2	Screening for inhibitory effects of crude drugs on furin-like enzymatic activities
3	Yuka Kiba ¹ , Rio Oyama ² , Sae Misawa ² , Takashi Tanikawa ³ , Masashi Kitamura ^{1*} ,
4	Ryuichiro Suzuki ^{2*}
5	¹ Laboratory of Pharmacognocy, School of Pharmacy, Faculty of Pharmacy and
6	Pharmaceutical Sciences, Josai University; 1–1, Keyakidai, Sakado, Saitama 350–0295,
7	Japan
8	² Laboratory of Natural Products & Phytochemistry, Department of Pharmaceutical
9	Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1–1,
10	Keyakidai, Sakado, Saitama 350–0295, Japan
11	³ Laboratory of Nutri-pharmacotherapeutics Management, School of Pharmacy, Faculty
12	of Pharmacy and Pharmaceutical Sciences, Josai University; 1–1, Keyakidai, Sakado,
13	Saitama 350–0295, Japan
14	*Corresponding author
15	Tel and Fax: +81 49 271 8021
16	E-mail: kitamura@josai.ac.jp
17	ryu_suzu@josai.ac.jp
18	
19	

1 Abstract

 $\mathbf{2}$ The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a cleavage motif R-X-X-R for furin-like enzymes at the 3 boundary of the S1/S2 subunits. The cleavage of the site by cellular proteases is 4 essential for S protein activation and virus entry. We screened the inhibitory effects of $\mathbf{5}$ crude drugs on *in vitro* furin-like enzymatic activities using a fluorogenic substrate with 6 7 whole-cell lysates. Of the 124 crude drugs listed in the Japanese Pharmacopeia, aqueous ethanolic extract of Cnidii Monnieris Fructus, which is the dried fruit of Cnidium 8 monnieri Cussion, significantly inhibited the furin-like enzymatic activities. We further 9 10 fractionated the plant extract and isolated the two active compounds with the inhibitory activity, namely, imperatorin and osthole, whose IC₅₀ values were 1.45 mM and 9.45 11 µM, respectively. Our results indicated that Cnidii Monnieris Fructus might exert 1213inhibitory effects on furin-like enzymatic activities, and that imperatorin and osthole of the crude drug could be potential inhibitors of the motif cleavage. 14

15

16 Keywords: furin, proprotein convertase, SARS-CoV-2, coumarin, imperatorin, osthole

- 17
- 18

1 Introduction

 $\mathbf{2}$ In December 2019, a novel virus, severe acute respiratory syndrome coronavirus 2 3 (SARS-CoV-2), belonging to the human coronavirus family, was identified in Hubei Province, China [1]. It causes coronavirus disease 2019 (COVID-19), a severe 4 respiratory disease associated with a high mortality rate. According to the World Health $\mathbf{5}$ Organization 2019 situation report of February 16, 2021, more than 100,000,000 6 patients have been diagnosed with COVID-19 and 2,300,000 have died worldwide. The 78 entry of coronavirus into host cells is mediated by the spike (S) protein [2]. Processing 9 of the S protein by cellular proteases such as transmembrane protease serine 2 10 (TMPRSS2), cathepsin, and furin is necessary for protein activation and virus entry [3]. 11 The S protein of SARS-CoV-2 consists of the N-terminal S1 domain and C-terminal S2 domain [2, 3]. The S1 domain has a receptor-binding domain (RBD) that binds to the 1213host angiotensin-converting enzyme 2 (ACE2) receptor and the S2 domain has an fusion peptide (FP) domain that mediates membrane fusion. The S protein cleavage at 14the S1/S2 boundary by host cell protease plays a key role in binding the ACE2 receptor 15to the S1 domain. The S protein of SARS-CoV2 has a cleavage motif R-X-X-R for 16 furin-like enzymes at the S1/S2 boundary, matching the consensus amino acid motif of 1718the substrate for furin and related proprotein convertases (PCs) [2, 3]. Furin/PC inhibitors block SARS-CoV-2 S protein cleavage to suppress viral entry [2-5]. In 19addition, SARS-CoV-2 pseudoviruses, which have a mutated S protein at the cleavage 2021site, showed substantially decreased efficiency of entry into host cells [2-4]. Therefore, cleavage inhibitors of the motif site are expected to be therapeutic reagents for 2223SARS-CoV-2 infection [6-8].

Furin, a member of the proprotein convertase family, is ubiquitously expressed in
mammalian cells and activates various proprotein substrates [9-11]. Furin regulates not
only pathogenic pathways but also several physiological pathways, involving hormones,
growth factors, adhesion molecules, and cell surface receptors [12]. Furin is involved in
calcium-dependent proteolytic cleavage at the C-terminus of a consensus amino acid
motif R-X-X-R↓ (the arrow indicates the cleavage position) [9].

Peptide-based small molecules such as hexa-D-arginine (D-6R) and chloromethylketone (CMK) have been reported to be inhibitors of furin and other PCs [13-18]. However, furin/PC-targeting therapeutic reagents for clinical application have not been identified to date. Numerous studies have evaluated furin-like (furin and other PCs) enzymatic activities using a fluorogenic substrate with whole cell lysates and tissue homogenates [19-24]. In this study, the inhibitory effects of crude drugs were evaluated using the furin-like protease assay with a fluorescent peptide substrate.

14

15 Materials and methods

16 Materials

We selected 124 crude drugs listed in the Japanese Pharmacopeia, 17th Edition, and purchased them from several distributors (Supplementary Material, Table S1) [25]. Crude drugs (10 g) were refluxed with 300 ml of 70% EtOH for 1 h, and the resultant extracts were dried by evaporation. The samples were dissolved in dimethyl sulfoxide (DMSO) to a concentration of 10 mg/ml and stored at 4°C until use. Imperatorin and osthole were obtained from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan) and FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan), respectively.

2 Furin-like enzyme assay

A549 cells, human lung carcinoma epithelial cells, were obtained from RIKEN 3 BioResource Center (Tsukuba, Japan) and cultured in Dulbecco's modified Eagle's 4 medium containing 10% fetal bovine serum, 100 µg/ml streptomycin, and 100 units/ml $\mathbf{5}$ penicillin. A549 cells were seeded in 100-mm-diameter dishes $(1.0 \times 10^6 \text{ cells/plate})$ 6 and cultured for 24 h at 37°C with 5% CO₂. After 24 h, the cells were washed twice 7 8 with Dulbecco's phosphate-buffered saline (D-PBS). The washed cells were collected in 9 a 1.5-ml tube by scraping and centrifuging at $2000 \times g$ for 2 min. The cells were 10 counted and treated with 1 ml of 2× lysis buffer (20 mM HEPES-KOH [pH 7.4], 0.5% Triton X-100, 1 mM CaCl₂) per 1.0×10^6 cells. The cell lysates were vortexed for 5 min 11 and centrifuged at $13,000 \times g$ for 10 min at 4°C. The supernatants were transferred to 12131.5-ml tubes and stored at -80°C until use. Supernatants (10 µl), crude drug extracts (10 μl), and H₂O (70 μl) were added to a 96-well black microplate and incubated at 37°C 14for 30 min. Drug extracts were diluted and adjusted to a final concentration of 20 µg/mL 1516for screening. То the mixture. 10 μl of 1 mМ Pyr-Arg-Thr-Lys-Arg-methyl-coumaryl-7-amide (pyr-RTKR-MCA) 17was added 18 (PEPTIDE INSTITUTE, Inc., Osaka, Japan). The mixture was incubated at 37°C for 30 min, and fluorescence intensity of the sample was measured with excitation at 380 nm 19and emission at 460 nm using SpectraMax M2 (Molecular Devices, LLC, CA, USA). 2021The 124 samples were subjected to screening using the furin-like enzyme assay, and the 22results are presented as mean ± standard deviation of at least three independent 23experiments. Ethylenediaminetetraacetic acid (EDTA, final conc. 50 mM) was used as the control in the assay. Half-maximal inhibitory concentration (IC₅₀) was obtained by
 logistic regression analysis using the *drc* package for R [26]

3

4 Extraction and isolation of the bioactive compounds

 $\mathbf{5}$ The dried fruits of Cnidii monnieri (100 g) were extracted three times with 70% aqueous EtOH (1 h, each) under reflux, and the solvent was evaporated in vacuo to 6 obtain the corresponding extract (55 g). The extract was suspended in water and 7 fractionated with ethyl acetate three times to obtain an ethyl acetate layer. The 8 9 water-soluble portion was partitioned with *n*-BuOH three times. The yield of ethyl 10 acetate soluble extract and *n*-BuOH soluble extract were 4.7 and 1.2 g, respectively. The 11 ethyl acetate soluble extract (0.3 g) was subjected to chromatography on an ODS column (ODS-SM 50C; Yamazen Corporation, Osaka, Japan) with MeOH-H₂O (4:1, 1213v/v) as a solvent to yield 16 fractions. Fraction 4 (12 mg) was chromatographed on a preparative HPLC column (Senshu Pak ODS-4151-N; 10 mm × 150 mm) eluted with 14MeOH-H₂O (2:1, v/v) and monitored at 254 nm to obtain 1 (5.2 mg). Fraction 6 (15 15mg) was purified by HPLC (Senshu Pak ODS-4151-N; 10 mm \times 150 mm) with 16 MeOH–H₂O (2.8:1, v/v) as a solvent, and monitored at 254 nm to obtain 2 (12 mg). 17

18

19 Identification

20 Compounds **1** and **2** were identified as imperatorin and osthole, respectively. Their 21 structures were confirmed by comparing their spectroscopic data, such as NMR and MS, 22 with those of authentic compounds.

1 **Results and Discussion**

 $\mathbf{2}$ We screened 124 crude drug extracts for inhibitory effects on furin-like activities. The 3 furin-like activity was evaluated using pyr-RTKR-MCA as a fluorogenic substrate and cell lysates as whole proteolytic enzyme. Of the 124 crude drug extracts, three extracts, 4 Cnidii Monnieris Fructus (dried fruits of C. monnieri), Hydrangeae Dulcis Folium $\mathbf{5}$ [dried leaves of Hydrangea macrophylla (Thunb.) Ser. var. thunbergii (Siebold) 6 Makino)], and Forsythiae Fructus [dried fruit of Forsythia suspensa (Thunb.) Vahl] 7suppressed furin-like activities by more than 40% (activity: $6.2\% \pm 0.3\%$, $56.5\% \pm 1.8\%$, 8 9 and $42.9\% \pm 2.3\%$, respectively) (Table 1). We then evaluated the IC₅₀ of the three 10 samples and Cnidii Rhizome (the dried rhizome of C. officinale) as the control. The IC₅₀ 11 values of Cnidii Monnieris Fructus, Hydrangeae Dulcis Folium, and Forsythiae Fructus were 1.10, 7.12, and 6.52 µg/ml, respectively. Cnidii Monnieris Fructus showed 1213stronger inhibitory effects on furin-like activity than Cnidii rhizome (IC₅₀ > 50 μ g/ml). Cnidii Monnieri Fructus (Jashoshi in Japanese) has been traditionally used to treat 14osteoporosis, sexual dysfunction, asthma, and skin ailments [27]. Cnidium monnieri 1516Cusson contains several compounds such as bergapten, imperatorin, osthole, and xanthotoxin [28]. Here, we fractionated and isolated bioactive compounds from Cnidii 1718 Monnieris Fructus contributing to the inhibitory effects on furin-like enzymatic activity. We isolated and identified two coumarin compounds, imperatorin and osthole, with 19inhibitory activity (Fig.1). Osthole (IC₅₀ = 9.45 μ M) showed significant inhibitory 2021effects on furin-like enzymatic activity compared with imperatorin ($IC_{50} = 1.45$ mM). 22The autofluorescence of two coumarins (imperatorin and osthole) did not occur because 23reaction mixture (compounds and substrates) without cell lysates did not show

fluorescence signal. These results indicate that Cnidii Monnieris Fructus might inhibit
 furin-like enzymatic activities, and that imperatorin and osthole of the crude drug could
 be candidates for inhibitors of motif cleavage.

In the present study, we screened the anti-furin-like activity of crude drugs using an in 4 $\mathbf{5}$ *vitro* furin-like assay with a fluorogenic substrate. Since furin is a Ca⁺-dependent serine protease, EDTA, a popular chelating agent was used as positive control in this screening. 6 $\overline{7}$ However, a high concentration (IC₅₀ 50 mM) was required to exert its inhibitory 8 activities. Although polyphenols such as tannin is known to show chelating activities, 9 our medicinal plant extracts containing polyphenols did not show inhibitory effects on 10 furin-like activities. It is considered that the concentration of polyphenols in our medicinal extracts was not sufficient to exhibit inhibitory activity. Of the 124 crude 11 drugs, Cnidii Monnieris Fructus showed strong inhibitory effects on furin-like activity, 1213and two coumarin compounds (imperatorin and osthole) exerted inhibitory activity. Further studies are required to understand if Cnidii Monnieris Fructus and its bioactive 14compounds block S protein processing. For example, the inhibitory effect on S protein 15processing could be proven if the S protein expressed in Escherichia coli is used as a 16 cleavage substrate instead of pyr-RTKR-MCA [29]. When the S protein gene was 1718transfected into mammalian cells, the S protein was processed by furin/PC, and syncytial phenotype was observed [5, 30]. Evaluation of S protein processing by 19western blotting and syncytial formation by microscopy would provide direct evidence 2021that the samples affect S protein processing and virus entry.

22 Osthole is a multifunctional compound with anti-oxidative, anti-proliferative, 23 anti-inflammatory, and anti-allergic properties [31]. A recent study indicated that osthole

suppressed TGF- β 1-induced EMT in lung cancer A549 cells [32]. Because TGF- β 1 activates furin expression in several cell lines [33, 34], and proteolytic processing of the TGF- β 1 precursor by furin is an essential step in the formation of biologically active TGF- β 1 [35], osthole might suppress TGF- β 1-induced autocrine effects by blocking furin-like activities.

6 In conclusion, we screened the inhibitory effects of 124 crude drugs listed in the 7 Japanese pharmacopoeia on *in vitro* furin-like enzymatic activities. Of these drugs, 8 Cnidii Monnieris Fructus, which is the dried fruit of *C. monnieri* (Japanese name 9 Jashoshi), strongly inhibited furin-like activity. We further isolated and identified two 10 bioactive coumarins, imperatorin and osthole, from Cnidii Monnieris Fructus.

11

12 **Conflict of Interest**

13 The authors declare no conflict of interest.

1 **References**

 $\mathbf{2}$

3	1.	HD Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng	
4		XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi	
5		ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable	
6		bat origin. Nature 579:270-273	
7	2.	Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F (2020) Cell entry	
8		mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 117:11727-11734	
9	3.	Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A Multibasic Cleavage Site in	
10		the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells.	
11		Mol Cell 78:779–784.e5	
12	4.	Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein	
13		DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W,	
14		Steinmetzer T, Böttcher-Friebertshäuser E (2020) TMPRSS2 and furin are both	
15		essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci	
16		Alliance 3:e202000786	
17	5.	Cheng YW, Chao TL, Li CL, Chiu MF, Kao HC, Wang SH, Pang YH, Lin CH,	
18		Tsai YM, Lee WH, Tao MH, Ho TC, Wu PY, Jang LT, Chen PJ, Chang SY, Yeh	
19		SH (2020) Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to	
20		Suppress Virus Production and Cytopathic Effects. Cell Rep 33:108254	
21	6.	Wu C, Zheng M, Yang Y, Gu X, Yang K, Li M, Liu Y, Zhang Q, Zhang P, Wang Y,	
22		Wang Q, Xu Y, Zhou Y, Zhang Y, Chen L, Li H (2020) Furin: A Potential	
23		Therapeutic Target for COVID-19. iScience 23:101642	

1	7.	AbdelMassih AF, Ye J, Kamel A, Mishriky F, Ismail HA, Ragab HA, El Qadi L,
2		Malak L, Abdu M, El-Husseiny M, Ashraf M, Hafez N, AlShehry N, El-Husseiny
3		N, AbdelRaouf N, Shebl N, Hafez N, Youssef N, Afdal P, Hozaien R, Menshawey
4		R, Saeed R, Fouda R (2020) A multicenter consensus: A role of furin in the
5		endothelial tropism in obese patients with COVID-19 infection. Obes Med
6		19:100281
7	8.	Adu-Agyeiwaah Y, Grant MB, Obukhov AG (2020) The Potential Role of
8		Osteopontin and Furin in Worsening Disease Outcomes in COVID-19 Patients with
9		Pre-Existing Diabetes. Cells 9:2528
10	9.	Hatsuzawa K, Nagahama M, Takahashi S, Takada K, Murakami K, Nakayama K
11		(1992) Purification and characterization of furin, a Kex2-like processing
12		endoprotease, produced in Chinese hamster ovary cells. J Biol Chem 267:16094-9
13	10.	Takahashi S, Nakagawa T, Kasai K, Banno T, Duguay SJ, Van de Ven WJ,
14		Murakami K, Nakayama K (1995) A second mutant allele of furin in the
15		processing-incompetent cell line, LoVo. Evidence for involvement of the homo B
16		domain in autocatalytic activation J Biol Chem 270:26565-9
17	11.	Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G (1992) Human
18		furin is a calcium-dependent serine endoprotease that recognizes the sequence
19		Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem
20		267:16396-402
21	12.	Garten W (2018) Characterization of proprotein convertases and their involvement
22		in virus propagation. Activation of Viruses by Host Proteases. Springer
23		International Publishing pp205-48

1	13.	Cameron A, Appel J, Houghten RA, Lindberg I (2000) Polyarginines are potent
2		furin inhibitors. J Biol Chem. 275:36741-9
3	14.	Zhou M, Zhang Y, Wei H, He J, Wang D, Chen B, Zeng J, Gong A, Xu M (2018)
4		Furin inhibitor D6R suppresses epithelial-mesenchymal transition in SW1990 and
5		PaTu8988 cells via the Hippo-YAP signaling pathway. Oncol Lett 15:3192-3196
6	15.	Pang YJ, Tan XJ, Li DM, Zheng ZH, Lei RX, Peng XM (2013) Therapeutic
7		potential of furin inhibitors for the chronic infection of hepatitis B virus. Liver Int.
8		33:1230-8
9	16.	Zhong M, Munzer JS, Basak A, Benjannet S, Mowla SJ, Decroly E, Chrétien M,
10		Seidah NG (1999) The prosegments of furin and PC7 as potent inhibitors of
11		proprotein convertases. In vitro and ex vivo assessment of their efficacy and
12		selectivity. J Biol Chem 274:33913-20
13	17.	Jean F, Stella K, Thomas L, Liu G, Xiang Y, Reason AJ, Thomas G. (1998)
14		alpha1-Antitrypsin Portland, a bioengineered serpin highly selective for furin:
15		application as an antipathogenic agent. Proc Natl Acad Sci U S A 95:7293-8
16	18.	Couture F, Kwiatkowska A, Dory YL, Day R. (2015) Therapeutic uses of furin and
17		its inhibitors: a patent review. Expert Opin Ther Pat 25:379-96
18	19.	Bourne GL, Grainger DJ. (2011) Development and characterisation of an assay for
19		furin activity. J Immunol Methods 364:101-8
20	20.	Loveday EK, Diederich S, Pasick J, Jean F (2015) Human microRNA-24 modulates
21		highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by
22		targeting secretory pathway furin. J Gen Virol 96:30-39
23	21.	El Najjar F, Lampe L, Baker ML, Wang LF, Dutch RE (2015) Analysis of

1		cathepsin and furin proteolytic enzymes involved in viral fusion protein activation
2		in cells of the bat reservoir host. PLoS One 10:e0115736
3	22.	Leitlein J, Aulwurm S, Waltereit R, Naumann U, Wagenknecht B, Garten W,
4		Weller M, Platten M. (2001) Processing of immunosuppressive pro-TGF-beta 1,2
5		by human glioblastoma cells involves cytoplasmic and secreted furin-like proteases.
6		J Immunol 166:7238-43
7	23.	Tellier E, Nègre-Salvayre A, Bocquet B, Itohara S, Hannun YA, Salvayre R, Augé
8		N. (2007) Role for furin in tumor necrosis factor alpha-induced activation of the
9		matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biol
10		27:2997-3007
11	24.	Sawada Y, Inoue M, Kanda T, Sakamaki T, Tanaka S, Minamino N, Nagai R,
12		Takeuchi T. (1997) Co-elevation of brain natriuretic peptide and
13		proprotein-processing endoprotease furin after myocardial infarction in rats. FEBS
14		Lett 400:177-82
15	25.	The Ministry of Health, Labour and Welfare (2016) The Japanese pharmacopoeia.
16		17th edn (English version). The Ministry of Health, Labour and Welfare, Tokyo
17	26.	Ritz C, Baty F, Streibig JC, Gerhard D. (2015) Dose-Response Analysis Using R.
18		PLoS One. 10:e0146021
19	27.	Baba K, Kawanishi H, Taniguchi M, Kozawa M. (1992) Chromones from Cnidium
20		Monnieri. Phytochem 31:1367–1370
21	28.	Liu R, Feng L, Sun A, Kong L. (2004) Preparative Isolation and Purification of
22		Coumarins from Cnidium Monnieri (L.) Cusson by High-Speed Counter-Current
23		Chromatography. J. Chromatogr. 1055:71–76.

1	29.	Örd M, Faustova I, Loog M. (2020) The sequence at Spike S1/S2 site enables
2		cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1
3		or MERS-CoV. Sci Rep. 10:16944.
4	30.	Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais C,
5		Porrot F, Guivel-Benhassine F, Van der Werf S, Casartelli N, Mouquet H, Bruel T,
6		Schwartz O. (2020) Syncytia formation by SARS-CoV-2-infected cells. EMBO J.
7		39:e106267
8	31.	Sun Y, Yang AWH, Lenon GB. (2020) Phytochemistry, Ethnopharmacology,
9		Pharmacokinetics and Toxicology of Cnidium monnieri (L.) Cusson. Int J Mol Sci.
10		21:1006
11	32.	Feng H, Lu JJ, Wang Y, Pei L, Chen X. (2017) Osthole inhibited TGF β -induced
12		epithelial-mesenchymal transition (EMT) by suppressing NF- κ B mediated Snail
13		activation in lung cancer A549 cells. Cell Adh Migr. 11:464-475
14	33.	O'Sullivan MJ, Mitchel JA, Mwase C, McGill M, Kanki P, Park JA. (2020) In
15		well-differentiated primary human bronchial epithelial cells, TGF- β 1 and TGF- β 2
16		induce expression of furin. Am J Physiol Lung Cell Mol Physiol. (in press)
17	34.	Stawowy P, Margeta C, Kallisch H, Seidah NG, Chrétien M, Fleck E, Graf K.
18		(2004) Regulation of matrix metalloproteinase MT1-MMP/MMP-2 in cardiac
19		fibroblasts by TGF-beta1 involves furin-convertase. Cardiovasc Res. 63:87-97
20	35.	Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F, Seidah NG. (2001)
21		Evidence that furin is an authentic transforming growth factor-beta1-converting
22		enzyme. Am J Pathol 158:305-16
23		

- 1 Tables
- $\mathbf{2}$

3	Table 1. Screening results of the inhibitory effects of 124 crude drugs on furin-like
4	activity. Ethanol extracts of crude drugs (20 μ g/mL) were pre-incubated with cell
5	lysates and added to fluorogenic substrates (pyr-RTKR-MCA). Data are presented as
6	mean \pm standard deviation of at least three independent experiments.

Latin Name	Furin-like activity (%)
ACHYRANTHIS RADIX	95.2 ± 1.8
ACONITI RADIX PROCESSA	72.5 ± 3.6
AKEBIAE CAULIS	$92.8~\pm~1.8$
ALISMATIS TUBER	101.9 ± 0.7
ALOE	83.1 ± 7.9
ALPINIAE OFFICINARI RHIZOMA	$92.2~\pm~1.5$
AMOMI SEMEN	$92.6~\pm~2.5$
ANEMARRHENAE RHIZOMA	95.4 ± 3.4
ANGELICAE ACUTILOBAE RADIX	101.8 ± 2.3
ANGELICAE DAHURICAE RADIX	99.8 ± 3.1
ARALIAE CORDATAE RHIZOMA	60.7 ± 4.2
ARCTII FRUCTUS	97.2 ± 4.1
ARECAE SEMEN	99.2 ± 2.3
ARMENIACAE SEMEN	$93.0~\pm~9.7$
ARTEMISIAE CAPILLARIS FLOS	80.0 ± 8.3
ARTEMISIAE FOLIUM	79.0 ± 3.8

ASIASARI RADIX	78.8 ± 2.7
ASPARAGI RADIX	$94.2 ~\pm~ 1.1$
ASTRAGALI RADIX	92.4 ± 4.6
ATRACTYLODIS LANCEAE RHIZOMA	94.4 ± 3.1
ATRACTYLODIS RHIZOMA	84.6 ± 3.1
AURANTII FRUCTUS IMMATURUS	86.3 ± 2.8
AURANTII PERICARPIUM	100.3 ± 3.8
BENINCASAE SEMEN	$84.7~\pm~0.3$
BUPLEURI RADIX	95.0 ± 2.0
CANNABIS FRUCTUS	89.2 ± 1.7
CARTHAMI FLOS	93.7 ± 5.3
CASSIAE SEMEN	83.6 ± 4.9
CATALPAE FRUCTUS	$84.8~\pm~2.8$
CHRYSANTHEMI FLOS	85.3 ± 4.9
CIMICIFUGAE RHIZOMA	96.4 ± 2.6
CINNAMOMI CORTEX	86.9 ± 5.7
CITRI UNSHIU PERICARPIUM	80.8 ± 2.7
CLEMATIDIS RADIX	85.9 ± 5.6
CNIDII MONNIERIS FRUCTUS	6.2 ± 0.3
CNIDII RHIZOMA	103.0 ± 3.3
COICIS SEMEN	93.0 ± 2.3
COPTIDIS RHIZOMA	82.9 ± 7.5
CORNI FRUCTUS	$89.8~\pm~1.8$

CORYDALYS TUBER	86.5 ± 4.4
CRATAEGI FRUCTUS	$98.1~\pm~2.4$
CURCUMAE RHIZOMA	78.2 ± 1.5
CYPERI RHIZOMA	90.0 ± 0.9
DIGENEA	101.1 ± 3.6
DIOSCOREAE RHIZOMA	92.1 ± 3.0
EPHEDRAE HERBA	86.8 ± 4.7
EPIMEDII HERBA	73.4 ± 11.3
ERIOBOTRYAE FOLIUM	79.7 ± 3.1
EUODIAE FRUCTUS	$83.1~\pm~2.5$
FOENICULI FRUCTUS	79.9 ± 11.7
FORSYTHIAE FRUCTUS	$42.9~\pm~2.3$
FRITILLARIAE BULBUS	$90.3~\pm~3.0$
GARDENIAE FRUCTUS	89.0 ± 4.2
GASTRODIA TUBER	98.9 ± 2.7
GENTIANAE RADIX	101.1 ± 8.1
GENTIANAE SCABRAE RADIX	99.6 ± 3.3
GERANII HERBA	91.2 ± 12.4
GINSENG RADIX	99.5 ± 4.4
GINSENG RADIX RUBRA	97.0 ± 1.4
GLYCYRRHIZAE RADIX	91.3 ± 4.7
GLYCYRRHIZAE RADIX PRAEPARATA	89.3 ± 1.4
HOUTTUYNIAE HERBA	92.9 ± 11.7

HYDRANGEAE DULCIS FOLIUM	56.5 ± 1.8
КОІ	95.4 ± 5.3
LEONURI HERBA	$67.7~\pm~6.1$
LILII BULBUS	99.2 ± 2.6
LINDERAE RADIX	67.3 ± 1.3
LITHOSPERMI RADIX	$92.2~\pm~4.4$
LONICERAE FOLIUM CUM CAULIS	94.6 ± 2.2
LYCII FRUCTUS	96.5 ± 4.8
MAGNOLIAE CORTEX	95.8 ± 4.9
MAGNOLIAE FLOS	$99.7~\pm~0.5$
MALLOTI CORTEX	$84.2~\pm~8.0$
MENTHAE HERBA	91.1 ± 1.9
MOUTAN CORTEX	100.4 ± 2.2
MYRISTICAE SEMEN	97.8 ± 0.5
NOTOPTERYGII RHIZOMA	95.3 ± 10.3
OPHIOPOGONIS RADIX	$98.3~\pm~1.7$
PAEONIAE RADIX	95.3 ± 1.6
PANACIS JAPONICI RHIZOMA	85.8 ± 2.8
PERILLAE HERBA	90.1 ± 1.5
PERSICAE SEMEN	95.3 ± 2.7
PEUCEDANI RADIX	$103.2~\pm~5.8$
PHARBITIDIS SEMEN	79.9 ± 11.2
PHELLODENDRI CORTEX	82.1 ± 6.0

PICRASMAE LIGNUM	$99.4~\pm~3.0$
PINELLIAE TUBER	$60.7~\pm~3.4$
PLANTAGINIS SEMEN	98.2 ± 3.6
PLATYCODI RADIX	$88.7~\pm~1.4$
POGOSTEMONI HERBA	$83.9~\pm~1.2$
POLYGALAE RADIX	92.7 ± 3.3
POLYGONATI RHIZOMA	87.6 ± 9.7
POLYGONI MULTIFLORI RADIX	92.1 ± 6.7
POLYPORUS	100.6 ± 1.7
PORIA	$93.3~\pm~2.8$
PRUNELLAE SPICA	$93.9~\pm~4.0$
PRUNI CORTEX	92.2 ± 13.0
PUERARIAE RADIX	92.2 ± 6.4
QUERCUS CORTEX	97.0 ± 1.7
REHMANNIAE RADIX	$94.5 ~\pm~ 1.0$
RHEI RHIZOMA	88.1 ± 2.6
RYCII CORTEX	97.6 ± 4.1
SAPOSHNIKOVIAE RADIX	$91.9~\pm~3.5$
SAUSSUREAE RADIX	79.2 ± 2.7
SCHISANDRAE FRUCTUS	90.4 ± 1.6
SCHIZONEPETAE SPICA	85.2 ± 6.6
SCUTELLARIAE RADIX	87.1 ± 8.0
SENNAE FOLIUM	80.0 ± 2.4

SESAMI SEMEN	95.7 ± 0.4
SINOMENI CAULIS ET RHIZOMA	93.1 ± 4.4
SMILACIS RHIZOMA	90.5 ± 1.7
SOPHORAE RADIX	99.1 ± 3.9
SWERTIAE HERBA	90.8 ± 4.6
TRIBULI FRUCTUS	95.1 ± 1.8
TRICHOSANTHIS RADIX	$87.7~\pm~9.2$
UNCARIAE UNCIS CUM RAMULUS	104.1 ± 5.8
UVAE URSI FOLIUM	$89~\pm~6.5$
VALERIANAE FAURIEI RADIX	90.7 ± 6.2
ZANTHOXYLI PIPERITI PERICARPIUM	82.4 ± 3.9
ZEDOARIAE RHIZOMA	77.1 ± 3.7
ZINGIBERIS RHIZOMA	96.8 ± 0.5
ZINGIBERIS RHIZOMA PROCESSUM	$79.4~\pm~6.1$
ZIZYPHI FRUCTUS	97.7 ± 3.9

 $\mathbf{2}$

1 Table 2 IC₅₀ of different crud drugs

Sample	IC ₅₀ (µg/mL)
Cnidii Monnieris Fructus	1.10
Cnidii Rhizoma	>50
Hydrangeae Dulcis Folium	7.12
Forsythiae Fructus	6.52

 $\mathbf{2}$

3 Figure legend

4

5 Fig. 1 Structure and IC₅₀ of imperatorin (1) and osthole (2)

