t = t; — t;, — J, we get
®,(v;) + 21 K By (D4 (v;))-

Hence letting j — oo implies
@+ 21 < 31, (p),

which contradicts the definition of Ty. Therefore ¢ + 27 = &1, () holds and the proof is
completed. i

Lemma 6

Let uy,uy € C(Q) satisfy uy + 27 = &1, (u1) and up + 27 = &1, (ug) for some Ty, Ty > 0.
Then T1 = Tg.

Proof Suppose that the conclusion of the lemma does not hold. Without loss of
generality, we may assume that 7y < T,. Take ng € N satisfying u; — 2ner < us.
Then @,7,(u1) — 2no7m < ug + 207 for all n € N, and hence &, (p,—7)(u1) — 2no7 < ua.
This contradicts ||®1, 1y +s. (ui)llo@ = 185, (1) + 2n7llgm) — o as n — oo, where
n(Tp — T1) = I,T1 + s with [, € N, s, € [0,T1). i

Proof of Theorem B (i) First, by applying Proposition Bl in [16] (which will be
mentioned in Appendix of the present paper), we prove the uniqueness and monotonicity
of a spiral traveling wave solution. Set an ordered metric space X = C(€) with order
relation induced by (6) and put

X1 =Y ={ueC®)|uo +v27r = &1 (uo) for some T > 0}.
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Clearly each spiral traveling wave solution T of (1) satisfies T(-,0) € Y. By Lemma 6
Y = {up € C(Q) | uo + 27 = d7, (o)}

holds for some Tp > 0. The semiflow {®:}:¢[0,00) generated by (1) can be defined on Y for
all t € R. Thus {®;}sc[o,00) IS extended to a one-parameter group acting on Y. Denote
this group by G. Then condition (G2) in Appendix is satisfied. Further (G1) is fulfilled.
Indeed the map ®; on Y is also order-preserving for ¢ < 0. Fix a spiral traveling wave
solution ¥ arbitrarily. Then a pair Y and @ = T(:,0) satisfies (H1) and (H2). Further (H3)
holds since by the strong maximum principle i < hi implies 1 « hp for any ¢ € Y,
h € G. Applying Proposition Bl in [16], we see that Y = G% and that ¥ is homeomorphic
and order-isomorphic to R. By ¥ = G@ we obtain the uniqueness of a spiral traveling
wave solution up to translation to the ¢-direction. Moreover Lemma 2 and monotonicity
of Y = G yield that T (z,t) > 0 and T (z,t) 0 for z € Q, t > 0. Therefore, from the
strong maximum principle it follows that T;(z,t) > 0 for z € €, ¢ > 0.

Next we show that a spiral traveling wave solution T is stable. By the positivity of %, if
t1 <ty then u(-,t;) <€ G(:,ty). Further by the maximum principle we have, for any &y > 0,

ﬁ(') “60) < ’U(’,O) < ﬂ(,&)) implies E('7t - 50) < U(',t) < -ﬁ(')t + 60)7 t>0.

This proves the stability of a spiral traveling wave solution. Indeed, for any € > 0, take a
8o > 0 satisfying ||T(-, &) — T(:, —-(50)116,(-5) < € and set

§ = min{#(z, &) — %(z,0) | z € O} = min{u(z,0) — Tz, —8) |z € O} > 0.
Then, for any solution u of (1) satisfying |lu(-,0) — E(-,O)Hc(ﬁ) < 8, we have
H(') _50) < U(', 0) < ﬂ('; 60)

Therefore, from the inequalities

it follows that

”“(':t) - ﬂ(" t)“o(ﬁ) < ”U(: t+ 50) - U('»t - 50)”0(5) = HU(-,JO) - H(‘; “'50)“0(':7) <e

forall t > 0. B

Proof of Theorem B (ii) As we have shown above, (1) possesses a unique (up to
translation to the ¢-direction) spiral traveling wave solution &. We denote by w the growth
speed of T.

Define a map F on X = C() by

Fuo)(r, 8) = &, (uo)(r, 8) — 2,
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where Ty = 27 /w. Then, ¥ = U(-,0) is a fixed point of F and further ¥ — 2mm,  + 2mnx
are also fixed points for all m € N. For any ug € X a sequence {F"™(ug)}n is bounded in
X, since  — 2mn < ug £ P + 2mn implies § — 2mn < F™(ug) < @ + 2mn for m,n € N.

Hence the set K(ug) = ﬂ {F™(ug) | m >n} C X is not empty. Set
neN

Y = {K(uo) | uo € X}

and an acting group G being as in the proof of Theorem B (i). Clearly (G1) and (G2)
in Appendix are fulfilled. A pair Y and {%} satisfies (H4) and (H5). Further the strong
maximum principle verifies (H6). Hence applying Proposition B2 in {16] (which will be
mentioned in Appendix of the present paper), we see that for any ug € C(Q) there exists
some 7y satisfying

7}}}&0 |F uo — ﬂ(’,ff))“c(ﬁ) =0.

By the definition of F' we obtain the conclusion. I

Proof of Lemma 5 As we have shown in the proof of Theorem B (i), a function
satisfying
w(z) + 27 = ¥, (w)(2), zef (15)
is unique up to action of one-parameter group {®:}tcr. Since p(r,8 — (27r/m)) + (27/m)
also satisfies (15) for any m € N, there exists some s € R such that
27 2m
- =9, ,8), <r<£b,0<0<L2m.
np(r,& m)+m (w)(r,8) a<r< <f<2n

It follows from this that

0 (r,e - Z;j”) + 200 (0, () 0) = Tu@)r8),  a<r<bO<A<I

Repeating this calculation, we obtain ®,,(p) = ¢ + 27. If ms # To then {®.(p) | t >
|To — ms|} is a periodic orbit with period |Tp — ms|, which contradicts

1®nT, (‘P)”c(ﬁ) =g+ 27”7'“0('5) - 0, n - 0.

Hence we get ms = Tp, namely s = Ty /m. Thus we have, for any k € N,

k-2 k-2
o(ro- L)+ B2 e o)) asrsn0soson
m m ™
and further, for any rational number p > 0,
o(r,6 ~ 2mp) + 27mp = By1, (0)(r,0), @ <r<b0<O<m
Since the set of positive rational numbers is dense in (0, c0), if we set w = 27 /Ty then

o(r, 8 — wt) + wt = &,(p)(r, ), a<r<bo0<Lb<or

holds for any t > 0. The proof is completed. k i
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4 A formal derivation of the interface equation

In this section, we consider equation (2):

u¢=Au+£§f(u-—9;s), zeN,t>0
u, = 0, z€0N,t>0.

We assume that f(v;e) = —%%’-(v;e) is a smooth function derived from a multi-well
potential W(v;e) whose local minima lie at v = 2mn (m € Z) for all ¢ > 0. More
precisely, we assume that f(v;e) satisfies the following conditions:

(F1) f(v;€) is 2m-periodic in v for each € > 0,
(F2) f(-;€) has exactly three zeroes 0 < ¢((¢) < 2 in [0, 27] for each € > 0,

(F3) g—{)(();e) < 0 for each € > 0,

2n

' _ 27raf .
(F4) | f(v,O)dv—-O,/o -éE(U,O)dv>O.

By Theorems A and B, under the conditions (F1)-(F4), there exists a unique spiral traveling
wave solution for each € > 0. Roughly speaking, condition (F4) means that the difference
of well-depth W (2r ;&) ~W (0 ;¢) is negative and that W (2r;e)~-W(0;¢) = O(e) ase — 0.
It follows from (F1)-(F4) that there exists a unique solution (¢ (2), c{€)) of

{ Yo +ecle + f(;0) =0, z€R, (16)
PY(—o0) = 2m, $(0) = ({e), ¥(+00) =0,
for each € > 0 ([5]). Note that ¢{e) > 0 for £ > 0 and
2
%i(v ;0)dv
¢ = lim ofe) = Lo % an
[ Wiy
R

Let u be a solution of (2). Since the reaction term is very large and the potential W is
multi-well type, u® approaches 6+ 2mn for some m € Z if 6+ ((e) +2(m—1)r < u®(z,0) <
6+((e)+2mm. Accordingly, a sharp interface appears between the regions {u® ~ 6 +2mn}
and {u® = 0 + 2(m + 1)n} for each m € Z. By virtue of (F1), u®(z,t) = u*(r,0,t) can be
extended to a function (also denoted by u¢) defined for all # € R satisfying the following
equation:

r2

1 1
Ut = Upp + ;ur-%— iu,ge-%- E—zf(u—ﬁ;a), (r,0) € (a,b) xR, t >0,
ur(a,6,t) =0 = u,(b,6,1), GeR,t>0.



26 Procedings of NLA99 (2000)

We fix T > 0 and define
Fem = {(r,0) € (a,0) x R | u(r,6,t) = 8 + C(€) + 2mm)

for ¢ € [0,T). Since uf is 27-periodic in 8, we have 5™ = g_yme [ where o, is the
translation g, : (r,8) — (r,6+s). For simplicity, we assume that fi’o is a smooth embedded
curve in (@, b) x R with two boundary points on both {a} xR and {0} xR for each t € [0,T].
It follows from the homogeneous Neumann boundary conditions that the closure of f‘?’o
intersects with the lines r = a and r = b perpendicularly at the boundary points. We
denote by D the domain in (a,b) X R between the two curves I:™ and ™. Let
II be the covering map from (a,b) x R to § defined by II(r,8) = (rcosf,rsinfd). We
take a neighborhood N, of f‘f'o in (a,b) x R so that the map II| 7, s injective. We put
Ny =(Ny), Df = (D] N Ny) (j = 0,1) and
N= ] (x {1t}

tef0,T)

In what follows we write § = 6(z) for z € Ny if z = II(r,6).
We call the set
r= |J @@=

telo,T)

the interface, where
¢ = {II(r,0) € Q| (r,0) € T°}.
We also call I'{ the interface at time t. We remark that if z € ' then u®(z,t) = 6(z) +{(¢)
and that T perpendicularly intersects with 8.
Let d*(z,t) be the signed distance function to ' defined in N by

dist(z, %), if z €D},

& (z,8) =
(2.1) { —~dist(s,T%),  if z € D},

where dist{z,I'{) is the distance from z € N; to the curve I in R®. We remark that
dé(z,t) = 0if z € T and |Vd®| = 1. We assume that d° has the expansion
d*(z,t) = do(z,t) +edi(z,t) + 62d2'(27, t) -

and define |

T = {z€N,|ds,t) =0},

2 = {z€N|d(st)>0},

Q% = {$€Ntldo($,t)<0},

r = U (rtvx {t}):
t€l0,T) o

Qo = U (Q? X {t}):

te[0,T)

= |J @xi

tef0,T)

it
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Roughly speaking, I'; represents the position of the interface at time t in the limit as
€ — 0, while dp represents the signed distance function to I'. In what follows we derive the
equation of motion of the interface I'; by using matched asymptotic expansions. See [1],
(4], [14] and [18] for details.

We assume that the solution u® has the expansions

uf(z,t) = ug(z,t) + eur(z, t) + e2ug(z, t) + - (18)
away from I'¢ (the outer expansion) and
us(x)t) = Uo(f,il?, t) + EUI(&) T, t) + €2U2(€1m»t) + e (19)

near ' (the inner expansion), where £ = d°(z,t)/e. To make these expansions consistent,
we require the matching conditions

(z,t) fzeQiuly

1
k

20
2(z, 1) if ze QYUT, (20)

for all (z,t) € N and k > 0, where ui (7 = 0,1) denote the terms of the outer expansion
(18) in the region @Q; (j = 0,1). Since u®(z,t) = 6(z) + {(¢) on I'*, we also require the
normalization conditions Up(0, z,t) = 6(z) + (o, Ux(0,z,t) = {x (k > 1), where (; denote
the terms of the expansion ((e) = (o + (1 + €% + .

Substituting the outer expansion (18) into (2) and the collecting the e~2 and £~! terms
respectively, we have

fluo(z,1) = 6(2);0) =0,
2L oz, ) ~ 0(a);0)un (2, 6) + L (uolz, ) ~ 0(2);0) = 0,
in Qo U Q. The first equation implies that
- 9((1:) in QO)
to(a, 1) = { 0(z) +2r in Q.

Hence from the second equation, we get ui{z,t) = 0in Qo U @;.

Next, substituting the inner expansion (19) into (2) and the collecting the ¢~2 and £~}
terms, we have

Uosge + f(Uo — 0(z);0) =
Usee + %(Uo —0(z);0)U1 = Uge(dor — Adg) — 2V(Uo¢) - Vdy (22)
7]
~-5£-(Uo —8(z);0).

In both equations we regard z and ¢ as parameters. From (21) together with the matching
conditions and the normalization conditions, we obtain

Uo (€, 2,t) = ho(§) + 0() (23)
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where 1)g is the unique solution to (16) for £ = 0.
Substituting (23) into (22) and recalling the normalization conditions, we get

{ Uice + 2 o) 001 = (o — a6 - L n():0),

(24)
U1(O, z, t) = Cl'
By Lemma 4.1 in [1], (24) has a bounded solution if and only if
0
(doe — o) [ (st - [ Fimiesomairas =o (29)

Under the solvability condition (25), the solution U; of (24) incidentally satisfies the match-
ing conditions {20), since the right-hand side of the first equation of (24) tends to 0 expo-
nentially as £ = *o0. By (25), we get

dOt = Ado -G (26)

where c is the positive constant defined in (17). It is known that —dp; = V and Ady = &,
where V and « are the normal velocity and the curvature of the interface I';, respectively.
Thus (26) is equivalent to (4):

V=c—x on I},

Moreover T'; intersects with 89 perpendicularly.

5 Existence of a spiral for the interface equation

In this section we consider the interface equation

(27)

V=c—k on I,
(v(z),n) =0  on QNTYy,

where n = n(z,t) and v(z) is the outward unit normal at each point of I'; and 0%,
respectively. We seek for a solution of (27) which is written in the form

T(t) = {(r cos(6(r) + wt),rsin(6(r) +wt) | a <r < b, t> 0}

for some function 6(r) and some constant w. We call such I'(t) a spiral with angular speed
w. One can easily see that T'(t) is a solution of (27) if and only if ¢(r) = r4’(r) satisfies

dq _ :
{ dr--h('r,q,w), r > a,

g(a) = g(b) = 0,
where h(r,q;w) = (1 + ¢?) (—c« /1+¢% - g + wr).
Theorem C

Fix a > 0 arbitrarily.
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(i) For any b > a, there exists a spiral with angular speed w(b) > 0. In addition, the spiral
is unique up to rotation.

(i) The angular speed w(b) is strictly monotone decreasing in b and there exists we > 0
such that lim w(b) = we.
b—+o0

(iii) In the case where ! = {z € R | |z| > a}, there exists a spiral with speed we such
that lim @'(r) = — 22,
r—0o0 C

Remark 3

The statement (iii) of Theorem C shows that the shape of the spiral for (27) looks like
Archimedean spiral as r — co in the case where b = +c0.

In what follows we denote by g(r ;w) the solution of the initial value problem

dq _ '
{ a’;"h(r:Q1w)) T >a, (28)
q(a) =0,

and let (a, R,,) be the maximal interval of the existence of ¢(r;w).

Lemma 7 :
(i) Ifwy < w; then ¢(r;w;) < ¢(r;wsy) for a < r < min{R,,, R, }-

(ii) fw > ¢/a then R, = +00 and ¢(r;w) > 0 for r > a.
(ili) R, Is nondecreasing inw € R.

(iv) Ifwp converges to wq then lirg inf R,,, > R.,. If, in addition, w, < wp for large n then
n—$oo

lim R, = Ru,.

n—oo

Proof (i) The statement immediately follows from the fact that A(r,q;w) is strictly
increasing in w for r > a.
(i) f w > c/a then h(r,0;w) = —c+wr > 0 for r > a. Therefore ¢(r;w) > 0 for
a < r < R,. Since h(r,g;w) < 0if ¢ > wr?, we have 0 < ¢(r;w) < wr? for any
r € (a, R,). This implies R, = +00.
(iii) If R, < +oco then rl/l(r}’zlw g(r;w) = —o0, since ﬂ(r,q;w) < 0 for ¢ > max{wr?,0}.
Therefore by virtue of (i), R, is nondecreasing in w. '
(iv) Put pn(r) = ¢(r;wn) — q(r ;wg). Then p, satisfies

dpn,
{ 7%:' = n(rspn): r>a,

(29)
pn(a) =0,

where Hy,(r,p) = h(r, o(r) +p;wn) = h(r, qo(r) ;wo) and go(r) = q(r ;wp). For any R < R,
and & > 0 there exists L > 0 such that

‘HO(T)p)"HO(T)m[ SL]p—'ﬂ» lpl1[ﬂ S(S,O.STSR
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and that

Y= sup |Hn(r,p) — Ho(r,p)| 0, n— oo

[pl<s
a<r<R

We define R, = sup{a <7 < R||pn(r)| £ 6}. Then by (29) we have

o) < 1R = 0) + L [ pa(e)lds
a
for a < 7 < R,,. Therefore by Gronwall’s inequality, we have
[pn(r)| < Wm(R - a)eL(r—a) < (R~ a)eL(RvG)

for a < r € Ry,. This implies R, = R for sufficiently large n. Thus we get R, > R for
large n, hence '

liminf Ry, > Ru,- (30)
n—+co
Combining (ii) and (30), we obtain nlgnoo R, = Ry, if wy < wy for large n. i

Lemma 8
There exists @ < ¢/a such that Rg; > b and q(b;@) < 0.

Proof Suppose that the statement of the lemma does not hold. Then for any w < ¢/a,
either of the following holds:

(a) Ry £b,  (b) Ry > band g(b;w) > 0.

By Lemma 7 (ii), the statement (b) holds for w > ¢/a. We define wy = sup{w € R | R, <
b}. Then we have wg > ¢/b, since h(r,0;w) < 0 for a < r < bif w < ¢/b. Clearly w < c/a.
By virtue of Lemma 7 (iii), we obtain R, < b, hence

li .
r}mwo g(r;wg) = —o0

On the other hand, R, > b and g(b;w) > 0 for any w > wo. Let rg € (a, Ry,) be such that
q(ro;wo) < ~(wo+1)b? and that h(rq,g(ro ;wo) ;wo) < 0. Then g(rg;w1) < ~(wo+1)b? and
h(ro,q(ro;w1);w1) < 0 for some w; sufficiently close to wg. Since hA(ri, q;w) > h(rg,q, )
fora<r <ry;<b,¢< ~(wy+1)b? and wp < w < wp + 1, we have

dq(r;w1)

pra h(r, q(r;w1) ;w1) < h(ro,q(ro;wi);wi) <0

for all 7 2 7o satisfying ¢(r;wi) = ¢(ro;w1). Hence ¢(r;w;) < ¢(ro;wi) for r > rg,
contradicting the fact that ¢(b;w;) > 0. i

Proof of Theorem C (i) Let & € [¢/b,¢/a] be such that Rg > b and ¢(b;@) < 0.
Then ¢(b;w) is well-defined for w > & and is continuous in w > @. Since ¢(b;w) > 0 for
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w > c/a, there exists w(b) € (@, c/a)] satisfying ¢(b;w(b)) = 0. The uniqueness of w(b) is
an immediate consequence of Lemma 7 (i). I

Proof of Theorem C (ii) By Lemma 7 (i), the rotation speed w(b) is strictly mono-
tone decreasing in b. Therefore w(b) converges to some we > 0, since w(b) > ¢/b. Note
that ¢(r;0) < 0 for r € (a, Ry) and hence ¢(r;0) satisfies

dg _c 2 2

—_— < = > -,

Szt 22
This implies Ry < +00, from which and the following lemma we obtain we, > 0. B
Lemma 9
R, = +oo.

Proof Suppose that R, is finite. We fix by > a, k > w(bo)/c and take

~ 2k

R:max{m,wa}.
Then, if w < w(bg), —kr is a supersolution of (28) for r > R since h(r,—kr;w) < —k. We
take § = min{—kﬁ, ~w(bo)§2}. Then we get h(ry,q;w) > h(ry,q;w) fora <r; <7y < R,
¢ < §and w < w(by). By the similar argument in the proof of Lemma 8, there exists
b> by and rg < R, such that g(r¢;w(b)) < § and h(ro,q(re;w(b));w(b)) < 0. Again
by the argument in the proof of Lemma 8, we obtain q(r;w(b)) < ¢{ro;w(b)) < ¢ for
ro < r < R and q(r;w(b)) < —kr for r > R, contradicting the fact that ¢q(b;w(b)) = 0.

This contradiction proves the lemma. ]

Proof of Theorem C (iii) By Lemma 9, ¢(r jwe) exists for all r > a. Furthermore
q(r;weo) is negative since g(r;w(b)) < 0 for a < r < b. This corresponds to a spiral with
angular speed we, for 2 = {z € R | |z} > a}. To complete the proof, we show that

g A0i0) s
r—++00 T C
Fix k& > weo/c. We take b so that k > w(bo)/c and put ro = 2k/(ck — w(bo)). Since —kr
is a supersolution of (28) for » > rq if w < w(bg), we have q(r;w(b)) > —kr for r > ry and
b > bo. This implies ¢(r;we) > —kr for r > rg, since ¢(r ;w(b)) uniformly converges to
¢(r ;weo) On any compact subset of (a,+o0). Hence we have

.. eqTiw w
lim inf 9(r;weo) > -2
r—-o0 r C

We define
Ko = {(T» Q)

r>;}—c~\/1+q2, q<0}.

(o0}
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Let
[ = limsup —-——-————Q(r o)
n—+00 T
and suppose that { > —we/c. Then there exists rg > a such that (ro, ¢(ro;We)) € Keo.
Since h(r,q;weo) > 0 for (r,q) € Koo, we have (7, ¢(r ;we)) € Koo for all 7 2> ro. Therefore

by (28) we obtain

i <Q(T;w00)> S —CV 1+Q(r;woo)2 + WeoT >0 (31)

dr r
for r > rg, hence
[ r=++00 r
On the other hand, by (31) we have
lim inf - (M> > el + weo > 0.
r—+oo dr T
This contradiction proves that
Jim sup L73%) Yoo
r—-+400 T ¢
The theorem is proved. i

Appendix

In this appendix we present two propositions in [16]. Proposition B1 is concerned with
the structure of a subset of an ordered metric space under a group action. Proposition B2
is, in a sense, a set-valued version of the former half of Proposition B1.

Let X be an ordered metric space. In other words, X is a metric space on which a
closed partial order relation is defined. We will denote by < the order relation in X. Here,
we say that a partial order relation in X is closed if ¢, < ¥, (n = 1,2,3,---) implies
'}Ln;o ¥n < nler;o 1y, provided that both limits exist. We write ¢ < 1 if ¢ < 9 and ¢ # 9.
For a subset V' C X, the expression ¢ <V, V < ¢ means ¢ < ¢, ¥ < ¢ for all points
¥ € V, respectively. ’

Let G be a metrizable topological group acting on some subset X; of X. We say G
acts on X; if there exists a continuous mapping v:G x X; — X; such that g — 7{g,")
is a group homomorphism of G into Hom(X;), the group of homeomorphisms of X; onto
itself. For brevity, we write v(g, ) = gy and identify the element g € G with its action
v(g,-). We assume that

(G1) v is order-preserving (that is, ¢ <1 implies go =< gt for any g € G);

(G2) G is connected.
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Let Y be a subset of X and ¥ be an element of ¥ N X such that
(H1) gp €Y forany g € G;
(H2) for any ¢ € Y, there exist some g1, g2 € G satisfying 1% < ¥ < g2;

(H3) for any ¥ € Y with 1 < hp for some h € G, there exists some neighborhood B of
the unit element of G such that 1 < gh® for any g € B.

Proposition ([16, Proposition B1})
Let G satisfy (G1), (G2) and Y, @ satisfy (H1), (H2), (H3). ThenY is a totally-ordered
connected set and Y = G®. Furthermore, if Y is locally precompact, then Y is homeomor-

phic and order-isomorphic to R.

A similar'result holds for the case where the set Y consists of subsets of X. To be more
precise, let Y be a set of subsets of X containing {®} such that

(H4) {gp} €Y forany g € G;

(H5) for any V €Y, there exist some g1, g2 € G satisfying 15 <V < gop and V # {615},
{929}

(H6) for any V € Y with V < hig and V # {h} for some h € G, there exists some

neighborhood B of the unit element of G such that V' < gh and V # {gh®} for any
g€ B.

Proposition ({16, Proposition B2])

Let G satisfy (G1), (G2) and Y, {@} satisfy (H4), (H5), (H6). ThenY = G{p} = {{9%} |
g € G}.
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